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A finite deterministic (semi)automaton A = (Q,Σ, δ) is k-compressible if there is some word w ∈ Σ+ such that the

image of its state set Q under the natural action of w is reduced by at least k states. Such word w, if it exists, is called

a k-compressing word for A and A is said to be k-compressed by w. A word is k-collapsing if it is k-compressing for

each k-compressible automaton, and it is k-synchronizing if it is k-compressing for all k-compressible automata with

k + 1 states. We compute a set W of short words such that each 3-compressible automaton on a two-letter alphabet

is 3-compressed at least by a word in W . Then we construct a shortest common superstring of the words in W and,

with a further refinement, we obtain a 3-collapsing word of length 53. Moreover, as previously announced, we show

that the shortest 3-synchronizing word is not 3-collapsing, illustrating the new bounds 34 ≤ c(3, 2) ≤ 53 for the

length c(3, 2) of the shortest 3-collapsing word on a two-letter alphabet.

Keywords: deterministic finite automaton, collapsing word, synchronizing word

1 Introduction

Let A = (Q,Σ, δ) be a finite deterministic complete (semi)automaton with state set Q, input alphabet Σ,

and transition function δ : Q × Σ → Q. For any word w ∈ Σ+, the deficiency of w is the difference

between the cardinality of Q and the cardinality of the image of Q under the natural action of w. For a

fixed k ≥ 1, the word w is called k-compressing for A if its deficiency is greater than or equal to k. An

automatonA is k-compressible, if there exists a k-compressing word w for A and in such case A is said to

be k-compressed by w. A word w ∈ Σ+ is k-collapsing, if it is k-compressing for every k-compressible

automaton with input alphabet Σ. A word w ∈ Σ+ is called k-synchronizing if it is k-compressing for

all k-compressible automata with k+1 states and input alphabet Σ. Obviously each k-collapsing word is

also k-synchronizing.
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The concept of k-collapsing words arose (under a different name) in the beginning of the 1990s with

original motivations coming from combinatorics (Sauer and Stone (1991)) and from abstract algebra

(Pöschel et al. (1994)). In Sauer and Stone (1991) it has been proved that k-collapsing words always

exist, for any Σ and any k ≥ 1, by means of a recursive construction which gives a k-collapsing word

whose length is O(22
k

). Better bounds for c(k, t) and s(k, t), the length of the shortest k-collapsing

and k-synchronizing words respectively, on an alphabet of cardinality t were given in Margolis et al.

(2004). The bounds for c(2, t) were slightly improved in Pribavkina (2005) and Cherubini et al. (2009),

but the gaps between lower and upper bounds are quite large even for small values of k and t. Exact

values of s(k, t) and c(k, t) are known for k = 2 and t = 2, 3 and are quite far from the theoretical

upper bounds (Ananichev et al. (2005)). Moreover it is known that s(3, 2) = 33 and that the words

s3,2 = ab2aba3b2a2babab2a2b3aba2ba2b2a and its dual s̄3,2 are the unique shortest 3-synchronizing

words on {a, b} (Ananichev and Petrov (2003)). Observing that s(k, t) ≤ c(k, t), and applying the con-

struction in Margolis et al. (2004), one gets 33 ≤ c(3, 2) ≤ 154.

The reader is referred to Ananichev et al. (2005); Cherubini (2007); Cherubini et al. (2009); Margolis

et al. (2004) for references and connections to theoretical computer science and language theory. The

paper is organized as follows: in Section 2 we introduce some general concepts about 3-compressible

automata and the main tool we use to study them, i.e., 3-Missing State Automata. In Section 3 we

give a complete characterization of proper 3-compressible automata on a two-letter alphabet with a letter

acting as a permutation, while in Section 4 we characterize all proper 3-compressible automata without

permutations. In Section 5 we describe how to use the previous characterization to obtain a short 3-

collapsing word, improving the known upper bound for c(3, 2), as already announced in Cherubini et al.

(2011). Section 6 ends the paper with some considerations about the quest for short 3-collapsing words in

general and the relationship between 3-synchronizing and 3-collapsing words, and how our analysis can

be exploited to obtain more general results, as already done in Cherubini and Kisielewicz (2014, 2016).

2 Background

Let A = (Q,Σ, δ) be a finite deterministic complete (semi)automaton with state set Q, input alphabet

Σ = {a, b}, and transition function δ : Q× Σ → Q. The action of Σ on Q given by δ extends naturally,

by composition, to the action of any word w ∈ Σ+ on q ∈ Q; we denote it by qw = δ(q, w), while the

action of w on the entire state set Q is denoted by Qw = {qw|q ∈ Q}.

Definition 1 The difference |Q| − |Qw| is called the deficiency of the word w with respect to A and

denoted by dfA(w). For a fixed k ≥ 1, a word w ∈ Σ+ is called k-compressing for A, if dfA(w) ≥ k.

An automaton A is k-compressible, if there exists a k-compressing word for A. A word w ∈ Σ+ is k-

collapsing, if it is k-compressing for every k-compressible automaton with input alphabet Σ. A word w is

called k-synchronizing if it is k-compressing for all k-compressible automata with k+ 1 states and input

alphabet Σ. Obviously each k-collapsing word is also k-synchronizing.

Actually, we view the automatonA as a set of transformations on Q induced via δ and labeled by letters

of Σ, rather than as a standard triple. Indeed, in order to define an automaton, it is just enough to assign

to every letter a ∈ Σ the corresponding transformation τa : q → δ(q, a) on Q. Now, for a ∈ Σ, we get

dfA(a) = |Q| − | Im(τa)|, hence dfA(a) = 0 if and only if τa is a permutation on Q. If dfA(a) = m ≥ 1,

then there are exactly m different states y1, y2, . . . , ym /∈ Im(a), and there are some elements of Q whose

images under τa are equal.
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Definition 2 Let P = {{x1
1, . . . , x

1
j}, . . . , {x

r
1, . . . , x

r
j}} be a partition of Q (where singleton sets are

omitted), and y1, . . . , ym ∈ Q. We say that τa is a transformation of type

[x1
1, . . . , x

1
j ] . . . [x

r
1, . . . , x

r
j ]\y1, . . . , ym

if P is induced by the kernel of τa and the states y1, y2, . . . , ym do not belong to Im(τa).

For instance, if A has at least three states denoted by 1, 2 and 3, a transformation τ is of type [1, 2]\3,

if and only if τ(1) = τ(2), the preimage of 3 is empty, and for any q, q′ /∈ {1, 2}, τ(q) = τ(q′) if

and only if q = q′. So, with an abuse of notation, we will write τ = [1, 2]\3 (actually [1, 2]\3 is a

family of transformations). Then, in the sequel we will identify each letter of the input alphabet with its

corresponding transformation.

Definition 3 Let a ∈ Σ, we say that a is a permutation letter if it induces a permutation on the set of

states, i.e., it has deficiency 0.

We assume that permutations on Q, viewed as elements of the symmetric group Sn with |Q| = n,

are written in the factorization in disjoint cycles where sometimes also cycles of length 1 are explicitly

written. So we will write a = (1)(23)π to denote that (the permutation induced by) a fixes state 1, swaps

states 2 and 3, and π is a permutation that acts on Q \ {1, 2, 3} (π is not necessarily a cycle).

The notion of transformation induced by a letter naturally extends to words, and then the semigroup

generated by the transformations of A consists precisely of the transformations corresponding to words

in Σ+. If A is k-compressible, at least one letter of its input alphabet has deficiency greater than 0. It is

well known that each k-collapsing word over a fixed alphabet Σ is k-full (Sauer and Stone (1991)), i.e.,

contains each word of length k on the alphabet Σ among its factors. Hence, to characterize k-collapsing

words it is enough to consider k-full words compressing all k-compressible automata that are proper, i.e.,

k-compressible automata which are not compressed by any word of length k.

Proposition 4 Let A be a finite complete automaton on the alphabet {a, b}: it is 3-compressible and not

proper if at least one letter, say a, fulfills one of the following conditions:

1. it has deficiency greater than 2;

2. it has deficiency 2 and is of type [x, y, z]\u, v, with {u, v} * {x, y, z};

3. it has deficiency 2 and is of type [x, y][z, v]\u,w, with either {u,w} = {x, y}, or {u,w} = {z, v},

or {u,w} * {x, y, z, v};

4. it has deficiency 1 and is of type [x, y]\z, with z /∈ {x, y} and za /∈ {x, y}.

The proof of the previous proposition is trivial, indeed if the letter a fulfills one of the above conditions,

then either a or a2 or a3 has deficiency 3. Since we are looking for a proper 3-compressible automaton

we may assume that each letter of the alphabet is either a permutation or one of the following types (we

assume different letters represent different states):

1. [x, y, z]\x, y;

2. [x, y][z, v]\x, z;
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3. [x, y]\x;

4. [x, y]\z with za = x.

In the sequel we view the set Q of the states of A as a set of natural numbers: Q = {1, 2, . . . , n},

so that, when no confusion arises, a letter a of types 1,2,3,4 is denoted respectively by [1, 2, 3]\1, 2,

[1, 2][3, 4]\1, 3, [1, 2]\1, [1, 2]\3 with 3a = 1.

Definition 5 Let w ∈ Σ+. We call M(w) = Q \ Qw the missing set of w. Let Q1 ⊆ Q. We denote

by M(Q1, w) the missing set of w when we have already missed Q1, i.e., the set M(w) ∪ {qw | q ∈
Q1 and ∀q′ ∈ Q \Q1, qw 6= q′w}.

Observe that M(∅, w) = M(w), and if a ∈ Σ is a permutation, M(Q1, a) = Q1a. Moreover,

|M(w)| ≥ |M(w1)|, whenever w1 is a factor of w.

Definition 6 With abuse of language, for a letter a and Q1 ⊆ Q, we call the orbit of a over Q1 the set

Orba(Q1) =
⋃∞

n=0
Q1a

n. In order to increase the readability, we will write Orba(q1, . . . , qn) instead of

Orba({q1, . . . , qn}).

We say that A is a (i, j)-automaton, 1 ≤ i, j ≤ 4, if it is an automaton on a two-letter alphabet {a, b}
and the letter a is of type i and b is of type j. We say that A is a (i,p)-automaton, with 1 ≤ i ≤ 4, to

denote that the letter a is of type i and b is a permutation. In the sequel, without loss of generality, we will

always suppose that in a (i, j)-automaton (resp. (i,p)-automaton) the letter a is of type i and b is of type

j (resp. a permutation).

Although the notion of missing set is sufficient to describe the compressibility of an automaton, it is

in general quite intricate to use, especially when long words are involved. So, to easily calculate the set

M(Q1, w), we introduce a graphical device, the missing state automaton of A.

Definition 7 Let A = (Q,Σ, δ) be a deterministic (semi)automaton with |Q| = n, and let m < n. The m-

Missing State Automaton (mMSA for short) of A is the automaton M = (℘m−1(Q) ∪ {m},Σ, τ, ∅,m),
where ℘m−1(Q) is the set of subsets of Q of cardinality less than or equal to m− 1, m is a special state

not belonging to ℘m−1(Q) graphically denoted by a circle with m tokens inside, and τ : ℘m−1(Q)×Σ →
℘m−1(Q) ∪ {m} is the transition relation defined by

τ(Q1, a) =

{
M(Q1, a), if |M(Q1, a)| < m;

m, otherwise.

notice that τ is not defined at the state m.

