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Abstract

We investigate a special case of infinite urn schemes first considered by Karlin (1967),
especially its occupancy and odd-occupancy processes. We first propose a natural
randomization of these two processes and their decompositions. We then establish
functional central limit theorems, showing that each randomized process and its
components converge jointly to a decomposition of a certain self-similar Gaussian
process. In particular, the randomized occupancy process and its components con-
verge jointly to a decomposition of a time-changed Brownian motion B(¢t*), « € (0, 1),
and the randomized odd-occupancy process and its components converge jointly to
a decomposition of a fractional Brownian motion with Hurst index H € (0,1/2). The
decomposition in the latter case is a special case of the decomposition of bi-fractional
Brownian motions recently investigated by Lei and Nualart (2009). The randomized
odd-occupancy process can also be viewed as a correlated random walk, and in partic-
ular as a complement to the model recently introduced by Hammond and Sheffield
(2013) as discrete analogues of fractional Brownian motions.

Keywords: infinite urn scheme; regular variation; functional central limit theorem; self-similar
process; fractional Brownian motion; bi-fractional Brownian motion; decomposition; symmetriza-
tion.

AMS MSC 2010: Primary 60F17; 60G22, Secondary 60G15; 60G18.

Submitted to EJP on August 19, 2015, final version accepted on July 4, 2016.

Supersedes arXiv:1508.01506.

Supersedes HAL:hal-01184411.

1 Introduction

We consider the classical infinite urn scheme, sometimes referred to as the balls-in-
boxes scheme. Namely, consider an infinite number of boxes labeled by N := {1,2,...},
and suppose all boxes are empty at the beginning. Then, each round a ball is put into a
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Infinite urn schemes & self-similar Gaussian processes

box with a random label sampled from a fixed distribution ; on IN, and the samplings
of labels at different rounds are independent. This model has a very long history,
dating back to at least Bahadur [1]. For a recent survey from the probabilistic point
of view, see Gnedin et al. [11]. In particular, the sampling of the boxes forms naturally
an exchangeable random partition of IN. Exchangeable random partitions have been
extensively studied in the literature, and have connections to various areas in probability
theory and related fields. See the nice monograph by Pitman [22] on random partitions
and more general combinatorial stochastic processes. For various applications of the
infinite urn schemes in biology, ecology, computational linguistics, among others, see for
example Bunge and Fitzpatrick [6].

In this paper, we are interested in a specific infinite urn scheme. More precisely, we
consider a probability measure i on IN satisfying a certain regular variation assumption
with index a € (0, 1), to be defined in Section 2.1. This model was first considered by
Karlin [14] and we will refer to it as the Karlin model in the rest of the paper.

We start by recalling the main results of Karlin [14]. Let (Y;);>1 represent the
independent sampling from p in each round ¢ > 1, and

n
Yn,k = Z]I{YL:]C}) n Z 1, k Z 1,

i=1

be the total counts of the label k£ sampled in the first n rounds, or equivalently the number
of balls thrown into the box & in the first n rounds. In particular, Karlin investigated the
asymptotics of two statistics: the total number of boxes that have been chosen in the
first n rounds, denoted by
Z*(n) =Y gy, 20},
E>1
and the total number of boxes that have been chosen by an odd number of times in the
first n rounds, denoted by
U*(n) := Z Ly, , is odd} -
E>1

The processes Z* and U* are referred to as the occupancy process and the odd-occupancy
process, respectively. While Z* is a natural statistics to consider in view of sampling dif-
ferent species, the investigation of U* is motivated via the following light-bulb-switching
point of view from Spitzer [26]. Each box k may represent the status (on/off) of a light
bulb, and each time when k£ is sampled, the status of the corresponding light bulb is
switched either from on to off or from off to on. In this way, assuming that all the light
bulbs are off at the beginning, U*(n) represents the total number of light bulbs that are
on at time n.

Central limit theorems have been established for both processes in [14], in the form
of

* * * *
Z) B2 M) | j0,02) and L ZETM) g 2 (1.1)
On On

for some normalization o,,, with 0% and 012] explicitly given as the variances of the limiting
normal distributions, and where = denotes convergence in distribution. We remark that
o2 is of the order n®, up to a slowly varying function at infinity.

The next seemingly obvious task is to establish the functional central limit theorems
for the two statistics. However, to the best of our knowledge, this has not been addressed
in the literature. Here, by functional central limit theorems we are thinking of results in

the form of (in terms of Z*)

(Z*(LntJ)—EZ*(LntJ)

On

) = (Z"(t))teqo,11 (1.2)
te[0,1]
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in the space D([0, 1]) for some normalization sequence o,, and a Gaussian process Z*. In
view of (1.1) and the fact that afL has the same order as n®, the scaling limit Z*, if exists,
is necessarily self-similar with index «//2.

In this paper, instead of addressing only this question, we consider a more general
framework by introducing a randomization of the Karlin model that consists in attaching
independent Rademacher random variables to the boxes (see Section 2.1 for the exact
definitions). The randomization of the Karlin model reveals certain rich structure of the
model. In particular, it has a natural decomposition. Take the randomized occupancy
process Z¢ for example. We will write

Z(n) = Zi(n) + Z3(n)
and prove a joint weak convergence result in form of

1

On

(Zi([nt]), Z3(Int)), Z°(Int]))eejo,) = (Za(t), Z2(t), Z(t))ep0,1) »
in D([0,1])3, such that
7, =71+ 75 with 7, and Z-> independent.

In other words, the limit trivariate Gaussian process (Z(t), Za(t), Z(t)):c[0,1) can be
constructed by first considering two independent Gaussian processes Z; and Z, with
covariance to be specified, and then setting Z(t) := Z;(t) + Zs(¢),t € [0,1]; in this way
its finite-dimensional distributions are also determined. We refer to such results as
weak convergence to the decomposition of a Gaussian process. Similar results for the
randomized odd-occupancy process are also obtained. Here is a brief summary of the
main results of the paper.

