Spanning paths in hypercubes - Archive ouverte HAL
Communication Dans Un Congrès Discrete Mathematics and Theoretical Computer Science Année : 2005

Spanning paths in hypercubes

Résumé

Given a family $\{u_i,v_i\}_{i=1}^k$ of pairwise distinct vertices of the $n$-dimensional hypercube $Q_n$ such that the distance of $u_i$ and $v_i$ is odd and $k \leq n-1$, there exists a family $\{P_i\}_{i=1}^k$ of paths such that $u_i$ and $v_i$ are the endvertices of $P_i$ and $\{V(P_i)\}_{i=1}^k$ partitions $V(Q_n)$. This holds for any $n \geq 2$ with one exception in the case when $n=k+1=4$. On the other hand, for any $n \geq 3$ there exist $n$ pairs of vertices satisfying the above condition for which such a family of spanning paths does not exist. We suggest further generalization of this result and explore a relationship to the problem of hamiltonicity of hypercubes with faulty vertices.
Fichier principal
Vignette du fichier
dmAE0170.pdf (139.86 Ko) Télécharger le fichier
Origine Fichiers éditeurs autorisés sur une archive ouverte
Loading...

Dates et versions

hal-01184431 , version 1 (14-08-2015)

Identifiants

Citer

Tomáš Dvořák, Petr Gregor, Václav Koubek. Spanning paths in hypercubes. 2005 European Conference on Combinatorics, Graph Theory and Applications (EuroComb '05), 2005, Berlin, Germany. pp.363-368, ⟨10.46298/dmtcs.3442⟩. ⟨hal-01184431⟩

Collections

TDS-MACS
129 Consultations
910 Téléchargements

Altmetric

Partager

More