For example, in Fig. 1 we draw the 2MSA of a simple semiautomaton, proving that it is synchronizable.

The notion of missing state automaton is similar to that of power state automaton, which is a standard

tool in computing synchronizing words, see Trahtman (2006); Kudlacik et al. (2012); Volkov (2008).

The difference is that the names of states are replaced by their complements and all superstates made

by more than m states are identified. Although power set automata are only used to design algorithm to

find possibly shortest synchronizing words of a fixed automaton, we need to consider a whole class of

automata. Moreover, as we are only interested in knowing if an automaton is 3-compressible, often we

will draw only a Partial 3-Missing State Automaton (P3MSA), i.e., a path (possibly the shortest) from the

initial to the final state of the whole 3MSA.
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2

1 3

a

b

a
b

a, b

(1) The Cerný automaton A.

1 2

3

b

a

a
b

a

bb

a

(2) The 2MSA of A.

Fig. 1: The Cerný semiautomaton with 3 states and its 2MSA: the set of synchronizing words for A is the regular

language b∗a(a+ ba+ b3)∗bba.

Lastly, we observe that when considering a family of automata, dozens of subcases arise when we try

to find some (short) 3-collapsing word for such family. So, to capture a greater number of cases and

improve the readability, we gather several subcases using a conditional 3MSA. In this case, a label can be

of the form a|qw ∈ Q′. So, τ(q1, a|qw ∈ Q′) = q2 means that M({q1}, a) = {q2} under the hypothesis

(condition) that qw ∈ Q′. Observe that the condition qw ∈ Q′ spreads over all the states reached from

q2, so two different states can share the same name, when belonging to different branches. For example,

in the conditional 3MSA in Fig. 4(1), the two states named by {1, 3} have different behavior as the one

in the first row inherits the condition 3a = 3 and then M({1, 3}, a) = {1, 3}, while the one in the second

row inherits the condition 3a = 2 and then M({1, 3}, a) = {1, 2}.

3 3-compressible (i,p)-automata

In this section we characterize all proper 3-compressible automata on the alphabet {a, b} in which the

letter b acts as a permutation on the set Q of states. In particular in the following propositions we give a

small set of short 3-collapsing words when letter a is of type i, 1 ≤ i ≤ 4.

Proposition 8 Let A be a (1,p)-automaton with a = [1, 2, 3]\1, 2. Then A is 3-compressible and proper

if and only if the following conditions hold:

1. Orbb(1, 2) * {1, 2, 3}, and

2. {1, 2}b ⊂ {1, 2, 3}.

Moreover, if A is 3-compressible and proper, then the word ab2a 3-compresses A.

Proof: Let A be a (1,p)-automaton that does not satisfy one of the conditions 1. or 2. If Orbb(1, 2) ⊆
{1, 2, 3}, then for each wordw ∈ {a, b}∗ we have that M(wa) = {1, 2}, whenceA is not 3-compressible.

Else, if {1, 2}b * {1, 2, 3}, then M(a) = {1, 2}, M(ab) = {1b, 2b} * {1, 2, 3}, and |M(aba)| ≥ 3, so

A is not proper.

Conversely, let A be an automaton satisfying conditions 1. and 2. A 3-compressing word for A must

have at least two non-consecutive occurrences of letter a, and the word aba is not 3-compressing. More-

over, {1, 2}b2 * {1, 2, 3}, else Orbb(1, 2) ⊆ {1, 2, 3}, against the hypothesis, and then the word ab2a
3-compresses A. 2
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Proposition 9 Let A be a (2,p)-automaton with a = [1, 2][3, 4]\1, 3. Then A is 3-compressible and

proper if and only if one of the following conditions holds:

1. {1, 3}b = {2, 4} and {2, 4}b 6= {1, 3};

2. {1, 3}b ∈ {{1, 4}, {2, 3}} and at least one of the following conditions is true:

(a) Orbb(1, 3) * {1, 2, 3, 4};

(b) |Orbb(1)| = 3;

(c) |Orbb(3)| = 3.

Moreover, if A is 3-compressible and proper, then one of the words ab2a or ab3a 3-compresses A.

Proof: LetA be a (2,p)-automaton that does not satisfy both conditions 1. and 2. If {1, 3}b * {1, 2, 3, 4},

then the word aba 3-compresses A, which is not proper. So, let {1, 3}b ⊆ {1, 2, 3, 4}, then we have to

consider only the following cases:

1. {1, 3}b ∈ {{1, 2}, {3, 4}}, then again the word aba 3-compresses A, so A is not proper;

2. {1, 3}b = {1, 3}, then for all w ∈ b∗, M(w) = ∅, while for all w ∈ {a, b}∗ \ b∗, M(w) = {1, 3},

then A is not 3-compressible;

3. {1, 3}b ∈ {{1, 4}, {2, 3}} with Orbb(1, 3) ⊆ {1, 2, 3, 4}, |Orbb(1)| 6= 3 and |Orbb(3)| 6= 3, then

b = (1423)π or b = (1324)π or b = (1)(34)π or b = (12)(3)π. The 3MSA in figures 2(1) and 2(2)

prove that in any case A is not 3-compressible;

4. {1, 3}b = {2, 4}. If {2, 4}b ⊆ {1, 2, 3, 4}, then b = (12)(34)π or b = (14)(32)π or b = (1234)π
or b = (1432)π, and the 3MSA in Fig. 2(2) proves that A is not 3-compressible.

1, 3 1b, 3b 2, 4 2b, 4b
a

b

b

a

a

b

a

b

a, b

(1) 3MSA for the case b = (1423)π or b = (1324)π.

1, 3 1b, 3b
a

b

b

a

a, b

(2) 3MSA for the case b = (1)(34)π,

b = (12)(4)π, or {1, 3}b = {2, 4}.

Fig. 2: 3MSA for automata that do not satisfy conditions 1. and 2. of Proposition 9.

Conversely,

1. let {1, 3}b = {2, 4} and {2, 4}b 6= {1, 3}. Then M(ab2) = {2, 4}b, and the word ab2a 3-

compresses A. On the other hand, M(aba) = {1, 3} and then A is proper.
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2. Now let {1, 3}b = {1, 4}. If Orbb(1, 3) * {1, 2, 3, 4}, then b = (1)(34x . . .)π or b = (314x . . .)π
or b = (1)(342x . . .)π or b = (3142x . . .)π for some x 6∈ {1, 2, 3, 4}. In the first two cases the

word ab2a 3-compresses A, in the last two the word ab3a 3-compresses A. If |Orbb(1)| = 3, then

1b = 4 and 3b = 1, i.e., b = (143)π, while if |Orbb(3)| = 3, then either b = (143)π, or b fixes 1

and is of the form (34x)π for some x 6∈ {1, 3, 4}. In any cases, {1, 3}b2 ∈ {{1, x}, {3, 4}}, so the

word ab2a 3-compresses A. The case {1, 3}b = {2, 3} is symmetric, and then either the word ab2a
or ab3a 3-compresses A.

2

Observe that each 3-compressible (3,p)- or (4,p)-automaton A is proper. Indeed each 3-compressing

word for A contains at least three occurrences of the letter a which are not all consecutive. So in the next

two propositions, we only look for 3-compressible automata.

Proposition 10 Let A be a (3,p)-automaton with a = [1, 2]\1. Then A is 3-compressible (and proper)

if and only if the following conditions hold:

1. |Orbb(1)| ≥ 2 and {1, 2}b 6= {1, 2};

2. if b = (13)π, then

(a) 3a 6= 3;

(b) if 3a = 2, then 2b 6= 2 or 2a 6= 3;

(c) if 3a = 2b and 2b 6∈ {2, 3}, then 2b2 6= 2 or 2ba 6= 3;

3. if b = (123)π, or b = (132)π, then {2, 3}a 6= {2, 3};

4. if b = (1324)π, then {3, 4}a 6= {3, 4}.

Moreover, if A is 3-compressible (and proper), then one of the words ababa, aba2ba, ab2ab2a, ab2a2b2a,

ab2abab2a, abab2aba, ab3aba, abab3a or ab3ab3a 3-compresses A.

Proof: Let A be a (3,p)-automaton that does not satisfy one of the conditions 1.-4. We prove that it is

not 3-compressible.

1. Let |Orbb(1)| = 1 or {1, 2}b = {1, 2}, then 1b = 1 or b = (12)π. In the former case for all

w ∈ (a+ b)∗, M(w) ∈ {∅, {1}}, in the latter M(w) ∈ {∅, {1}, {2}}, so A is not 3-compressible.

2. Let b = (13)π and either 3a = 3, or 3a = 2, 2b = 2 and 2a = 3, or 3a = 2b = 4, 2b2 = 2 and

2ba = 3. Observe that in the last two cases 3a2 = 3 and 3ab = 2, indeed if 3a = 2, 2b = 2 and

2a = 3 then (3a)a = 2a = 3 and (3a)b = 2b = 2, while if 3a = 2b = 4, 2b2 = 2 and 2ba = 3,

then again (3a)a = (2b)a = 3 and (3a)b = (2b)b = 2. The 3MSA in Fig. 3 proves that in any case

A is not 3-compressible.

3. Let b = (123)π, or b = (132)π, and {2, 3}a = {2, 3}. The 3MSA in figures 4(1) and 4(2) prove

that A is not 3-compressible.

4. Let b = (1324)π, and {3, 4}a = {3, 4}. The 3MSA in Fig. 5 proves that A is not 3-compressible.
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1 3 2, 3 1, 3a 1, 3 1, 3
a

b a

b

a|3a ∈ {2, 4}

a|3a = 3

b a

b

ab

a, b

a, b

Fig. 3: 3MSA for automata that do not satisfy condition 2. of Proposition 10.

3 2, 3 1, 3 1, 2

1 2 1, 3 1, 2 2, 3

a

b a|3a = 3

a|3a = 2
b

a, b

a

b

a

b

a

b

a

b

a, b

a

b

a

b

(1) b = (123)π.

3 1, 2 1, 3 2, 3

1 2 2, 3 1, 2 1, 3

a

b
a|3a = 3

a|3a = 2b

a
b

a

b

a

b

a

b

a, b

a, b a, b

a

b

(2) b = (132)π.

Fig. 4: 3MSA for automata that do not satisfy condition 3. of Proposition 10.

1 2

3 1, 3

1, 4 2, 4 2, 3 1, 3

2, 3

4 1, 4 2, 4

a

b a
b b

a|3a = 3

a|3a = 4

b

a

b

a|3a = 3

a|3a = 4
a, b

b

a

b

a

b

a

b

a

b

a

b

a, b

a

b

Fig. 5: 3MSA for automata that do not satisfy condition 4. of Proposition 10.
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Conversely, let A be an automaton satisfying conditions 1.−4. Since |Orbb(1)| ≥ 2 and {1, 2}b 6= {1, 2},

we have 1b 6= 1 and b is not of the form (12)π. Moreover, observe that if b is of the form (134 . . .)π, then

one of the words abab2a, ababa, ab2ab2a or ab2aba 3-compresses A, as shown in Fig. 6. for this reason

in the following we do not consider such cases.