* As expected, various self-similar Gaussian processes appear in the limit. In this way,
the randomized Karlin model and its components, including Z* and U* as special
quenched cases, provide discrete counterparts of several self-similar Gaussian
processes. These processes include notably the fractional Brownian motion with
Hurst index H = «/2, the bi-fractional Brownian motion with parameter H =
1/2, K = «, and a new self-similar process Z.

* Moreover, in view of the weak convergence to the decomposition, the randomized
Karlin model are discrete counterparts of certain decompositions of self-similar
Gaussian processes. The randomized occupancy process and its two components
converge weakly to a new decomposition of the time-changed Brownian motion
(B(t*))i>0, € (0,1) (Theorem 2.1). The randomized odd-occupancy process and
its two components converge weakly to a decomposition of the fractional Brownian
motion with Hurst index H = «/2 € (0,1/2) (Theorem 2.2). This decomposition is
a particular case of the decompositions of bi-fractional Brownian motion recently
discovered by Lei and Nualart [17].

Self-similar processes have been extensively studied in probability theory and related
fields [9], often related to the notion of long-range dependence [21, 25]. Among the
self-similar processes arising in the limit in this paper, the most widely studied one is
the fractional Brownian motion. Fractional Brownian motions, as generalizations of
Brownian motions, have been widely studied and used in various areas of probability
theory and applications. These processes are the only centered Gaussian processes that
are self-similar with stationary increments. The investigation of fractional Brownian
motions dates back to Kolmogorov [16] and Mandelbrot and Van Ness [18]. As for limit
theorems, there are already several models that converge to fractional Brownian motions
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in the literature. See [7, 10, 12, 15, 19, 20, 27] for a few representative examples. A
more detailed and extensive survey of various models can be found in Pipiras and
Taqqu [21]. Besides, we also obtain limit theorems for bi-fractional Brownian motions
introduced by Houdré and Villa [13]. They often show up in decompositions of self-similar
Gaussian processes; see for example [17, 24]. However, we do not find other discrete
models for the bi-fractional Brownian motions in the literature. As for limit theorems
illustrating decompositions of Gaussian processes as ours, we also find few examples in
the literature; see Remark 2.6.

Our results connect the Karlin model, a discrete-time stochastic process, to several
continuous-time self-similar Gaussian processes and their decompositions. By introduc-
ing new discrete counterparts, we hope to improve our understanding of these Gaussian
processes. In particular, the proposed randomized Karlin model can also be viewed as
correlated random walks, in a sense complementing the recent model introduced by
Hammond and Sheffield [12] that scales to fractional Brownian motions with Hurst index
H € (1/2,1). Here, the randomized odd-occupancy process (U¢ below) is defined in a
similar manner, and scales to fractional Brownian motions with H € (0,1/2).

The paper is organized as follows. Section 2 introduces the model in details and
present the main results as well as several comments. The proofs are based on a
Poissonization technique. Section 3 introduces and investigates the Poissonized models.
The de-Poissonization is established in Section 4.

2 Randomization of Karlin model and main results

2.1 Karlin model and its randomization

We have introduced the original Karlin model in Section 1. Here, we specify the
regular variation assumption. Recall that x is the common distribution of the (¥;);>1 and
set pr := pu({k}) for k € IN. We assume that (px)r>1 is non-increasing, and define the
infinite counting measure v on [0, c0) by

v(A) = 51 (A)
iz
for any Borel set A of [0,00), where ¢, is the Dirac mass at z. For all ¢ > 0, set
v(t) = w((0,1]) = max{j > 1| p; > 1/}, 2.1)

where max () = 0. Following Karlin [14], the main assumption is that v(t) is a regularly
varying function at co with index « in (0, 1), that is for all > 0, lim;—, o, v(tx)/v(t) = z°,
or equivalently

v(t) =t*L(t), t > 0, (2.2)
where L is a slowly varying function as t — oo, i.e. for all z > 0, lim;_,o L(tz)/L(t) = 1.
For the sake of simplicity, one can think of

Pr Ck~= for some a € (0,1) and a normalizing constant C' > 0.
c—> 00

In this case, v(t) N cete.
— 00
We have introduced two random processes considered in Karlin [14]: the occupancy
process and the odd-occupancy process as

Z*(n) = Z]l{yn,weo} and U"(n):= Z]l{Yn,k is odd} »
k>1 k>1

respectively. To introduce the randomization, let ¢ := (¢4)x>1 be a sequence of i.i.d.
Rademacher random variables (i.e. P(e;, = 1) = P(g, = —1) = 1/2) defined on the same
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probability space as the (Y),),>1 and independent of them. In the sequel, we just say
that ¢ is a Rademacher sequence in this situation, and implicitly ¢ is always assumed
independent from (Y, )n>1.

Now we introduce the randomized occupancy process and the randomized odd-
occupancy process defined by

Z€<TL) = Zé‘]f]l{yn,k#o} and UE(TL) = Zé‘k]l{yn,k is odd} >
k>1 k>1

respectively. We actually will work with decompositions of these two processes given by

Z5(n) = Zi(n)+ Z5(n) and  U*(n) = Uf(n) + U5 (n),

where
Zi(n) = Zsk (Lgy, w20y —pr(n)) and Z5(n):= Zekpk(n), n>1, (2.3)
k>1 k>1
Ui(n) = Zék (Lgy, . isoaa} — qr(n)) and Us(n):= Zefqu(n), n>1, (2.4)
k>1 k>1

with forallk > 1landn > 1,

pr(n) =P (Yor #0)=1—(1—pp)",

gs(n) == P (Y 1 is odd) — %(1 (1= 2p0)").

