Kernel perfect and critical kernel imperfect digraphs structure - Archive ouverte HAL
Communication Dans Un Congrès Discrete Mathematics and Theoretical Computer Science Année : 2005

Kernel perfect and critical kernel imperfect digraphs structure

Résumé

A kernel $N$ of a digraph $D$ is an independent set of vertices of $D$ such that for every $w \in V(D)-N$ there exists an arc from $w$ to $N$. If every induced subdigraph of $D$ has a kernel, $D$ is said to be a kernel perfect digraph. Minimal non-kernel perfect digraph are called critical kernel imperfect digraph. If $F$ is a set of arcs of $D$, a semikernel modulo $F$, $S$ of $D$ is an independent set of vertices of $D$ such that for every $z \in V(D)- S$ for which there exists an $Sz-$arc of $D-F$, there also exists an $zS-$arc in $D$. In this talk some structural results concerning critical kernel imperfect and sufficient conditions for a digraph to be a critical kernel imperfect digraph are presented.
Fichier principal
Vignette du fichier
dmAE0151.pdf (128.06 Ko) Télécharger le fichier
Origine Fichiers éditeurs autorisés sur une archive ouverte
Loading...

Dates et versions

hal-01184456 , version 1 (17-08-2015)

Identifiants

Citer

Hortensia Galeana-Sánchez, Mucuy-Kak Guevara. Kernel perfect and critical kernel imperfect digraphs structure. 2005 European Conference on Combinatorics, Graph Theory and Applications (EuroComb '05), 2005, Berlin, Germany. pp.257-262, ⟨10.46298/dmtcs.3467⟩. ⟨hal-01184456⟩

Collections

TDS-MACS
122 Consultations
993 Téléchargements

Altmetric

Partager

More