1 3 1, 3a 3, 3ab 3, 4

4 1, 4a 3, 4ab 3, 4

a b a|3ab 6= 2

b|3ab = 2

b b|3a = 4

a|3a 6= 4 a

a b b|4ab = 1

a|4ab 6= 1

a

Fig. 6: P3MSA for 3-compressible automata with b = (134 . . .)π.

1. Let |Orbb(1)| = 2, b = (13)π, and 3a 6= 3, then there are two further subcases.

(a) If |Orbb(2)| ≤ 2, i.e., b = (13)(2)π or b = (13)(24)π, then {2b, 3}a 6= {2b, 3} and in

Fig. 7(1) we draw a P3MSA for those cases, proving that either the word ababa or aba2ba
3-compresses A.

(b) If |Orbb(2)| ≥ 3, i.e., b = (13)(245 . . .)π, then in Fig. 7(2) we draw a P3MSA for this case,

proving that either the word ababa or abab3a 3-compresses A.

1 3 1, 3a

1, 3a2
3,

3a2b
3, 3ab

a b a

a|3a = 2b
b|3a 6= 2b

b a a

(1) P3MSA for the case b = (13)(2)π or b =
(13)(24)π, and {2b, 3}a 6= {2b, 3}.

1 3 1, 3a

2, 3 3, 5 3, 3ab

a b a

b|3ab = 2
b|3ab 6= 2

b2 a a

(2) P3MSA for the case b = (13)(245 . . .)π.

Fig. 7: P3MSA for 3-compressible automata with b = (13)π and 3a 6= 3.

2. Let |Orbb(1)| = 3, then we have to considered the two subcases b = (123)π and b = (132)π, as

the case b = (134)π was already analyzed in Fig. 6.

(a) If b = (123)π, then {2, 3}a 6= {2, 3} and in Fig. 8 we draw a P3MSA for this case, proving

that one of the words ab2ab2a, ab2a2b2a or ab2abab2a 3-compresses A.

(b) If b = (132)π, then {2, 3}a 6= {2, 3} and in Fig. 9 we draw a P3MSA for this case, proving

that one of the words aba2ba, ababa or abab2aba 3-compresses A.

3. Let |Orbb(1)| = 4, then we have to considered the two subcases b = (1234)π and b = (1324)π, as

the cases b = (1342)π and b = (1345)π were already analyzed in Fig. 6.
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1 2 3 1, 3a 1, 2a 2, 2ab 3, 2ab2

2, 3ab 3, 3ab2 1, 2 1, 2a 2, 2ab 3, 2ab2

a b b a a|3a = 2

b|3a = 3
b|3a 6∈ {2, 3}

b b

a

b

a

a b b a

Fig. 8: P3MSA for 3-compressible automata with b = (123)π and {2, 3}a 6= {2, 3}.

1 3 1, 3a 1, 2a 3, 2ab

3, 3ab 2, 3 1, 2 1, 2a 3, 2ab

a b a a|3a = 2

b|3a = 3
b|3a 6∈ {2, 3}

b

a

a

b a b a

Fig. 9: P3MSA for 3-compressible automata with b = (132)π and {2, 3}a 6= {2, 3}.

(a) If b = (1234)π, then in Fig. 10 we draw a P3MSA for this case, proving that one of the words

ab2ab2a, ab3ab3a, ab2abab2a or ab2a2b2a 3-compresses A. Indeed, observe that:

i. if 3a 6∈ {3, 4}, then 3ab2 = 1 implies 3a = 3, and 3ab2 = 2 implies 3a = 4, and both of

them are contradictions;

ii. if 3a = 4 and 4a = 3, then 2ab2 = 1 implies 2a = 3, and 2ab2 = 2 implies 2a = 4, both

contradictions;

iii. if 3a = 3 and 4a 6= 4 or if 3a = 4 and 4a 6= 3, then 4ab2 = 1 implies 4a = 3, and

4ab2 = 2 implies 4a = 4, both contradictions.

(b) If b = (1324)π, then {3, 4}a 6= {3, 4} and in Fig. 11 we draw a P3MSA for this case,

proving that either the word ababa or ab3aba 3-compresses A. Observe that if 3ab = 1, then

3a = 4, 4a 6= 3, and so 4ab 6∈ {1, 2}, else if 3ab = 2, then 3a = 3, 4a 6∈ {3, 4}, and again

4ab 6∈ {1, 2}.

4. Let |Orbb(1)| ≥ 5, then we have to considered the two subcases b = (12345)π and b = (13245)π,

as the cases b = (13425 . . .)π, b = (13452 . . .)π, and b = (13456 . . .)π were already analyzed in

Fig. 6.

(a) If b = (12345 . . .)π, then in Fig. 12 we draw a P3MSA for this case, proving that one of the

words ab2ab2a, ab2abab2a or ab2a2b2a 3-compresses A. Note that if 3ab2 = 1 and 3a2b2 =
2, then 3abab2 6∈ {1, 2}. In fact if 3abab2 = 1, then 3a = 3aba, hence 3a = 2 and 3ab2 = 4,

a contradiction. If 3abab2 = 2, then 3aba = 3a2, hence 3ab = 3a and 3ab2 = 3ab = 1,

again a contradiction. Similarly, if 3ab2 = 2 and 4ab3 = 2, then 3abab2 6∈ {1, 2}; in fact if

3abab2 = 1 then 3ab2ab2 = 4ab2 and 3ab2 = 4, else if 3abab2 = 2 then 3ab2 = 3abab2

hence 3ab = 3 and 3ab2 = 4, and in both cases this is a contradiction.
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1 2 3 1, 3a 2, 3ab 3, 3ab2

4 1, 4 1, 2 2, 3 3, 4

1, 3 2, 4 1, 4a 2, 4ab 3, 4ab2

1, 4 1, 4a 2, 4ab 3, 4ab2

1, 4 1, 2 1, 2a 2, 2ab 3, 2ab2

a b b a|3a 6∈ {3, 4}

b|3a = 3, 4a = 4

a|3a = 4, 4a = 3

a|3a = 3, 4a 6= 4

a|3a = 4, 4a 6= 3

b b a

a b b b

a

b a b b

a

b a b b

aa b b

a

Fig. 10: P3MSA for the case b = (1234)π.

1 3 1, 3a 3, 3ab 3, 4ab 1, 4a 4 2
a b a|3ab 6∈ {1, 2}

b|3ab ∈ {1, 2}

b a baba

Fig. 11: P3MSA for the case b = (1324)π and {3, 4}a 6= {3, 4}.

1 2 3 1, 3a 2, 3ab 3, 3ab2

1, 3a2 2, 3a2b
3,

3a2b2
2, 3ab 1, 3aba

2,

3abab

3,

3abab2

a b b a b|3ab2 6∈ {1, 2} b

aa|3ab2 ∈ {1, 2}, 3a2b2 6∈ {1, 2}

b b a

b|{3ab2, 3a2b2} = {1, 2}

a b b

a

Fig. 12: P3MSA for the case b = (12345 . . .)π.
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(b) If b = (13245 . . .)π, then in Fig. 13 we draw a P3MSA for this case, proving that one of the

words ab3ab3a, ab3aba or abab3a or ababa 3-compresses A.

1 3 2 4 1, 4a 3, 4ab 2, 4

1, 3a 3, 3ab 2, 4 4, 5 4, 5

a b b|3ab = 1

a|3ab 6= 1

b a b b|4ab = 2

a|4ab 6= 2 b

b b|3ab = 2

a|3ab 6= 2

b a a

Fig. 13: 3MSA for the case b = (13245 . . .)π.

2

Proposition 11 Let A be a (4,p)-automaton with a = [1, 2]\3, 3a = 1. Then A is 3-compressible (and

proper) if and only if the following conditions hold:

1. {1, 3}b 6= {1, 3};

2. b 6= (12)(3)π;

3. if b = (1)(23)π, or b = (123)π, or b = (132)π, then 2a 6= 2;

4. if b = (1)(2)(34)π, or b = (12)(34)π, or b = (14)(23)π, or b = (1423)π, or b = (1324)π, then

4a 6= 2.

Moreover, if A is 3-compressible (and proper), then one of the words a2ba2, a2b2a2, a2b3a, a2baba2 or

ab3ab3a 3-compresses A.

Proof: Let A be a (4,p)-automaton that does not satisfy one of the conditions 1.-4. We prove that it is

not 3-compressible.

1. Let condition 1. be false, i.e., {1, 3}b = {1, 3}, then the 3MSA in Fig. 14(1) proves that A is not

3-compressible.

2. Let condition 2. be false, i.e., b = (12)(3)π, then the 3MSA in Fig. 14(2) proves that A is not

3-compressible.

3. Let condition 3. be false, i.e., b = (1)(23)π or b = (123)π or b = (132)π, and 2a = 2. Then the

3MSA in figures 15(1), 15(2) and 15(3) prove that A is not 3-compressible.

4. Let condition 4. be false, i.e., b = (1)(2)(34)π or b = (12)(34)π or b = (14)(23)π or b = (1423)π
or b = (1324)π, and 4a = 2. Then the 3MSA in figures 16(1), 16(2), 16(3) and 16(4) prove that A
is not 3-compressible.
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3 1, 3 1, 3 1

3 1, 3 3

a

b

a

b|3b = 1

b|3b = 3 a 3b = 3

3b = 1

a, b a, b

b
a

a, b

a b

(1) 3MSA for the case {1, 3}b = {1, 3}.

3 1, 3 2, 3
a

b b

a b

a

a, b

(2) 3MSA for the case b = (12)(3)π.

Fig. 14: 3MSA for automata that do not satisfy conditions 1. or 2. of Proposition 11.

3 1, 3 2, 3

2 1, 2

a

b

a

b

a

b

a

b

a, b b
a

(1) 3MSA for the case b = (1)(23)π and

2a = 2.

3 1 2

1, 3 1, 2 2, 3

a

b

a

b b

a

a, b

a b a, b

a, b

(2) 3MSA for the case b = (123)π and

2a = 2.

3 2 1

1, 3 2, 3 1, 2

a

b

a

b b

a

a, b

a
b b

a a

b

(3) 3MSA for the case b = (132)π and

2a = 2.

Fig. 15: 3MSA for automata that do not satisfy condition 3. of Proposition 11.

Conversely, let A be an automaton satisfying conditions 1.-4.

If Orbb(1, 3) ⊆ {1, 2, 3}, then Orbb(1, 3) = {1, 2, 3}, as {1, 3}b 6= {1, 3}. There are two subcases:

1. if b = (1)(23)π or b = (123)π, and 2a 6= 2, then M(a2b) = {1, 2}, M(a2ba) = {2a, 3}, and

M(a2ba2) = {1, 3, 2a2}, and the word a2ba2 3-compresses A;

2. if b = (132)π and 2a 6= 2, then M(a2b) = {2, 3}, M(a2b2) = {1, 2}, M(a2b2a) = {2a, 3}, and

M(a2b2a2) = {1, 3, 2a2}, and the word a2b2a2 3-compresses A.