In the preceding definitions, the exponent ¢ refers to the randomness given by the
Rademacher sequence (¢)r>1. Nevertheless, in some of the following statements,
the sequence of (¢4)r>1 can be chosen fixed (deterministic) in {—1,1}N. Then the
corresponding processes can be considered as “quenched” versions of the randomized
processes. For this purpose, it is natural to introduce the centering with pg(n) and gx(n)
respectively above. Actually, we will establish quenched weak convergence for Z7 and
Ut (see Theorem 2.3 and Remark 2.4). With a little abuse of language, for both cases we
keep ¢ in the notation and add an explanation like ‘for a Rademacher sequence ¢’ or ‘for
all fixed e € {—1,1}V, respectively.

2.2 Main results

As mentioned in the introduction, we are interested in the scaling limits of the
previously defined processes. We denote by D([0,1]) the Skorohod space of cadlag
functions on [0, 1] with the Skorohod topology (see [2]). Throughout, we write

op = no‘/zL(n)lm,

where o and L are the same as in the regular variation assumption (2.2). Observe that
v(n) = L(n) = 0, = 0 for n < 1/p;. Therefore, when writing 1/0,, we always assume
implicitly n > 1/p;. Below are the main results of this paper.

Theorem 2.1. For a Rademacher sequence ¢,

L (Zi([nt)), Z5(Int)), Z°([nt])) e,y = (Za (1), Z2 (), Z()) 1,1y -

n

in (D([0,1]))3, where Z,Z,7Z are centered Gaussian processes, such that

7. =7y + 2>,

EJP 21 (2016), paper 43. http://www.imstat.org/ejp/
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7., and Z- are independent, and they have covariances

Cov(Z1(s),Z1(t)) =T(1 —a) ((s + t)* — max(s,t)),
Cov(Zs(s),Zo(t)) =T(1 — a) (s* +t% = (s +1)°),
Cov(Z(s),Z(t)) =T (1 — a) min(s,t)*, s,t>0.

Theorem 2.2. For a Rademacher sequence ¢,

Ui (Ut (Lnt]), Us ([nt]), US([nt]))rero,1y = (Ua(®), U2(2), Ut))repo 1y »

n

in (D([0,1]))3, where Uy, U,, U are centered Gaussian processes such that
U =0 + Uy,
U, and U, are independent, and they have covariances

Cov(Us(s), Ur(t)) = T(1 = a)2°72 ((s + ) — [t — s[*),
Cov(Usy(s), Ug(t)) = T(1 — )22 2 (s* +t% — (s + 1)%),
Cov(U(s), U(t)) =T(1 — a)2°7 2 (s® +t* — |t — 5|*), s,t>0.

To achieve these results, we will first prove the convergence of the first (27 and Uy)
and the second (Z5 and U5) components, respectively. For the first components we have
the following stronger result.

Theorem 2.3. For all fixed € € {—1,1}V,

(W) o = (Z1(t))sep0,y and <U15(UL:H)) - = (U1(1))repo,1y »

in D([0,1]), where Z, and U, are as in Theorems 2.1 and 2.2.

Remark 2.4. Theorem 2.3 is a quenched functional central limit theorem. In particular,
when taking € = 1= (1,1,...), Theorem 2.3 gives functional versions of the central limit
theorems for Z*(n) and U*(n) established in Karlin [14] (formally stated in (1.1)): the
(non-randomized) occupancy and odd-occupancy processes of the Karlin model scale
to the continuous-time processes 7Z; and U;, respectively. Moreover, as the limits in
Theorem 2.3 do not depend on the value of ¢, this implies the annealed functional central
limit theorems (the same statement of Theorem 2.3 remains true for a Rademacher
sequence ¢).

Now we take a closer look at the processes appearing in Theorem 2.1 and Theorem 2.2
and the corresponding decompositions. The decomposition of U is a special case of the
general decompositions established in Lei and Nualart [17] for bi-fractional Brownian
motions. Recall that a bi-fractional Brownian motion with parameter H € (0,1), K € (0, 1]
is a centered Gaussian process with covariance function

RHK (5,¢) = ZLK ((tQH + 25 5|2HK) . 2.5)

The case K = 1 corresponds to the fractional Brownian motion with Hurst index H. It is
noticed in [17] that one can write

1 1
(t2HK —|—82HK _ ‘t— S|2HK) _ RH’K(S,t)+

2K 2K (t2HK +82HK _ (t2H +82H)K), (26)

where the left-hand side above is a multiple of the covariance function of a fractional
Brownian motion with Hurst index H K, and the second term in the right-hand side

EJP 21 (2016), paper 43. http://www.imstat.org/ejp/
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above is positive-definite and hence a covariance function. Therefore, (2.6) induces a
decomposition of a fractional Brownian motion with Hurst index H K into a bi-fractional
Brownian motion and another self-similar Gaussian process.

Comparing this to Theorem 2.2, we notice that our decomposition of U corresponds
to the special case of (2.6) with H = 1/2, K = «. Up to a multiplicative constant, U
is a fractional Brownian motion with Hurst index H = «/2. The process U is the
bi-fractional Brownian motion with H = 1/2, K = «, and it is also known as the odd-part
of the two-sided fractional Brownian motion; see Dzhaparidze and van Zanten [8]. That

is
1
(V1)) = V2T (T~ 0) <<Ba/2<t> - Ba”(—t») ,
- 2 t>0
where B/? is a two-sided fractional Brownian motion on R with Hurst index /2 € (0, 1).
The process U, admits a representation

Us(t) = 2"/2_1\/a/ (1—e*)s™ "2 dB(s), t > 0,
0

where (IB(t)).c[0,1] is the standard Brownian motion. It is shown that U,(t) has a version
with infinitely differentiable path for ¢ € (0,00) and absolutely continuous path for
t € [0,00). At the same time, U, also appears in the decomposition of sub-fractional
Brownian motions [4, 24].

For the decomposition of Z in Theorem 2.1, to the best of our knowledge it is new in

. _— . . . dd
the literature. Remark that Z is simply a time-changed Brownian motion (Z(t));>o =

(1 — a)(B(t*));>0, and that Zs 49 9-a/2+17y,. The latter is not surprising as the
coefficients ¢x(n) and px(n) have the same asymptotic behavior. However, we cannot
find related reference for Z; in the literature. The following remark on 7, has its own
interest.

