Improving the Gilbert-Varshamov bound for $q$-ary codes - Archive ouverte HAL
Communication Dans Un Congrès Discrete Mathematics and Theoretical Computer Science Année : 2005

Improving the Gilbert-Varshamov bound for $q$-ary codes

Résumé

Given positive integers $q$, $n$ and $d$, denote by $A_q(n,d)$ the maximum size of a $q$-ary code of length $n$ and minimum distance $d$. The famous Gilbert-Varshamov bound asserts that $A_q(n,d+1) \geq q^n / V_q(n,d)$, where $V_q(n,d)=\sum_{i=0}^d \binom{n}{i}(q-1)^i$ is the volume of a $q$-ary sphere of radius $d$. Extending a recent work of Jiang and Vardy on binary codes, we show that for any positive constant $\alpha$ less than $(q-1)/q$ there is a positive constant $c$ such that for $d \leq \alpha n, A_q(n,d+1) \geq c \frac{q^n}{ V_q(n,d)}n$. This confirms a conjecture by Jiang and Vardy.
Fichier principal
Vignette du fichier
dmAE0156.pdf (146.35 Ko) Télécharger le fichier
Origine Fichiers éditeurs autorisés sur une archive ouverte
Loading...

Dates et versions

hal-01184445 , version 1 (14-08-2015)

Identifiants

Citer

van H. Vu, Lei Wu. Improving the Gilbert-Varshamov bound for $q$-ary codes. 2005 European Conference on Combinatorics, Graph Theory and Applications (EuroComb '05), 2005, Berlin, Germany. pp.285-288, ⟨10.46298/dmtcs.3456⟩. ⟨hal-01184445⟩

Collections

TDS-MACS
128 Consultations
959 Téléchargements

Altmetric

Partager

More