Let nowOrbb(1, 3) * {1, 2, 3}, we distinguish four subcases by considering the cardinality ofOrbb(3).

1. Let Orbb(3) = {3}, then there are two further subcases:

(a) if b = (14 . . .)(3)π, then M(a2b) = {3, 4}, M(a2ba) = {1, 3, 4a}, and the word a2ba
3-compresses A;

(b) if b = (124 . . .)(3)π, then M(a2b) = {2, 3}, M(a2b2) = {3, 4}, M(a2b2a) = {1, 3, 4a},

and the word a2b2a 3-compresses A.

2. Let Orbb(3) = {2, 3}, then there are two further subcases:

(a) if b = (14)(23)π, and 4a 6= 2, then M(a2b) = {2, 4}, M(a2ba) = {3, 4a}, M(a2ba2) =
{1, 3, 4a2}, and the word a2ba2 3-compresses A;
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3 4 2, 3

1, 3 1b, 4 2b, 4

a

b

a

b a

b

b
a

a
b

b

a a, b

(1) 3MSA for the case b = (1)(2)(34)π or

b = (12)(34)π, and 4a = 2.

3 1, 3 2, 3

2 2, 4

a

b

a

b

a

b

a

b

a, b b
a

(2) 3MSA for the case b = (14)(23)π and

4a = 2.

3 1 4 2

1, 3 1, 4 2, 4 2, 3

a

b

a

b b

a

b

a

a, b

a b b

a

a, b

a, b

(3) 3MSA for the case b = (1423)π and 4a = 2.

3 2 4 1

1, 3 2, 3 2, 4 1, 4

a

b

a

b b

a

b

a

a, b

a
b

a

b b

a

a

b

(4) 3MSA for the case b = (1324)π and 4a = 2.

Fig. 16: 3MSA for automata that do not satisfy condition 4. of Proposition 11.

(b) if b = (145 . . .)(23)π, then M(a2b) = {2, 4}, M(a2b2) = {3, 5}, M(a2b2a) = {1, 3, 5a},

and the word a2b2a 3-compresses A.

3. Let Orbb(3) = {3, 4}, i.e., b = (34)π, then in Fig. 17 we draw a P3MSA for this case, proving that

one of the words a2b2a, a2ba, aba2 or ababa 3-compresses A. Observe that if 4a = 2 and 1b = 1,

then by condition 4. we have 2b 6= 2. Similarly if 4a = 2 and 1b = 2, then 2b 6= 1.

3 1, 3 1b, 4 2b, 3

4 3, 4a 4 2, 3 2b, 4

a a|4a = 2, 1b 6= 1 b b|1b = 2

a|1b 6= 2b|4a 6= 2

a

a

b|4a = 2, 1b = 1

a b a

a

Fig. 17: P3MSA for the case b = (34)π.

4. Let |Orbb(3)| ≥ 3, then there are three main subcases.

(a) 3b = 1.

i. If b = (3124 . . .)π, then M(a2b) = {1, 2}, M(a2b2) = {2, 4}, M(a2b3) = {4, 4b},

M(a2b3a) = {3, 4a, 4ba} and the word a2b3a 3-compresses A.
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ii. If b = (314 . . .)π, then the P3MSA in Fig. 18 proves that one of the words a2baba2,

a2b2a or ab2a2 3-compresses A. Observe that if 4a = 2 and 4b = 2, then b is of the form

(31425 . . .)π, otherwise condition 4. is not satisfied.

3 1, 3 1, 4 4, 4b

1 4 3, 4a 2, 3 1, 5 3, 5a

a a|4a = 2

b|4a 6= 2

b b|4b 6= 2

a|4b = 2
a

b a

a

b a a

Fig. 18: P3MSA for the case b = (314 . . .)π.

(b) 3b = 2.

i. If b = (3214 . . .)π, then the P3MSA in Fig. 19 proves that either the word a2ba2 or

ab3ab3a 3-compresses A.

3 1, 3 2, 4 3, 4a

2 1 4 2, 3 1, 2 1, 4 4, 4b

a a|4a 6= 2

b|4a = 2

b a a

b b a b b b

a

Fig. 19: P3MSA for the case b = (3214 . . .)π.

ii. If b = (324 . . .)π, then in Fig. 20 we draw a P3MSA for this case, proving that one of

the words ab2a2, a2b3a or a2ba2 3-compresses A. Observe that 1b 6= 3 implies 1ba 6= 1.

Moreover if 4a = 2, then 1ba 6= 2, otherwise the contradiction 1b = 4 arises. So when

4a = 2 and 1b 6= 3 we have 1ba 6∈ {1, 2}. Finally, if 4a = 2 and 1b = 3, then by

condition 4. we have 4b 6= 1.

3 2 4 3, 4a

1, 3 2, 3 2, 4 4, 4b 1b, 2 1ba, 3

a b|4a 6= 2

a|4a = 2

b a a

b|1b = 3

b|1b 6= 3

b b a

aa

Fig. 20: P3MSA for the case b = (324 . . .)π.

(c) 3b = 4.
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i. If 1b 6∈ {1, 2}, then M(a2b) = {1b, 4}, M(a2ba) = {1ba, 3, 4a}, and the word a2ba
3-compresses A.

ii. If 1b ∈ {1, 2} and 4a 6= 2, then M(aba) = {4a, 3} and M(aba2) = {4a2, 1, 3}, and the

word aba2 3-compresses A.

iii. If 1b ∈ {1, 2}, 4a = 2 and 2b ∈ {1, 2}, then 4b 6∈ {1, 2, 3, 4} and 4ba 6∈ {1, 2, 3}, so

M(ab2a) = {3, 4ba} and M(ab2a2) = {1, 3, 4ba2}, and the word ab2a2 3-compresses

A.

iv. If 1b ∈ {1, 2}, 4a = 2 and 2b 6∈ {1, 2}, then M(aba) = {2, 3}, M(abab) = {2b, 4} and

M(ababa) = {2ba, 2, 3}, and the word ababa 3-compresses A.

2

4 3-compressible automata without permutations

In this section we characterize proper 3-compressible automata on 2-letter alphabet where no letter acts

as a permutation.

Proposition 12 Let A a (i, j)-automaton with i ∈ {1, 2} and j ∈ {1, 2, 4}, then A is either not 3-

compressible or not proper.

Proof: We have to consider five different cases.

1. Let A be a (1,1)-automaton with a = [1, 2, 3]\1, 2 and b = [x, y, z]\x, y:

(a) if {1, 2} ⊆ {x, y, z} and {x, y} ⊆ {1, 2, 3}, then for any w ∈ {a, b}∗, we have M(wa) =
{1, 2} and M(wb) = {x, y}, so A is not 3-compressible;

(b) if {1, 2} * {x, y, z}, then |M(ab)| ≥ 3, so A is not proper; similarly if {x, y} * {1, 2, 3},

then |M(ba)| ≥ 3, and again A is not proper.

2. Let A be a (1,2)-automaton with a = [1, 2, 3]\1, 2 and b = [x, y][z, v]\x, z:

(a) if {1, 2} ∈ {{x, z}, {x, v}, {y, z}, {y, v}} and {x, z} ⊆ {1, 2, 3}, then for any w ∈ {a, b}∗,

we have M(wa) = {1, 2} and M(wb) = {x, z}, so A is not 3-compressible;

(b) if {1, 2} 6∈ {{x, z}, {x, v}, {y, z}, {y, v}}, then |M(ab)| ≥ 3, so A is not proper; similarly if

{x, z} * {1, 2, 3}, then |M(ba)| ≥ 3, and again A is not proper.

3. Let A be a (2,2)-automaton with a = [1, 2][3, 4]\1, 3 and b = [x, y][z, v]\x, z:

(a) if {1, 3} ∈ {{x, z}, {x, v}, {y, z}, {y, v}} and {x, z} ∈ {{1, 3}, {1, 4}, {2, 3}, {2, 4}}, then

for all w ∈ {a, b}∗, we have M(wa) = {1, 3} and M(wb) = {x, z}, so A is not 3-

compressible;

(b) if {1, 3} 6∈ {{x, z}, {x, v}, {y, z}, {y, v}}, then |M(ab)| ≥ 3, so A is not proper; similarly if

{x, z} 6∈ {{1, 3}, {1, 4}, {2, 3}, {2, 4}}, then |M(ba)| ≥ 3, and again A is not proper.

4. Let A be a (1,4)-automaton with a = [1, 2, 3]\1, 2 and b = [x, y]\z, zb = x:
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(a) if {x, z} * {1, 2, 3}, then M(b2) = {x, z} and M(b2a) = {1, 2, xa, za}, so A is not proper;

(b) if {x, z} = {1, 2}, then for all w ∈ {a, b}+ \ {b}, we have M(w) = {1, 2}, so A is not

3-compressible;

(c) if {x, z} = {1, 3}. If x = 1 and z = 3, the P3MSA in Fig. 21(1) proves that if 2b = y = 2
then A is not 3-compressible, else it is not proper. If x = 3 and z = 31, the P3MSA in Fig.

21(2) proves that if y = 2 then A is not 3-compressible, else it is not proper;

1, 2 3, 2b

z 1, 3 1, 2 2, 3 1, 3

a

b

a

b

a

b

a

b

a|2b 6= 2
b|2b = 2, y 6= 2

a|2b = y = 2
b|2b = y = 2

b

a a

b

b

a

(1) P3MSA for the case x = 1 and z = 3.

1, 2

z 1, 3 1, 3 1, 2

a

b

a

b|y 6= 2

b|y = 2a

b

a

b

a

b a

b

(2) P3MSA for the case x = 3 and z = 1.

Fig. 21: 3MSA for a (1, 4)-automaton with a = [1, 2, 3]\1, 2, b = [x, y]\z, zb = x and {x, z} = {1, 3}.

(d) if {x, z} = {2, 3}, this case reduces to the previous exchanging the state 1 and 2.

5. Let A be a (2,4)-automaton with a = [1, 2][3, 4]\1, 3 and b = [x, y]\z, zb = x:

(a) if {x, z} 6∈ {{1, 3}, {1, 4}, {2, 3}, {2, 4}}, then M(b2) = {x, z} and |M(b2a)| ≥ 3, so A is

not proper;

(b) if {x, y} ∩ {1, 3} = ∅, then M(ab) = {1b, 3b, z}, so A is not proper;

(c) if {x, z} = {1, 3}, then for all w ∈ {a, b}+ \ {b}, we have M(w) = {1, 3}, so A is not

3-compressible;

(d) if {x, z} = {1, 4} and {x, y} ∩ {1, 3} 6= ∅, we consider two subcases:

i. if x = 4 and z = 1, then y must be equal to 3. So b = [4, 3]\1, then for all w ∈ {a, b}+,

we have M(wa) = {1, 3} and M(wb) = {1, 4}, so A is not 3-compressible;

ii. if x = 1 and z = 4, then if y 6= 2 the P3MSA in Fig. 22(1) proves that A is not

proper. Else, if y = 2 and 3b 6= 2, then the word aba 3-compresses A which is not

proper. Otherwise, if y = 2 and 3b = 2, then the 3MSA in Fig. 22 proves that A is not

3-compressible;

(e) if {x, z} = {2, 3}, this case reduces to the previous exchanging the state 1 and 3, as well as

the states 2 and 4;

(f) if {x, z} = {2, 4} and {x, y} ∩ {1, 3} 6= ∅ then y ∈ {1, 3}. Let q ∈ {1, 3} \ {y}:

i. if b = [2, 1]\4 and q = 3, or b = [4, 3]\2 and q = 1 then, if qb 6= y we have M(ab) =
{z, qb} and M(aba) = {1, 3, qba}, so the automaton is not proper, else if qb = y A is

not 3-compressible, as shown in Fig. 22(2);
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ii. if b = [2, 3]\4 and q = 1, or b = [4, 1]\2 and q = 3 then either the word ab2 or aba
3-compresses A, so it is not proper.