Remark 2.5. The process Z; may be related to bi-fractional Brownian motions as follows.
One can write

(81/a+t1/a)a_ ‘S—ﬁl -9 Ksl/a +t1/a) _ max(s,t)} + [s +t— (Sl/a +t1/a) } ,8,t > 0.

That is,
fdd 1/« 1/«
V(t = (2Z4(¢t Zo(t
(V(t)e>o0 ( () + Za( )>t20’

where Z, and Zs are as before and independent, and V is a centered Gaussian process
with covariance

Cov(V(s), V(t)) = D(1 — a)2*RY (2 (5 1),
Therefore, as another consequence of our results, we have shown that for the bi-
fractional Brownian motions, the covariance function R¥:¥ in (2.5) is well defined
for H =1/(2a), K = a for all « € (0,1). The range « € (0,1/2] is new.
Remark 2.6. We are not aware of other limit theorems for the decomposition of pro-
cesses in a similar manner as ours, but with two exceptions. One is the symmetrization
well investigated in the literature of empirical processes [28]. Take for a simple example
the empirical distribution function

1
=1

where X, X5,... are i.i.d. with uniform (0,1) distribution. By symmetrization one
considers an independent Rademacher sequence ¢ and

1O I 1O
(1) := - Zﬂﬂ{xigt}v FLi(t) = - 251‘ (Lixicey —t)  and  FR2(1) = - Z&'t-
i=1 i=1 i=1

EJP 21 (2016), paper 43. http://www.imstat.org/ejp/
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It is straight-forward to establish
Vi (B (), B3 (8), B2 (1)) ego,) = (B(E), B(8) — tB(1), tB(1))sefo,1)-

This provides an interpretation of the definition of Brownian bridge via B""%49¢(t) :=
B(t) — tB(1),t € [0,1]. The other example of limit theorems for decompositions is the
recent paper by Bojdecki and Talarczyk [5] who provided a particle-system point of view
for the decomposition of fractional Brownian motions. The model considered there is
very different from ours, and so is the decomposition in the limit.

To prove the convergence of each individual process, we apply a Poissonization
technique which was already used by Karlin [14]. Each of the Poissonized processes
7 % 7 5 IU?, 1@5 is an infinite sum of independent random variables of which the covari-
ances are easy to calculate, and thus the finite-dimensional convergence follows imme-
diately. This finite-dimensional convergence is already new comparing to [14] but it
does not involve any new technique. A first challenging question for us is to establish
the tightness for Zf and Uf. Karlin [14] did not consider the functional central limit
theorems, and in particular to obtain the tightness one needs to work harder. For this
purpose we apply a chaining argument. Once the weak convergence for the Poissonized
process is established, we couple the Poissonized process with the original one and
bound the difference. The second technical challenge lies in this de-Poissonization step.
Again, our de-Poissonization lemmas are more involved than in [14] since we work with
D(]0, 1])-valued random variables.

Remark 2.7. One can prove the weak convergences (Z°(|[nt])/on)tcio,1] = (Z(t))tc[0,]
and (Us(|nt])/on)ief0,1] = (U(t))¢ejo,1) directly, without using the decomposition. We do
not present the proofs here as they do not provide insights on the decompositions of the
limiting processes. Nevertheless, the later convergence has its own interest as explained
in the next section.

2.3 Correlated random walks

Another motivation for this paper is to give a model of correlated random walks com-
plementing a model proposed by Hammond and Sheffield [12] as a discrete counterpart
to the fractional Brownian motion. Here we focus our discussion on the process U¢ and
first explain that it can be interpreted as a correlated random walk by writing

US(n) = X1+ + Xa, 2.7)

where the steps (X;);>1 are random variables taking values in {—1,1} with uniform
probability. Here, unlike the usual random walks, the steps are dependent and the
dependence is determined by the random partition of IN generated by our balls-in-boxes
scheme.

To obtain the representation of U® in (2.7), consider the sequence (1;,),,>1 of indepen-
dent copies with law i and the random partition of IN induced by the equivalence relation
¢ ~ j if and only if ¥; = Y;. That is, the integers ¢ and j are in the same component
of the partition if and only if the i-th and j-th balls fall in the same box. Once the
sequence (Y,),>1 is given and thus all components are determined, one can define the
steps (X;);>1 as follows: Consider the sequence of independent Rademacher random
variables (¢j)r>1 (also independent of (Y,),,>1). For each k > 1, list all the elements in
the component & (defined as {i € IN : Y; = k}) in increasing order i; < is < ---, and set
X;, = €, and iteratively X;, , := —Xj,, £ > 1. In this way, it is easy to see that each X is
taking values —1 or 1 with equal probabilities and that, conditioning on (Y¥,,),>1, X; and
X are completely dependent if ¢ ~ j whereas they are independent if ¢ ¢ j. Further, for
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the m first integers in the component £, the corresponding sum X;, +---+ X,  equals to
er, if m is odd and vanishes if m is even. The verification of (2.7) is now straight-forward.

The above discussion describes how to construct correlated random walks from
random partitions in two steps. The first is to sample the random partition. The second
is to assign +1 values to (X;);>1 conditioned on the sampled random partition. The
motivation for this discussion comes from a similar model of correlated random walk
introduced by Hammond and Sheffield [12]. Hammond and Sheffield also constructed a
collection of random variables taking values in {—1, 1} for which the dependence among
them is determined by a random partition of Z. In their model, the random partition is
given by the (infinitely many) connected components of a random graph on Z which is
constructed by linking each integer 7 to the integer i — Z;, where the (Z;);cz are positive
i.i.d. random variables with distribution in the domain of attraction of an «g-stable law
for some o € (0,1/2). The £1 values are assigned such that X; = X; if i and j belong
to the same component and they are independent otherwise. The main result of [12]
was to prove that the scaling limit of this correlated random walk (under appropriate
normalization) is a fractional Brownian motion with Hurst index ag + 1/2 € (1/2,1). This
gives discrete counterparts to fractional Brownian motions with Hurst index greater
than 1/2.

