Discrepancy of Products of Hypergraphs - Archive ouverte HAL
Communication Dans Un Congrès Discrete Mathematics and Theoretical Computer Science Année : 2005

Discrepancy of Products of Hypergraphs

Résumé

For a hypergraph $\mathcal{H} = (V,\mathcal{E})$, its $d$―fold symmetric product is $\Delta^d \mathcal{H} = (V^d,\{ E^d | E \in \mathcal{E} \})$. We give several upper and lower bounds for the $c$-color discrepancy of such products. In particular, we show that the bound $\textrm{disc}(\Delta^d \mathcal{H},2) \leq \textrm{disc}(\mathcal{H},2)$ proven for all $d$ in [B. Doerr, A. Srivastav, and P. Wehr, Discrepancy of Cartesian products of arithmetic progressions, Electron. J. Combin. 11(2004), Research Paper 5, 16 pp.] cannot be extended to more than $c = 2$ colors. In fact, for any $c$ and $d$ such that $c$ does not divide $d!$, there are hypergraphs having arbitrary large discrepancy and $\textrm{disc}(\Delta^d \mathcal{H},c) = \Omega_d(\textrm{disc}(\mathcal{H},c)^d)$. Apart from constant factors (depending on $c$ and $d$), in these cases the symmetric product behaves no better than the general direct product $\mathcal{H}^d$, which satisfies $\textrm{disc}(\mathcal{H}^d,c) = O_{c,d}(\textrm{disc}(\mathcal{H},c)^d)$.
Fichier principal
Vignette du fichier
dmAE0163.pdf (149.3 Ko) Télécharger le fichier
Origine Fichiers éditeurs autorisés sur une archive ouverte
Loading...

Dates et versions

hal-01184452 , version 1 (14-08-2015)

Identifiants

Citer

Benjamin Doerr, Michael Gnewuch, Nils Hebbinghaus. Discrepancy of Products of Hypergraphs. 2005 European Conference on Combinatorics, Graph Theory and Applications (EuroComb '05), 2005, Berlin, Germany. pp.323-328, ⟨10.46298/dmtcs.3463⟩. ⟨hal-01184452⟩

Collections

TDS-MACS
105 Consultations
668 Téléchargements

Altmetric

Partager

More