1, 3 4, 3b

2, 4

a b|3b 6= 2

b|3b = 2 a

b

(1) P3MSA for the case b = [1, y]\4,

4b = 1, y 6= 2.

1, 3 y, z

z x, z

a

b

a

b

b

a

b

a

b

a

(2) 3MSA for the case b = [1, 2]\4, 4b = 1,

3b = 2, or b = [2, 1]\4, 4b = 1 and 3b = 1,

or b = [4, 3]\2, 2b = 4 and 1b = 3.

Fig. 22: 3MSA for a (2,4)-automaton with a = [1, 2][3, 4]\1, 3 and b satisfying either condition (d).ii or (f).i.

2

Proposition 13 Let A be a (1,3)-automaton with a = [1, 2, 3]\1, 2 and b = [x, y]\x. Then A is 3-

compressible and proper if and only if the following conditions hold:

1. x ∈ {1, 2, 3};

2. {1, 2} ∩ {x, y} 6= ∅;

3. if x ∈ {1, 2}, then for q ∈ {1, 2} \ {x} it is qb ∈ {1, 2, 3} and Orbb(q) 6⊆ {1, 2, 3};

4. if x = 3, then for q ∈ {1, 2} \ {y} it is qb ∈ {1, 2, 3} and Orbb(q) 6⊆ {1, 2, 3}.

Moreover, if A is 3-compressible and proper, then the word ab2a 3-compresses A.

Proof: Let A be a (1,3)-automaton that does not satisfy one of the conditions 1.-3.

1. Let x 6∈ {1, 2, 3}, then the word ba 3-compresses A, and so it is not proper.

2. Let {1, 2} ∩ {x, y} = ∅, then the word ab 3-compresses A, and so it is not proper.

3. Now let x ∈ {1, 2, 3} and {1, 2} ∩ {x, y} 6= ∅.

(a) Suppose x ∈ {1, 2} and let q ∈ {1, 2} \ {x}.

i. If qb 6∈ {1, 2, 3}, then M(ab) = {qb, x} and M(aba) = {1, 2, qba}, so the word aba
3-compresses A which is not proper.

ii. Suppose qb ∈ {1, 2, 3} and Orbb(q) ⊆ {1, 2, 3}, then qb ∈ {q, 3} and 3b = q, so A is

not 3-compressible, as shown in Fig. 23(1).

(b) Lastly, suppose x = 3 and let q ∈ {1, 2} \ {y}.
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i. If qb 6∈ {1, 2, 3}, then M(ab) = {qb, x} and M(aba) = {1, 2, qba}, so the word aba
3-compresses A which is not proper.

ii. Suppose qb ∈ {1, 2, 3} andOrbb(q) ⊆ {1, 2, 3}. Then y ∈ {1, 2} (as {1, 2}∩{x, y} 6= ∅)

and qb ∈ {1, 2} = {q, y} (as x = 3 does not belong to the image of b). Moreover, as

Orbb(q) ⊆ {1, 2} = {q, y}, also yb ∈ {1, 2} and then A is not 3-compressible, as shown

in Fig. 23(2).

1, 2 x, 3

x 1, 2 x, q 1, 2

a

b

a

b|qb = 3

b|qb = q a
b

b

a

a, b

a

b
b

a

(1) 3MSA for the case x ∈ {1, 2}, q ∈
{1, 2} \ {x}, qb ∈ {q, 3} and 3b = q.

1, 2 3, q 1, 2

3 3, q 3, y 1, 2

a

b

a

b|qb = q

b|qb = y

b

a

a

b

b

a

a

b

b

a

a

b

(2) 3MSA for the case x = 3, q ∈ {1, 2} \ {x}, y ∈
{1, 2} and {qb, yb} = {q, y} = {1, 2}.

Fig. 23: 3MSA for automata that do not satisfy condition 3. or 4. of Proposition 13.

Conversely, suppose x ∈ {1, 2, 3} and {1, 2}∩{x, y} 6= ∅. If x ∈ {1, 2}, let q ∈ {1, 2}\{x}, otherwise, if

x = 3 let q ∈ {1, 2} \ {y}. In any cases, M(ab) = {x, qb}, M(ab2) = {x, qb2}, and, as qb2 6∈ {1, 2, 3},

M(ab2a) = {1, 2, qb2a}, and the word ab2a 3-compresses A. 2

Proposition 14 Let A be a (2,3)-automaton with a = [1, 2][3, 4]\1, 3 and b = [x, y]\x. Then A is

3-compressible and proper if and only if the following conditions hold:

1. x ∈ {1, 2, 3, 4};

2. if x = 1, then 3b = 4 and Orbb(3) 6⊆ {3, 4};

3. if x = 2, then y ∈ {1, 3} and

(a) if y = 1, then 3b = 4 and 4b 6= 3;

(b) if y = 3, then 1b ∈ {3, 4};

4. if x = 3, then 1b = 2 and Orbb(1) 6⊆ {1, 2};

5. if x = 4, then y ∈ {1, 3} and

(a) if y = 1, then 3b ∈ {1, 2};

(b) if y = 3, then 1b = 2 and 2b 6= 1.

Moreover, if A is 3-compressible and proper, then either the word ab2a or ab3a 3-compresses A.
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Proof: Let A be a (2,3)-automaton that does not satisfy one of the conditions 1.-5.

1. Let x 6∈ {1, 2, 3, 4}, then the word ba 3-compresses A, and so it is not proper.

2. Let x = 1:

(a) if 3b 6= 4, then if 3b = 3 A is not 3-compressible, while if 3b 6= 3 the word aba 3-compresses

A that it is not proper, as shown in Fig. 24(1);

(b) if 3b = 4 and Orbb(3) ⊆ {3, 4}, then A is not 3-compressible, as shown in Fig. 24(2).

1, 3 1, 3

1 1, 3b

a

b

a

b|3b = 3

b|3b 6= 3

a, b

b

a

a

(1) Case 3b 6= 4.

1, 3 1, 4

1

a

b

a

b

a, b

b

a

(2) Case Orbb(3) ⊆ {3, 4} and 3b = 4.

Fig. 24: 3MSA for automata that do not satisfy condition 2. of Proposition 14.

3. Let x = 2:

(a) if y 6∈ {1, 3}, then the word ab 3-compresses A, and so it is not proper;

(b) if y = 1, then if 3b 6= 4, then A is not 3-compressible, as shown in Fig. 25(1); while if 3b = 4
and 4b = 3, then A is not 3-compressible, as shown in Fig. 25(2);

1, 3 2, 3

2 2, 3b

1, 3
a

b

a

b|3b = 3

b|3b 6= 3

b

a

b

a

b

a

a

(1) Case 3b 6= 4.

1, 3 2, 4 2, 3

2

a

b

a

b b

a

a

b

b

a

(2) Case 3b = 4 and 4b = 3.

Fig. 25: 3MSA for automata that do not satisfy condition 3. of Proposition 14 with y = 1.

(c) if y = 3 and 1b 6∈ {3, 4}, then M(ab) = {2, 1b}, and M(aba) = {1, 3, 1ba}, so the word

aba 3-compresses A that it is not proper.

The cases with x = 3 and x = 4 are symmetrical to case 3. and 4., respectively.

Conversely, suppose x ∈ {1, 2, 3, 4}.
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1. Let x = 1, 3b = 4 and Orbb(3) 6⊆ {3, 4}, this implies 4b = 3b2 6∈ {3, 4}. Then M(ab) = {1, 4},

M(ab2) = {1, 4b} and M(ab2a) = {1, 3, 4ba}, so ab2a 3-compresses A.

2. Let x = 2:

(a) if y = 1, 3b = 4 and 4b 6= 3, then M(ab) = {2, 4}, M(ab2) = {2, 4b} and M(ab2a) =
{1, 3, 4ba}, so ab2a 3-compresses A;

(b) if y = 3 and 1b ∈ {3, 4}, then either the word ab2a or ab3a 3-compresses A, as shown in Fig.

26.

1, 3 2, 1b 2, 1b2 2, 1b3
a b b b|1b2 ∈ {3, 4}

b|1b2 6∈ {3, 4}

a

Fig. 26: P3MSA for the case b = [2, 3]\2 and 1b ∈ {3, 4}.

The cases with x = 3 and x = 4 are symmetrical to those with x = 1 and x = 2, respectively. 2

The following lemma is straightforward.

Lemma 15 Let A be a (3,3) 3-compressible automaton with a = [1, 2]\1 and b = [x, y]\x. Then x 6= 1
and {x, y} 6= {1, 2}.

Lemma 16 Let A be a (3,3) 3-compressible automaton with a = [1, 2]\1 and b = [2, y]\2 with y 6= 1.

Then:

1. {1ba, 1b2a, 1b3a} 6⊆ {2, y}, or

2. Orba(1ba) 6⊆ {2, y}.

Proof: Let A be a (3,3)-automaton that does not satisfy the above conditions, we prove that it is not

3-compressible.

1. Let 1b = 1 and Orba(1ba) ⊆ {2, y}.

(a) If 1ba = 1a = 2a = 2, then the 3MSA in Fig. 27(1) proves that A is not 3-compressible.

(b) If 1ba = 1a = 2a = y, then ya = 1ba2 = 2 and the 3MSA in Fig. 27(2) proves that A is not

3-compressible.

2. Let 1b 6= 1, {1ba, 1b2a, 1b3a} ⊆ {2, y} and Orba(1ba) ⊆ {2, y}. If 1ba = 1b2a or 1b2a = 1b3a,

then, since for all h > 0 we have that 1bh 6= 2, we obtain that 1 = 1b, against the hypothesis.

If 1b2a = 1b3a, as 1b2 6= 2, then 1b2 = 1b3, and then 1 = 1b, against the hypothesis. So, as

|{1ba, 1b2a, 1b3a}| ≤ 2, 1ba = 1b3a, then 1b = 1b3 and 1 = 1b2.

(a) If 1ba = 2, then 1b2a = y, hence 1a = 2a = y, ya = 2 and 1b = y. The 3MSA in Fig. 28(1)

proves that A is not 3-compressible.
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2 1 1, 2b

a

a

b

b

a a, b

(1) Case 1a = 2.

2 1 1, 2 1, yb

a

a

b

b

a b

a

a, b

(2) Case 1a = y.

Fig. 27: 3MSA for automata that do not satisfy conditions 1. and 2. of Lemma 16 with 1b = 1.