Our correlated random walk (U¢(n)),>1 (as described by (2.7)) thus gives a comple-
mentary model for fractional Brownian motions with Hurst index smaller than 1/2 since,
focusing on U*¢ in Theorem 2.2, we have the following result.

Corollary 2.8. Set1;, := I'(1—a)2* 'n®L(n). The process (U*(|nt])/nn)c(o 1 cOnverges
in distribution, in D([0,1]), to a fractional Brownian motion with Hurst index «/2 €
(0,1/2).

There are two differences between the Hammond-Sheffield model and the randomized
odd-occupancy process U®: first, the underlying random partition is different: notably,
the random partition in the infinite urn scheme is exchangeable, while this is not the
case for the random partition of Z introduced in [12]; rather, the random partition
there inherits certain long-range dependence which essentially determines that the
Hurst index in the limit must be in (1/2,1). Second, the +1 assigning rule is different
since for the Hammond-Sheffield model all the random variables indexed in the same
component take the same value. The alternative way of assigning the 41 by alternating
the values along each component is the key idea in our framework. Actually, Hammond
and Sheffield [12] suggested, as an open problem, to apply this alternative assigning rule
to their model and asked whether the modified model scales to a fractional Brownian
motion with Hurst index in (0,1/2). In our point of view, in order to obtain a discrete
model in the similar flavor of the Hammond-Sheffield model that scales to a fractional
Brownian motion with Hurst index H € (0,1/2), the alternative assigning rule is crucial,
while the underlying random graph with long memory is not that essential. Our results
support this point of view. At the same time, the aforementioned suggestion in [12]
remains a challenging model to analyze.

3 Poissonization

Recall that we are interested in the processes Z¢ and U® and in the decompositions
Z¢ =75+ Z5 and U® = U + Us as defined in (2.3) and (2.4).

3.1 Definitions and preliminary results

The first step in the proofs is to consider the Poissonized versions of all the preceding
processes in order to deal with sums of independent variables. Let N be a Poisson
process with intensity 1, independent of the sequence (Y,,),>1 and of the Rademacher

EJP 21 (2016), paper 43. http://www.imstat.org/ejp/
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sequence ¢ considered before. We set

N(t)
Np(t) ==Y lgymgy, t>0k>1
=1

Then the processes Ni, k > 1, are independent Poisson processes with respective
intensity p;. Now we consider the Poissonized processes, for all t > 0,

Ze(t) ==Y exlinzoy and U () =Y exln, () isodd}-
k>1 k>1

These Poissonized randomized occupancy and odd-occupancy processes have similar
decompositions as the original processes

Z°=27:+75 and U°=U;+U;

with
Zi(t) == Z&?k (L y0p — Br(t)),  Z5(t) := Z%ﬁk(t),
k>1 k>1
Ui (t) == Z€k (Ln(t) is oday — Gr(t)) Us(t) == Zﬂcfik(t),
k>1 k>1
and

Pr(t) :=P(Ni(t) #0) =1 — e 7,
Gr(t) := P(Ng(t) is odd) = %(1 — e 2Rty

Using the independence and the stationarity of the increments of Poisson processes,
we derive the following useful identities. Forall 0 < s <tandall k > 1,

0 < pr(t) — pr(s) = (1 — pr(s))Pe(t — s) < pr(t —
0 < qr(t) = qr(s) = (1 = 2qr(s))qr(t — 8) < Gr(t —
Note that, in particular, the functions p; and ¢, are sub-additive. Further, we will have

to deal with the asymptotics of the sums over k of the p; or ¢i. For this purpose, recall
that (see [14, Theorem 1]) the assumption (2.2) implies

(3.1)

s),
s). (3.2)

V()= (1—e ™) ~T(1—a)t*L(t), ast— oc. (3.3)
k>1

We will need a further estimate on the asymptotic of V' (¢) that is stated in the following
lemma.

Lemma 3.1. For all v € (0, «), there exists a constant C, > 0 such that

V(nt) < C,t"02, uniformlyint € [0,1],n > 1.

no

Proof. Recall the definition of the integer-valued function v in (2.1). By integration by
parts, we have for all ¢t > 0,

Vi = [ -t = [T et

Observe that v(t) = 0 if and only if ¢ € [0,1/p;) by definition, and in particular L(t) = 0 if
and only if ¢ € [0,1/p;). Thus,

Vnt i o L(nt
(Z ) z/ e 2e Yoy (nta)de = to‘/ xa_ze_l/fmdx.
o 1/(ntpy) 1/(ntp1) L(n)

EJP 21 (2016), paper 43. http://www.imstat.org/ejp/
Page 10/23


http://dx.doi.org/10.1214/16-EJP4492
http://www.imstat.org/ejp/

Infinite urn schemes & self-similar Gaussian processes

Now we introduce
L) ifte[l/p1,00) ’

and obtain

V(Zt) Sta/ xa—2e—1/mL intl’)dm
On 0 L (”)

Let § > 0 be such that «+ 9 < 1 and o — § > ~. Observe that L* has the same asymptotic
behavior as L by definition. In addition, L* is bounded away from 0 and oo on any
compact set of [0,00). Thus, by Potter’s theorem (see [3, Theorem 1.5.6]) there exists a
constant Cs > 0 such that for all z,y > 0

roy=oms((5) () )

V(igt) < Cgta/o %2~ Y% max ((tac)‘S (tx) 6) dx

and both integrals are finite (the second one because we have taken ¢ such that a+4 < 1).
Further, =% < ¢ for all t € [0, 1] and thus the lemma is proved. O

3.2 Functional central limit theorems
We now establish the invariance principles for the Poissonized processes.
Proposition 3.2. For all fixed ¢ € {—1,1}F,
Z5(nt) U¢ (nt)
<1> = (Zl(t))te[o,l] and (1(7 = (Ul(t)>te[0,1] ’
te[0,1] "/ e,

On
in D([0,1)), where Z, is as in Theorem 2.1 and U, is as in Theorem 2.2.

