A Probabilistic Counting Lemma for Complete Graphs - Archive ouverte HAL
Communication Dans Un Congrès Discrete Mathematics and Theoretical Computer Science Année : 2005

A Probabilistic Counting Lemma for Complete Graphs

Résumé

We prove the existence of many complete graphs in almost all sufficiently dense partitions obtained by an application of Szemerédi's Regularity Lemma. More precisely, we consider the number of complete graphs $K_{\ell}$ on $\ell$ vertices in $\ell$-partite graphs where each partition class consists of $n$ vertices and there is an $\varepsilon$-regular graph on $m$ edges between any two partition classes. We show that for all $\beta > $0, at most a $\beta^m$-fraction of graphs in this family contain less than the expected number of copies of $K_{\ell}$ provided $\varepsilon$ is sufficiently small and $m \geq Cn^{2-1/(\ell-1)}$ for a constant $C > 0$ and $n$ sufficiently large. This result is a counting version of a restricted version of a conjecture by Kohayakawa, Łuczak and Rödl and has several implications for random graphs.
Fichier principal
Vignette du fichier
dmAE0161.pdf (176.84 Ko) Télécharger le fichier
Origine Fichiers éditeurs autorisés sur une archive ouverte
Loading...

Dates et versions

hal-01184453 , version 1 (14-08-2015)

Identifiants

Citer

Stefanie Gerke, Martin Marciniszyn, Angelika Steger. A Probabilistic Counting Lemma for Complete Graphs. 2005 European Conference on Combinatorics, Graph Theory and Applications (EuroComb '05), 2005, Berlin, Germany. pp.309-316, ⟨10.46298/dmtcs.3464⟩. ⟨hal-01184453⟩

Collections

TDS-MACS
307 Consultations
836 Téléchargements

Altmetric

Partager

More