2

1 y, 2 1, 2

1, y

b

a

a

b

b

a

a, b

a

b
a

b

(1) Case 1ba = 2.

2

1 y, 2

1, 2

1, y

b

a

a

b

b

a

a

b

a

b

a

b

(2) Case 1ba = y.

Fig. 28: 3MSA for automata that do not satisfy conditions 1. and 2. of Lemma 16 with 1b 6= 1.

(b) If 1ba = y, then 1b2a = 1a = 2a = 2. Moreover, 1ba2 = y, otherwise 1ba2 = 2 gives the

contradiction 1ba = 1, hence ya = y, 1b = y and yb = 1b2 = 1. The 3MSA in Fig. 28(2)

proves that A is not 3-compressible.

2

Corollary 17 Let A be a (3,3) 3-compressible automaton with a = [1, 2]\1 and b = [x, 1]\x with x 6= 2.

Then:

1. {xab, xa2b, xa3b} 6⊆ {1, 2}, or

2. Orbb(xab) 6⊆ {1, 2}.

Proof: It is a straightforward consequence of the previous lemma, simply replacing a with b, 1 with 2, 2

with y and x with 1. 2

Lemma 18 Let A be a proper (3,3) 3-compressible automaton with a = [1, 2]\1 and b = [x, y]\x with

x 6∈ {1, 2} and y 6= 1. Then all the following conditions hold:

1. 1b ∈ {1, 2};

2. xa ∈ {x, y};

3. Orbb(1) 6⊆ {1, 2} or Orba(x) 6⊆ {x, y}.

Proof: Let A be a (3,3)-automaton that does not satisfy the above conditions, we prove that it is not

3-compressible or not proper.
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1. If 1b 6∈ {1, 2}, then A is not proper, in fact M(ab) = {x, 1b} and |M(aba)| = 3; similarly

2. if 1b ∈ {1, 2} and xa 6∈ {x, y}, then A is not proper, in fact M(ba) = {1, xa} and |M(bab)| = 3.

3. If 1b ∈ {1, 2}, xa ∈ {x, y}, Orbb(1) ⊆ {1, 2} and Orba(x) ⊆ {x, y}, then

(a) if 1b = 1 and xa = x, the 3MSA of A is in Fig. 29(1);

(b) if 1b = 1 and xa = y (and then ya = x), the 3MSA of A is in Fig. 29(2);

(c) if 1b = 2 (and then 2b = 1) and xa = x, the 3MSA of A is in Fig. 29(3);

(d) if 1b = 2 (and then 2b = 1) and xa = y (and then ya = x) the 3MSA of A is in Fig. 29(4).

1

x 1, x

a

b

a

b

b

a

a, b

(1) 1b = 1 and xa = x.

1

x 1, x

1, y

a

b

a

b

b
a

b

a a, b

(2) 1b = 1, xa = y and

ya = x.

1

x 2, x

1, x

a

b

a

b

b
a a, bb

a

(3) 1b = 2, 2b = 1 and

xa = x.

1

x 2, x

1, y 1, x

a

b

a

b

b

a
a

b
b

a

a

b

(4) 1b = 2, 2b = 1,

xa = y and ya = x.

Fig. 29: 3MSA for automata that do not satisfy conditions 3. of Lemma 18

In all the subcases, A is not 3-compressible.

2

Proposition 19 Let A be a (3,3)-automaton with a = [1, 2]\1 and b = [x, y]\x. ThenA is 3-compressible

and proper if and only if one of the following conditions holds:

1. b = [2, y]\2, y 6= 1, and either {1ba, 1b2a, 1b3a} 6⊆ {2, y} or Orba(1ba) 6⊆ {2, y};

2. b = [x, 1]\x, x 6= 2, and either {xba, xb2a, xb3a} 6⊆ {1, 2} or Orbb(xab) 6⊆ {1, 2};

3. b = [x, y]\x, x 6∈ {1, 2}, y 6= 1, 1b ∈ {1, 2}, xa ∈ {x, y}, and either Orbb(1) 6⊆ {1, 2} or

Orba(x) 6⊆ {x, y}.

Moreover, if A is 3-compressible and proper, then one of the words abab or ab2ab or ab3ab or aba2b or

aba3b or baba or ba2ba or ba3ba or bab2a or bab3a 3-compresses A.

Proof: If A is a 3-compressible (3,3)-automaton with a = [1, 2]\1 and b = [x, y]\x, then, from lemmata

15, 16 and 18 and Corollary 17, one of the above conditions must hold.

Conversely, we find for any automaton satisfying conditions 1.− 3. a (short) 3-compressing word.
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1. Let b = [2, y]\2 and y 6= 1:

(a) if {1ba, 1b2a, 1b3a} 6⊆ {2, y}, then either the word abab or ab2ab or ab3ab 3-compresses A,

since M(aba) = {1, 1ba}, M(ab2a) = {1, 1b2a} and M(ab3a) = {1, 1b3a};

(b) if Orba(1ba) 6⊆ {2, y}, then {1ba, 1ba2, 1ba3} 6⊆ {2, y} and either the word abab or aba2b or

aba3b 3-compresses A, since M(aba) = {1, 1ba}, M(aba2) = {1, 1ba2} and M(ab3a) =
{1, 1ba3}.

2. Let b = [x, 1]\x, x 6= 2, and either {xba, xb2a, xb3a} 6⊆ {1, 2} or Orbb(xab) 6⊆ {1, 2}. This case

reduces to the previous one replacing a with b, 1 with 2, 2 with y and x with 1, then either the word

baba or ba2ba or ba3ba or bab2a or bab3a 3-compresses A.

3. Let b = [x, y]\x, x 6∈ {1, 2}, y 6= 1, 1b ∈ {1, 2} and xa ∈ {x, y}. If Orbb(1) 6⊆ {1, 2}, then

1b = 2 and 2b 6∈ {1, 2}, and so the word ab2a 3-compresses A, as M(ab2) = {x, 2b}; similarly, if

Orba(x) 6⊆ {x, y}, exchanging b and a and so x with 1 and y with 2, the word ba2b 3-compresses

A.

2

Lemma 20 Let A be a (3,4) 3-compressible automaton with a = [1, 2]\1 and b = [x, y]\z, zb = x. If

A is proper then all the following conditions hold:

1. {1, 2} ∩ {x, z} 6= ∅;

2. z ∈ {1, 2} or {1, za} ∩ {x, y} 6= ∅;

3. {1, 1b} ∩ {x, y} 6= ∅;

4. 1 ∈ {x, y} or {z, 1b} ∩ {1, 2} 6= ∅.

Proof: If {1, 2} ∩ {x, z} = ∅, then |M(b2a)| = 3; if z 6∈ {1, 2} and {1, za} ∩ {x, y} = ∅, then

|M(bab)| = 3; if {1, 1b} ∩ {x, y} = ∅, then |M(ab2)| = 3; if 1 6∈ {x, y} and {z, 1b} ∩ {1, 2} = ∅,

then |M(aba)| = 3. So each automaton that does not satisfy one of the conditions of the lemma is

3-compressed by a word of length 3, and then it is not proper. 2

Corollary 21 Let A be a proper (3,4) 3-compressible automaton with a = [1, 2]\1 and b = [x, y]\z,

zb = x. Then exactly one of following conditions holds:

1. z = 1;

2. z = 2 and {1, 1b} ∩ {x, y} 6= ∅;

3. z 6∈ {1, 2} and either b = [1, y]\z or b = [2, 1]\z.

Proof: It is a straightforward consequence of the previous lemma. 2

Proposition 22 Let A be a (3,4)-automaton with a = [1, 2]\1 and b = [x, y]\z, zb = x. Then A is

3-compressible and proper if and only if the following conditions hold:
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1. if b = [x, y]\1, then Orba(x) 6⊆ {x, y};

2. if z = 2 and

(a) b = [1, y]\2, then Orba(2) 6⊆ {2, y} or 2ab 6∈ {1, y};

(b) b = [x, 1]\2, then {2a, xa} 6= {2, x} or {2ab, xab} 6= {1, x};

(c) b = [x, y]\2, 1b = y, and 1 6∈ {x, y}, then {xa, ya} 6= {x, y};

3. if z 6∈ {1, 2} and

(a) b = [1, y]\z and y 6= 2, then za 6= z;

(b) b = [x, y]\z and {x, y} = {1, 2}, then |Orba(z)| > 2 or zab 6∈ {1, 2}.

Moreover, if A is 3-compressible and proper, then either the word b2ab2 or b2a2b2 or b2a3b2 or b2abab2

3-compresses A.

Proof: First observe that from the previous corollary a proper 3-compressible (3,4)-automaton always

satisfies the antecedent of one of the above conditions, so all the possible cases are taken into account.

We start proving that a (3,4)-automaton that does not satisfy the conditions 1.-3. is not 3-compressible.

1. Let condition 1. be false, i.e., b = [x, y]\1 and Orba(x) ⊆ {x, y}. The 3MSA in Fig. 30 proves

that A is not 3-compressible.

1 1, x 1, x 1, y 1, x
a, b

a

b a|xa = x

a|xa = y

b a, b

a, b

a

b

Fig. 30: 3MSA for the case in which condition 1. of Proposition 22 is false.

2. Let z = 2.

(a) Let condition 2.(a) be false, i.e., b = [1, y]\2, Orba(2) ⊆ {2, y} and 2ab ∈ {1, y}. Observe

that if 2a 6= 2, then 2a = y and ya = 2. Since y 6= 2, then yb = 2ab 6= 1, and so 2ab = y.

The 3MSA in Fig. 31(1) proves that A is not 3-compressible.

(b) Let condition 2.(b) be false, i.e., b = [x, 1]\2, {2a, xa} = {2, x} and {2ab, xab} = {1, x}.

Observe that if 2a = 2, then 2ab = 2b = x and so xab = 1. If xa = 2, then xab = 2b = x
and so 2ab = 1. The 3MSA in Fig. 31(2) proves that A is not 3-compressible.

(c) Let condition 2.(c) be false, i.e., b = [x, y]\2, 1b = y, 1 6∈ {x, y} and {xa, ya} = {x, y}.

The 3MSA in Fig. 31(3) proves that A is not 3-compressible.
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2 1

1, 2 2, y 1, y 1, 2

1, 2

a

b

a

b

a

b

b

a|2a = 2

a|2a = y

a, b

a

b a

b

a, b

(1) 3MSA for the case b = [1, y]\2, 2b = 1,

Orba(2) ⊆ {2, y} and 2ab ∈ {1, y}.

2 1

2, x 2, x 1, 2 1, x

1, x 1, 2 2, x

a

b

a

b

a

b

b

a|2a = 2

a|2a = x

a

b

a

b

b

a

a

b a, b

a
b

(2) 3MSA for the case b = [x, 1]\2, 2b = x

{2a, xa} = {2, x} and {2ab, xab} = {1, x}.

1 2, y 1, x

1, y 2, y 1, x 2, x

2, y

2 2, x 1, y 2, x

a

b

a

b

a|xa = x

a|xa = y

b a

b

a

b

a
b

b

a

a

b

b

a

a

b

a

b

a|xa = y

a|xa = x

b

b
a

(3) 3MSA for the case b = [x, y]\2, 2b = x, 1b = y, 1 6∈ {x, y} and {xa, ya} = {x, y}.