Proof. In the sequel ¢ € {—1,1}" is fixed. The proof is divided into three steps.
(i) The covariances. Using the independence of the Vi, and that aﬁ =1forall k > 1,
we infer that for all 0 < s <,

Cov (Zi(ns), Zi(nt)) = >~ (P(Nu(ns) # 0, Ni(nt) # 0) = pi(ns)p(nt))

k>1

= Z (1= e ™) — (1 — e PE™) (1 — e P71
k>1
=V(n(s+1t)) —V(nt),

whence by (3.3),

lim - Cov (Zi(ns), ZE(nt)) = D1~ 0) (s + 1) — 1)

n— 00 o'%

For the odd-occupancy process, using the independence and the stationarity of the

EJP 21 (2016), paper 43. http://www.imstat.org/ejp/
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increments of the Poisson processes, for 0 < s <1,

Cov (Uf (ns), Uf(nt)) =" (P(Ni(ns) is odd, Ny (nt) is 0dd) — G.(ns)qi (nt))

k>1
=Y (@(ns)(1 = G(n(t - 5))) = G(ns)qr(nt))
k>1
— £Z<1 _ 6_2pkns)(€_2pk”(t_s) + e—2pknt)
k>1

:iaq%u+s»—ven@—@»-

Thus, again by (3.3),

lim LQ Cov (Uf(ns), ~f(nt)) =T(1 — )2 2((t+5)* — (t —5)).

n—oo O'n

(ii) Finite-dimensional convergence. The finite-dimensional convergence for both
processes is a consequence of the Lindeberg central limit theorem, using the Cramér-

Wold device. Indeed, for any choice of constants a1,...,aq4 € R, d > 1, and any reals
t1,...,tq € [0,1], the random variables
d
€k Zai(]l{Nk(nti);EO} —pr(nt;), k>1,n>1
i=1

are ir}dependent and uniformly bound~ed. This entails the finite-dimensional convergence
for (Z7(nt)/oy)ief0,1]- The proof for (U (nt)/on)ico,1) is similar.
(iii) Tightness. The proof of the tightness is technical and delayed to Section 3.3. O

Proposition 3.3. For any Rademacher sequence € = (¢j)>1,

Ze nt UE nt
< 20( )> = (Z2(t)) 01y  and ( 20( )> = (O2)iep,
"/ s, " e

in D([0,1]), where Z is as in Theorem 2.1 and U, is as in Theorem 2.2.

Proof. First remark that, since for all t > 0, Gy(t) = 3px(2t), we have Us(t) = 1Z5(2¢).

Thus the second convergence follows from the first one.
(i) The covariances. Since the ¢, are independent, using (3.3), we have for all ¢,s > 0,

U% Cov(Zg(nt), Z;(ns)) = Uiz Z E(e},)pr (nt)pr(ns)
n nE>1
= Y e )
ng>1
= L nt)+ Vins) — Vin(t+ 5)))

on
— Il —a)(@t*“+s—(t+s5)Y) asn — oc.
(ii) Finite-dimensional convergence. Since Zg is a sum of independent bounded

random variables, the finite-dimensional convergence follows from the Cramér-Wold
device and the Lindeberg central limit theorem.

EJP 21 (2016), paper 43. http://www.imstat.org/ejp/
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(iii) Tightness. Let p be a positive integer. By Burkholder inequality, there exists a
constant C), > 0 such that forall0 <s <t <1,

B| - (2200 - Z50)| < Gy | X (u(on) -t
! noo\k>1
< Cpﬁ int—9))?2 | =c, <V(n(;—$>))”

k>1

Now we use Lemma 3.1. Let v € (0, ). There exists C,, > 0 such that

1 5 B 2p
Bl - (z;(nt) - Z;(ns)) < C,CPlt — s uniformly in |t — s| € [0, 1].
Choosing p such that yp > 1, this bound gives the tightness [2, Theorem 13.5]. O

3.3 Tightness for Z{ and U

Recall that ¢ € {—1,1}N is fixed. Let G be either Z; or U;. To show the tightness, we
will prove

=0 nooco |t—s|<6

lim lim sup P ( sup |G(nt) — G(ns)| > nan> =0 foralln > 0. (3.4)

The tightness then follows from the corollary of Theorem 13.4 in [2]. To prove (3.4), we
first show the following two lemmas.

Lemma 3.4. Let G be either Z¢ or U¢. For all integer p > 1 and ~ € (0, o), there exits a
constant Cy, , > 0 such that for all s,t € [0,1], foralln > 1,

E|G(ns) — G(nt)|** < Cpy (|t — s|"Po? + |t — s[707) . (3.5)
Lemma 3.5. Let G be either Z; or U;. Forallt < s <t+9,
|G(t) — G(s)| < N(t+6) — N(t) + 4, almost surely, (3.6)

where N is the Poisson process in the definition of Zf and Uf.

A chaining argument is then applied to establish the tightness by proving the follow-
ing.
Lemma 3.6. If a process G satisfies (3.5) and (3.6) for a Poisson process N, then (3.4)
holds.

