Every $3$-connected, essentially $11$-connected line graph is hamiltonian - Archive ouverte HAL
Communication Dans Un Congrès Discrete Mathematics and Theoretical Computer Science Année : 2005

Every $3$-connected, essentially $11$-connected line graph is hamiltonian

Résumé

Thomassen conjectured that every $4$-connected line graph is hamiltonian. A vertex cut $X$ of $G$ is essential if $G-X$ has at least two nontrivial components. We prove that every $3$-connected, essentially $11$-connected line graph is hamiltonian. Using Ryjáček's line graph closure, it follows that every $3$-connected, essentially $11$-connected claw-free graph is hamiltonian.
Fichier principal
Vignette du fichier
dmAE0173.pdf (100.89 Ko) Télécharger le fichier
Origine Fichiers éditeurs autorisés sur une archive ouverte
Loading...

Dates et versions

hal-01184441 , version 1 (14-08-2015)

Identifiants

Citer

Hong-Jian Lai, Yehong Shao, Ju Zhou, Hehui Wu. Every $3$-connected, essentially $11$-connected line graph is hamiltonian. 2005 European Conference on Combinatorics, Graph Theory and Applications (EuroComb '05), 2005, Berlin, Germany. pp.379-382, ⟨10.46298/dmtcs.3452⟩. ⟨hal-01184441⟩

Collections

TDS-MACS
65 Consultations
962 Téléchargements

Altmetric

Partager

More