Fig. 31: 3MSA for the case in which condition 2. of Proposition 22 is false.

3. Let z 6∈ {1, 2}.

(a) Let condition 3.(a) be false, i.e., b = [1, y]\z, y 6= 2 but za = z. Then for all w ∈ a∗b and

u ∈ {a, b}+, M(w) = {z} and M(wu) = {1, z}, so A is not 3-compressible.

(b) Let condition 3.(b) be false, i.e., b = [x, y]\z and {x, y} = {1, 2}, but |Orba(z)| ≤ 2 and

zab ∈ {1, 2}. If x = 1 and y = 2, then the 3MSA in Fig. 32(1) proves that A is not 3-

compressible. Else, if x = 2 and y = 1, then the 3MSA in Fig. 32(2) proves that A is not

3-compressible.
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z 1 1, z

1, za 1, z 1, za

2, z 1, za 1, z

a

b

a|za = z, b
a|za 6= z

a

b

a, b

b|zab = 1, a

b|zab = 2
b

a

a, b

a

b

b

a

a
b

(1) 3MSA for the case b = [1, 2]\z, |Orba(z)| ≤ 2 and

zab ∈ {1, 2}.

z 1

1, za 1, z1, z

2, z 2, z

2, z

b

a a

b

b

a|za = za|za 6= z

a, b
a

b

a

b
a

b b

a|za = za|za 6= z

a

b

(2) 3MSA for the case b = [2, 1]\z, |Orba(z)| ≤ 2
and zab ∈ {1, 2}.

Fig. 32: 3MSA for the case in which condition 3.(b) of Proposition 22 is false.

Conversely, we find for any automaton satisfying conditions 1.-3. a (short) 3-compressing word.

1. Let b = [x, y]\1 and Orba(x) 6⊆ {x, y}, whence xa 6= x. Then either xa or xa2 are different from

y, and so either the word b2ab or b2a2b 3-compresses A.

2. Let z = 2, we consider various subcases.

(a) Let b = [1, y]\2. Then 2a 6= 2, otherwise Orba(2) = {2} and 2ab = 1, against the hypothe-

sis. Hence if 2ab = y, then 2a2b 6= y (otherwise 2a2 = 2a and 2a = 2). The P3MSA in Fig.

33 proves that either the word b2ab2 or b2a2b2 3-compresses A.

2 1, 2 1, 2a 2, 2ab 2, 2a2b 1, 2a2b b a b|2ab 6= y b

a|2ab = y

bb

Fig. 33: P3MSA for the case 2.(a) of Proposition 22.

(b) Let b = [x, 1]\2.

i. If {2ab, xab} 6= {1, x}, then the P3MSA in Fig. 34 proves that the word b2ab2 or b2a2b2

or b2abab2 3-compresses A. Observe that if xab = x, then xa = 2 and 2ab 6∈ {1, x}.

ii. If 2ab = x, xab = 1, and {2a, xa} 6= {2, x}, then 2ab = 2b, 2a = 2 and then xa 6∈
{2, x}. So M(b2a) = {1, xa}, M(b2a2) = {1, xa2} and M(b2a2b) = {2, xa2b}.

If xa2b = x = 2b, then xa2 = 2a, and so xa = 2, against the hypothesis. Else, if

xa2b = 1 = xab, then xa2 = xa, and so xa = x, against the hypothesis. Then it follows

that |M(b2a2b2)| = 3 and the word b2a2b2 3-compresses A.
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2 2, x 1, xa 1, 2 1, 2a 2, 2ab

1, 2a 2, 2ab 2, xab

b b a b|xab = 1

b|xab 6∈ {1, x}
a|xab = x

a b

b

bb

b

Fig. 34: P3MSA for the case b = [x, 1]\2 and {2ab, xab} 6= {1, x}.

iii. If 2ab = 1, xab = x, and {2a, xa} 6= {2, x}, then xab = 2b, xa = 2 and then 2a 6∈
{2, x}. Then the P3MSA in Fig. 35 proves that any word belonging to the language

L = b(a+b)∗(ba)+a(ba)∗ab(b+ab2) (and in particular b2a3b2) 3-compresses A. Indeed,

if 2a2b = x = 2b, then 2a2 = 2, against the hypothesis, else, if 2a2b = 1 = 2ab, then

2a2 = 2a, and so 2a = 2, against the hypothesis, and so 2a2b 6∈ {1, x}. Moreover, if

2a2bab = 1 = 2ab, then 2a2ba = 2a, and so 2a2b = 2, against the hypothesis else, if

2a2bab = x = xab, then xa2ba = xa, and so 2a2b = x, against the hypothesis, and so

2a2bab 6∈ {1, x}.

2 2, x 1, 2 1, 2a 1, 2a2
2,

2a2b

1,

2a2ba

2,

2a2bab
1

b b

b

a

b

a

b

a b

b

a

b

b

ab

a

Fig. 35: P3MSA for the case b = [x, 1]\2, 2ab = 1, xab = x and {2a, xa} 6= {2, x}.

(c) Let b = [x, y]\2, 1b = y, 1 6∈ {x, y} and {xa, ya} 6= {x, y}. Observe that if xa ∈ {x, y},

then ya 6∈ {x, y}. The P3MSA in Fig. 36 proves that in this case either the word b2ab or

b2abab 3-compresses A.

2 2, x 1, xa 1, ya 2, yb b a b|xa 6∈ {x, y}

b|xa ∈ {x, y}

ab

Fig. 36: P3MSA for the case b = [x, y]\2, 1b = y, 1 6∈ {x, y} and {xa, ya} 6= {x, y}.

3. Let z 6∈ {1, 2}, we consider two main subcases.

(a) Let b = [1, y]\z, y 6= 2 and za 6= z. Then M(ba) = {1, za}, M(bab) = {z, zab}. If

zab 6= y, then |M(bab2)| = 3, else if zab = y then |M(baba)| = 3, hence either the word

bab2 or baba 3-compresses A.

(b) Let {x, y} = {1, 2}. We consider two subcases.
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i. Let b = [x, y]\z and |Orba(z)| > 2. In particular za 6= z, zab 6= za2b and z 6= za2. If

zab = y, then za2b 6∈ {zb, zab} = {1, 2}. The P3MSA in Fig. 37 proves that either the

word ba2b2 or bab2 3-compresses A.

z 1, za z, zab z, za2b 1, za2b a b|zab 6= y

a|zab = y

bbb

Fig. 37: P3MSA for the case b = [x, y]\z, {x, y} = {1, 2} and |Orba(z)| > 2.

ii. Let b = [x, y]\z and zab 6∈ {1, 2}. Then M(bab) = {z, zab} and |M(bab2)| =
|M(baba)| = 3, both the words bab2 and baba 3-compress A.

2

Lemma 23 Let A be a (4,4) 3-compressible automaton with a = [1, 2]\3, 3a = 1 and b = [x, y]\z,

zb = x. If A is proper then all the following conditions hold:

1. {1, 2} ∩ {x, z} 6= ∅;

2. z ∈ {1, 2} or {3, za} ∩ {x, y} 6= ∅;

3. {3, 3b} ∩ {x, y} 6= ∅;

4. {1, 3} ∩ {x, y} 6= ∅;

5. 3 ∈ {x, y} or {z, 3b} ∩ {1, 2} 6= ∅;

6. {z, za} ∩ {1, 2} 6= ∅.

Proof: If {1, 2} ∩ {x, z} = ∅, then M(b2) = {x, z} and |M(b2a)| = 3; if z 6∈ {1, 2} and {3, za} ∩
{x, y} = ∅, then M(ba) = {3, za} and |M(bab)| = 3; if {3, 3b} ∩ {x, y} = ∅, then M(ab) = {3b, z}
and |M(ab2)| = 3; if {1, 3} ∩ {x, y} = ∅, then M(a2) = {1, 3} and |M(a2b)| = 3; if 3 6∈ {x, y}
and {z, 3b} ∩ {1, 2} = ∅, then M(ab) = {z, 3b} and |M(aba)| = 3; if {z, za} ∩ {1, 2} = ∅, then

M(ba) = {3, zb} and |M(ba2)| = 3. Then each automaton that does not satisfies one of the above is not

proper. 2

Corollary 24 Let A be a proper (4,4) 3-compressible automaton with a = [1, 2]\3, 3a = 1 and b =
[x, y]\z, zb = x. The following conditions hold:

1. if z = 1, then 3 ∈ {x, y};

2. if z = 2, then 3 ∈ {x, y} or 1 ∈ {x, y} and 3b ∈ {x, y};

3. if z 6∈ {1, 2}, then x ∈ {1, 2} and za ∈ {1, 2}.
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Proof: It is a straightforward consequence of the previous lemma. Observe that not all the conditions of

Lemma 23 are applied, so some automaton satisfying the conditions of the corollary could possibly be not

proper or not 3-compressible. 2

Proposition 25 Let A be a (4,4)-automaton with a = [1, 2]\3, 3a = 1 and b = [x, y]\z, zb = x. Then

A is 3-compressible and proper if and only if the following conditions hold:

1. if z = 1, then y = 3 and xa 6= 2 or 2b 6= 3;

2. if z = 2 and 3 6∈ {x, y}, then 1 ∈ {x, y} and 3b ∈ {x, y};

3. if z = 2 and 3 ∈ {x, y}, if q ∈ {x, y} \ {3} then qa 6= 2 or 1b 6= y;

4. if b = [x, y]\z, z 6∈ {1, 2}, x ∈ {1, 2} and za ∈ {1, 2}, then y = 3.

Moreover, if A is 3-compressible and proper, then either the word b2a2 or b2ab2 or a2b2 or a2ba2 3-

compresses A.

Proof: First observe that from Corollary 24, a proper 3-compressible (4,4)-automaton always satisfies

the antecedent of one of the above conditions, so all the possible cases are taken into account.

We start proving that a (4,4)-automaton that does not satisfy conditions 1.-4. is not proper or it is not

3-compressible.

1. Let condition 1. be false, i.e., b = [x, y]\1 but either y 6= 3 or xa = 2 and 2b = 3. Observe that

if y 6= 3 then from the previous corollary we have x = 3. The 3MSA in Fig. 38 proves that if

condition 1. is false, then A is not 3-compressible.

3 1, 3

1

a

b b

a
a, b

a
b

(1) Case y 6= 3 and x = 3.

3 1, 3

1 x, 1 2, 3

a

b
b

a
a

b

a

b

b

a

a, b

(2) Case xa = 2 and 2b = 3.

Fig. 38: 3MSA for the case in which condition 1. of Proposition 25 is false.

2. Let condition 2. be false, i.e., b = [x, y]\2 and 3 6∈ {x, y} but either 1 6∈ {x, y} or 3b 6∈ {x, y}.

From conditions 3. and 4. of Lemma 23 we have that in this cases A is not proper, as it is 3-

compressed either by ab2 or by a2b.

3. Let condition 3. be false. If b = [x, 3]\2 but xa = 2 and 1b = 3, then the 3MSA in Fig. 39(1)

proves that A is not 3-compressible. Else, if b = [3, y]\2 but ya = 2 and 1b = y, then the 3MSA in

Fig. 39(2) proves A is not 3-compressible.
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3 1, 3

2 x, 2 2, 3

a

b
b

a
a

b
a

b

b

a

b

a

(1) b = [x,3]\2, xa = 2 and 1b = 3.