Proof of Lemma 3.4. We prove for G = U¢. The case G = Z¢ can be treated in a similar
way and is omitted. In view of Lemma 3.1, it is sufficient to prove that for all p > 1 and
all0 <s<t<1,

EIG() - G < Gy (VL - ) + V- 5), @7

with the function V' defined in (3.3). We prove (3.7) by induction on p. For p = 1, by
independence of the N, we have

E|G(t) — G(s)]> = ZVar (L{Ny(t) is odd} — L{Ny(s) is oda})

E>1
2
< Z E (L{n,(t) is odd} — L{Ny(s) is odd} )
E>1
- 1
<Dt —s) = V(- 9).
E>1
EJP 21 (2016), paper 43. http://www.imstat.org/ejp/
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Let p > 2 and assume that the property holds for p — 1. We fix 0 < s < ¢, and simplify the
notations by setting

X = Lgn, (1) is oda} — Gk (t) = (L{Ny(s) is oad} — Tk (s)) -

Note that | Xj| < 2 for all £ > 1. Since (Xj),>1 are centered and independent, it follows
that

BOW -G = Y B(xE-x)

k1,...;kp>1

< Y BER)B(XEXE) 4 B (X2 X))
ki,ekp>1 ki,ekp>1

kig{ka,....kp} ki€{ka,....kp}

S| EEE)+ar-n] Y B(xExE).

k1>1 ko, kp>1

By the induction hypothesis, we infer
E|G(t) — G(s)|*? < <;V(2(t —8))+4(p — 1)) Cp1 (V(2(t —s)P V2%t - 5)))
<, <V(2(t — )P+ V(2(t—s)P T+ V(2(t—s)?+ V(2t - 5))),

for a new positive constant CZQ depending only on p. We now deduce (3.7) using the fact
that V¥ < VP 4V forall 1 < ¢ < p and taking C,, = 3C;,. O

Proof of Lemma 3.5. Lett < s <t+ ¢. Recalling (3.1), we have

\Z5(s) — Z5 ()] < Z |L¢N, (s)20y — Lyni(eyz0t| + Z Pk (5) — Pr(t)]

k>1 k>1
< Z LN (s)=Ni(t)#0) T Zﬁk(s —t)
E>1 k>1

< N(s) = N(t) + E(N(s — 1))
<N({t+8)—N(t)+9.

Similarly, recalling (3.2),

U5 (s) — Uf(t)] < Z | 14N, (s) is odd} — LNy (2) is oaa} | + Z |Gk (s) — qr(t)]
k>1

k>1

IN

Lin(s)-Na(o0y + D k(s — 1)
k>1 k>1

< N(t+6) - N(t) +6. m

Proof of Lemma 3.6. Let n > 0 be fixed. For § € (0,1) and r := | 3] + 1, we set ¢; := i§
fori=0,...,r—1, and ¢, := 1. By [2, Theorem 7.4], we have

P ( sup |G(nt) — G(ns)| > 9nan> < Z]P ( sup |G(ns) — G(nti—1)| > 3770n>

[t—s|<d i— ti—1<s<t,
(3.8)
The rest of the proof is based on a chaining argument. Fix i € {1,...,r}. Forall k > 1,
we introduce the subdivision of rank k of the interval [t;_1, ;]
g k
Tpo =11 +£2—k, fork>1and?¢=0,...,2"%.
EJP 21 (2016), paper 43. http://www.imstat.org/ejp/
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For s € [t;—1,t;] and n > 1, we define the chain sy :=t;_1 < 51 < ... < s, < s, where for
each k, sy is the largest point among (z4,¢)¢—o,... o+ of rank k that is smaller than s, and

where we choose
)
kp = {logQ (2(@ -1) " )J + L (3.9)
Non

This choice of k,, will become clearer later. For ¢;_; < s < t;, we write

kn
|G(ns) — G(nt;—1) Z (nsg) — G(nsk—1)| + |G(ns) — G(nsyg, )|, (3.10)
k=1
and since we necessarily have s; = sp_1 Or s, = sg—1 + Qk , we infer that for all £ > 1,
|G(nsg) — G(nsk—1)| < , 1{1&){2 |G(nxg,e) — G(nxg,e—1)|- (3.11)

Now, by Lemma 3.5, we get
|G(ns) — G(nsy, )| < N(n(sk, + 52*’“")) — N(nsg, )+ no2 " kn
<  max (N(n(zg,e+027%)) = N(nay, o)) +né2" 5. (3.12)

= ¢=0,...,2kn —1

Further, observe that our choice of k,, in (3.9) gives nd2 kn < noy. Using this last fact
and the inequalities (3.10), (3.11), and (3.12), we infer

lim sup P ( sup |G(ns) — G(nt;—1)| > 37]0n>

n—roo ti—1<s<t;
kn
< limsup P <Z max |G(nxg) — G(nage—1)| > 770'”> (3.13)
n— o0 — =1,...,2F
+ limsup P < max  (N(n(zg, o+ 627")) — N(nay, o)) > nan> . (3.14)
n—o0 Z:07,,,)2kn,71 ) )

For (3.14), using exponential Markov inequality and the fact that ]E(eN ("”)) = e%(e=1) e
infer

P (z max  {N(n(zp, .+ 627 kn)) — N(nxk, 0)} > 7)0n) < 2k (N(n62*k") > n0oy,)
0

=0,...,2kn —1

< 2kn 6n52_k" (e—=1)—no, )

Again, by the choice of k, in (3.9), 2*» < 4(e — 1)né/(no,) and 27%» < no,, /(2(e — 1)nd).
Thus, the above inequality is bounded by 4(e —1)nd/(noy)e™ 277", which converges to 0 as

n — oo. So, the term (3.14) vanishes and it remains to deal with (3.13). Let n, := %
k > 1, so that ), -, n = 7. We have
kn
P max |G -G 1) >
(Z (max, |G (nan,e) — G(nap,e-1)] 77%)
k=1
kn
< P (Z_rlnax2 |G(nzye) — G(nxge—1)| > nkan>
k=1 T
kn 2F
<D Y P (IG(nak) — Glnwye1)| > mkon) -
k=1 ¢=1
EJP 21 (2016), paper 43. http://www.imstat.org/ejp/
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Now, fix v € (0, «) and let p > 1 be an integer such that vp > 1. Using Markov inequality
at order 2p and the 2p-th moment bound (3.5) in Lemma 3.4, we get

.....

kn
P35, i s~ Gl 1)