3 1, 3

2 2, 3 2, y

a

b
b

a
a

b
a

b

b

a

a, b

(2) b = [3, y]\2, ya = 2 and 1b = y.

Fig. 39: 3MSA for the case in which condition 3. of Proposition 25 is false.

4. Let condition 4. be false, i.e., b = [x, y]\z, z 6∈ {1, 2}, x ∈ {1, 2} and za ∈ {1, 2}, but y 6= 3. We

have to consider the following subcases.

(a) Let za = 1, hence z = 3 and zb = x. If x = 1, then for all w ∈ {a, b}+ with |w| ≥ 2, we have

M(w) = {1, 3}, and then A is not 3-compressible. If x = 2, then by condition 4 of Lemma

23 we have y = 1, and for all w ∈ {a, b}+ we have M(wa) = {1, 3} and M(wb) = {2, 3}
and again A is not 3-compressible.

(b) Let za = 2, hence z 6= 3. We consider two further subcases:

i. if x = 1, then 3b 6= 1 and by condition 2. of Lemma 23 za = y = 2, and by condition

3. of Lemma 23 we have 3b = 2. The 3MSA in Fig. 40(1) proves that A is not 3-

compressible;

ii. if x = 2, then by condition 4. of Lemma 23 we have y = 1 and by condition 3. of Lemma

23 we have 3b = 1. The 3MSA in Fig. 40(2) proves that A is not 3-compressible.

3 1, 3 2, z

z 2, 3 1, z

a

b

a

b

a

b

a
b

a

b

a
b

a b

(1) Case x = 1.

3 1, 3 1, z

z 2, 3 2, z

a

b

a

b

a

b

a
b

a

b

a
b

a b

(2) Case x = 2.

Fig. 40: 3MSA for the case in which condition 4. of Proposition 25 is false and za = 2.

Conversely, we find for each automaton satisfying conditions 1.-4. a (short) 3-compressing word.

1. Let b = [x, 3]\1 and xa 6= 2 or 2b 6= 3. Observe that xa 6= 1, as 3a = 1 and x 6= 3. The P3MSA in

Fig. 41 proves that either the word b2a2 or b2ab2 3-compresses A.

2. Let b = [x, y]\2, 3 6∈ {x, y}, 1 ∈ {x, y} and 3b ∈ {x, y}. There are two subcases.
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1 1, x 3, xa 1, 2bb b a a|xa 6= 2

b|xa = 2, 2b 6= 3

b

Fig. 41: P3MSA for the case b = [x, 3]\1 and xa 6= 2 or 2b 6= 3.

(a) Let x = 1, then b = [1, y]\2, y 6= 3, 3b = y (as 2b = 1) and 2a 6= 1 (as 3a = 1). So

M(b2a) = {2a, 3} and if 2a 6= 2, then |M(b2a2)| = 3, else if 2a = 2, then |M(b2ab)| = 3,

so either the word b2a2 or b2ab 3-compresses A.

(b) Let y = 1, then b = [x, 1]\2, x 6= 3, 3b = 1 (as 2b = x) and 2a 6= 1 (as 3a = 1). If 2a = 2,

then the P3MSA in Fig. 42(1) proves that the word a2b2 3-compresses A. If 2a 6= 2, then the

P3MSA in Fig. 42(2) proves that the word a2ba2 3-compresses A.

2 2, x 3, xab b a a

(1) Case 2a = 2.

3 1, 3 1, 2 3, 2a
a a b a a

(2) Case 2a 6= 2.

Fig. 42: P3MSA for the case b = [x, 1]\2, x 6= 3 and 3b ∈ {x, 1}.

3. If b = [x, 3]\2 and xa 6= 2 or 1b 6= 3, then observe that xa 6= 1, as 3a = 1 and x 6= 3. If

xa 6= 2, then M(b2) = {2, x}, M(b2a) = {3, xa} and |M(b2a2)| = 3. If xa = 2 and 1b 6= 3,

then M(a2) = {1, 3}, M(a2b) = {1b, 2} and |M(a2b2)| = 3. Then either the word b2a2 or a2b2

3-compresses A. If b = [3, y]\2 and ya 6= 2 or 1b 6= y, then observe that ya 6= 1, as 3a = 1 and

y 6= 3. The P3MSA in Fig. 43 proves that either the word a2b2 or a2ba2 3-compresses A.

3 1, 3 2, 1b 3, ya 2, y
a a b|1b 6= y b

b|1b = y, ya 6= 2

aa

Fig. 43: P3MSA for the case b = [3, y]\2 and ya 6= 2 or 1b 6= y.

4. Let b = [x, 3]\z, z 6∈ {1, 2}, x ∈ {1, 2} and za ∈ {1, 2}. Observe that z 6= 3 and 3a = 1, so

za 6= 1, and then it is always za = 2. We have to consider two subcases.

(a) Let x = 1, then b = [1, 3]\z, zb = 1, 3b 6= 1 and M(a2b) = {z, 3b}. If 3b 6= 2, then

M(a2ba) = {za, 3ba, 3} and a2ba 3-compresses A. Else, if 3b = 2, then M(a2b2) =
{1, z, 2b} and a2b2 3-compresses A.

(b) Let x = 2, then b = [2, 3]\z, 3b 6= 2 (as zb = 2) and M(a2b) = {z, 1b}. If 1b 6= 3,

then M(a2b2) = {2, 1b2, z} and a2b2 3-compresses A. Else, if 1b = 3, then M(a2ba) =
{1, 3, za} and a2ba 3-compresses A.

2
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5 Finding lower and upper bounds for c(3, 2)

Collecting the words arising from the previous propositions, and taking into account that the roles of let-

ters a and b are interchangeable, then each 3-full word, containing as factors the words in the set W :

W = {ab2ab2a, ab2a2b2a, abab2aba, ab3aba, abab3a, ab3ab3a, ba2baba2b, a2b3a, ba2ba2b
ba2b2a2b, baba2bab, ba3bab, baba3b, ba3ba3b, ab2abab2a, b2a3b, a2b3a2, b2a3b2}

is a 3-collapsing word on a two-letter alphabet. Remark that a2b3a and b2a3b are factors of a2b3a2 and

b2a3b2 respectively, the reason for which they occur in W will be clear in the sequel.

Then, in order to construct a short 3-collasing word we need to find a word having as factor all the

words above, i.e., to solve the Shortest Common Supersequence problem (SCS) for W . It is well-known

that SCS is NP-complete (Raiha and Ukkonen (1981)) even on a two-letter alphabet, thus approximation

algorithm are often used. Nevertheless, the cost of finding a good approximation is comparable to the cost

of finding an optimal solution (Karpinski and Schmied (2013)) and, on the other hand, efficient algorithms

give poor approximation (Turner (1989)).

So, as no near-optimal solutions can be found in reasonable time, we decided to code the problem in

the bounded satisfiability problem for a set of linear-time temporal logic (LTL) formulae, for which we

developed a tool (Bersani et al. (2014)). More precisely, let S be a propositional letter, a word w of

length n is coded in the LTL formula w that is satisfied if and only if for all 1 ≤ i ≤ n the i-th letter

of w is “a” if and only if at the i-th time instant S is true. E.g., the word aba is encoded in the formula

S ∧ (X(¬S ∧X(S))), where X is the “next” operator. Then we look for the shortest model that satisfy

the formula
∧

w∈W w: such model encodes the shortest word having as factor all the words in W and has

length 55.

However, we were well aware that such “greedy approach”, i.e., to find an optimal solution for each

subcase and combining them to obtain a global solution, is not suitable in order to achieve a global

optimum.

We observed that the words a2b3a2 and b2a3b2 are needed only to solve a special subcase of (3,4)-
automata, so we tried to replace them with a longer factor in order to obtain a shorter 3−collapsing word.

Actually, the shortest word having as a factor the words in W \ {a2b3a2, b2a3b2} is

w3 = b2a3b a3b3aba2
︸ ︷︷ ︸

v

baba2ba2b2a2b2ab2aba b2aba3bab3
︸ ︷︷ ︸

u

ab3a

which has as a factor the word u = b2aba3bab2 and v = a2b3aba2. As u belongs to the languageL defined

in Proposition 22, case 2.b.iii, and v belongs to the dual of L, this proves that w3 is a 3−collapsing word

of length 53.

It is known that in general the language Ck,t of k-collapsing words on an alphabet of t letters differs

from the language Sk,t of k-synchronizing words on the same alphabet. However, this not excludes that

in some cases c(k, t) and s(k, t), respectively the length of the shortest k-collapsing and k-synchronizing

word on an alphabet of t letters, can be equal. Up to now it was only known that c(2, 2) = s(2, 2) (Sauer

and Stone (1991)) and that c(2, 3) 6= s(2, 3) (Ananichev and Petrov (2003)). We find a counterexample

proving that c(3, 2) 6= s(3, 2) (and so c(3, 2) ≥ 34). In fact, the semiautomaton in Fig. 44(2) is 3-

compressible (and also 3-synchronizing), but the word s3,2 do not compresses it. On the other hand, its

dual s̄3,2 synchronizes it.
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We believed that any 3-compressible 5-states automaton on a two-letter alphabet were 3-compressed

either by s3,2 or by s̄3,2, but an Anonymous reviewer observed that this is not the case: the semiautomaton

in Fig. 44 is 3-synchronizable but it is not 3-compressed neither by s3,2 nor by s̄3,2.

1 2

3 4 5

b

a

b

ab

a

b

a

a b

(1) A synchronizable semiautomaton which is not

3-compressed by s3,2: Qs̄3,2 = {4}, Qs3,2 =
{1, 2, 4}. The word ba3baba2bab is the shortest reset

word.

1 2 3

4 5

b

a b

a

b

a

b

a
b

a

(2) A synchronizable semiautomaton which is

not 3-compressed neither by s3,2 nor by s̄3,2:

Qs̄3,2 = {2, 4, 5}, Qs3,2 = {1, 3, 5}. The

words ab3ab3ab2a, ab2ab4ab2a, ab3ab2ab3a and

ab2ab3ab3a are the shortest reset words.

Fig. 44: Synchronizable automaton with long reset words.

6 Conclusion

Although very technical, our analysis can be effectively exploited in order to obtain more general results

and to investigate some conjectures. In Cherubini and Kisielewicz (2014, 2016), the authors exploit the

characterization of (3,p)-automata (Proposition 10) to prove that the problem of recognizing whether a

binary word is 3-collapsing is co-NP-complete.

Moreover, the word w3 can be used to improve the procedure arising from Margolis et al. (2004)

(Theorem 3.5) to obtain shorter k-collapsing words for k ≥ 4. In particular it follows that c(4, 2) ≤ 1741
and c(5, 2) ≤ 109941. Though very lengthy, they can be effectively used in testing the compressibility of

an automaton. In particular this can accelerate the algorithm presented in Ananichev and Petrov (2003);

Petrov (2008) to find short (possibly shortest) 4- and 5-synchronizing words.
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