2k B 2p
S Zﬁ;QpE|G(nZk’Z) G(na:k.,g_l)|

3
o

k
< g —2p ap o T — w0 a]”
< Cpy Mk |Zke — g oa|"? + ————
02(17 1)
n

oo En
< CpA8P Z 77];2172]9(1*717) + Cp 0P ()P Z ng2p2k(177).
k=1 k=1

In the right-hand side, since yp > 1, the series in the first term is converging and is
independent of n. The sum in the second term is bounded, up to a multiplicative constant,
by 2F»(1=7) which is of order n(!=*/2)(1=7) (here and next line, up to a slowly varying
function). Thus, the second term in the right-hand side is of order n!—arte/2=v+ye/2 <
n'—p+(e="(1-p) and vanishes as n goes to 0o, again because we have assumed vp > 1.
So for (3.13), we arrive at

kfl
lim sup IP <kz_:1 é:m.z?}’(% |G(nag,e) — G(nage—1)| > nan> < CHP

n—00 1

)

for some constant C independent of § and 7. From (3.8), we conclude that

1
lim sup P ( sup |G(nt) — G(ns)| > 9770n> < <\‘5J + 1> 9P

n—oo [t—s|<d

which goes to 0 as § | 0. This yields (3.4). O

Remark 3.7. For the Poissonized model, we can establish similar weak convergence to
the decompositions as in Theorems 2.1 and 2.2, by adapting the proofs at the end of
Section 4. We omit this part.

4 De-Poissonization

In this section we prove our main theorems. Recall the decompositions
Z*=7Zi+2Z; and U®=Uj+Us,

and
ZF=7:+75 and U°=U;+Us.

Note that G¢ and G¢, for G being 71, Z5, Uy, Us respectively, are coupled in the sense
that they are defined on the same probability space as functionals of the same ¢ and
(Y,,)n>1. We have already established weak convergence results for 75, 75,05, Us. The
de-Poissonization step thus consists of controlling the distance between G° and Ge. We
first prove the easier part.

EJP 21 (2016), paper 43. http://www.imstat.org/ejp/
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4.1 The processes Z5 and U5

Theorem 4.1. For a Rademacher sequence ¢,

(ZS(WJ)

UTL

Us (Int])

U7L

)  (Zo())epy  and ( ) = (Us()repon.
te[0,1] te[0,1]

in D([0,1]), where Zy and U, are as in Theorems 2.1 and 2.2.

Proof. Thanks to the coupling, it suffices to show for all e € {—1, 1} fixed,

e _ e
s 16500 = G|
n=90 ¢(0,1] On

in probability, with G being Z5, U, respectively. We actually prove the above convergence
in the almost sure sense. Observe that for all e € {—1, 1},

|Z5(nt) = Zs(lnt])] < Y [pr(nt) — pr(Lnt])],

k>1
U5 (nt) = Us ([nt])| < Y ldu(nt) — ai([nt])].
k>1
Thus, the proof is completed once the following lemma is proved. O
Lemma 4.2. The following limits hold:
. 1 -

i o sup kz;l [ (nt) = pr([nt])] = 0 (4.1)
and .

nh_)ngo o tiﬁﬁ] ;21 |Gk (nt) — qir.(|nt])| = 0. (4.2)

Proof. By triangular inequality, foralln > 1,¢ >0,

D 1Br(nt) = pr((nt])] < Y [Be([nt]) = pr(nt) + Y [Be((nt]) = pi([nt])]-

E>1 k>1 k>1

First, note that forall k > 1,
Pr(Int]) — pe(nt)| < pr(nt] + 1) — pr(|nt]) = e Pel (1 — e7Px),

and thus,

S me(nt]) = pr(mt) < > pr = 1.

k>1 E>1
Further, if [nt] > 1, using that e=™¥ — (1 —y)™ < L(1 —e ™) forall 0 < y < 1 and

m € IN, we have

S 1au(lnt]) = pr(lnt)) = > (7Pl — (1= pyl))

E>1 k>1
1 _ o—prlnt]y — V( \_ntJ)
~ |nt] g(l ) [nt]

which is bounded (since V(n)/n — 0 as n — oo0). We thus deduce (4.1). The proof for
(4.2) is similar and omitted. O
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4.2 The processes Z7 and U}
In this section we prove Theorem 2.3. The coupling of Z7, Zf and U7, ﬁf respectively
takes a little more effort to control.

Proof of Theorem 2.3. Let N be the Poisson process introduced in Section 3 and denote
by 7; the i-th arrival time of N, ¢ > 1, namely 7; := inf{t > 0 | N(¢) = i}. We introduce
the random changes of time A, : [0,00) — [0,00), n > 1, given by

Anlt) = 10>,

n >
By constructions, we have
Z(|nt]) = ZZ(nAn(t)) and US(|nt]) = US(n\,(t)), almost surely.

These identities do not hold for the process Z{ or U} but we can still couple Z7, Zf and
Ui, Ur via

Zi(Int]) = Zi(nAn () + > ek(Br(nAn(t) — pe(|nt))) (4.3)
k>1

US(|nt]) = U5 (nA,( +Z£k (Ge(nAn(t)) — qi([nt])). (4.4)
k>1

The proof is now decomposed into two lemmas treating separately the two terms in the
right-hand side of the preceding identities.

Lemma 4.3. We have

<W> = (Z1(t))teo,1) and <W> = (U1()) o,
In te[0,1] o relo

in D([0,1]).

Proof. We only prove the first convergence. The proof of the second is the same by
replacing (Z5,7Z,) by (U, U;). For t > 0, by the law of large numbers, A, (t) — ¢ almost
surely as n — oo. Since the )\, are nondecreasing, almost surely the convergence holds
for all ¢ > 0, and by Pdlya’s extension of Dini’s theorem (see [23, Problem 127]) the
convergence is uniform for ¢ in a compact interval. That is

lim sup |A,(t) —t| = 0 almost surely,
n—=00 ¢[0,1]

and A, converges almost surely to the identity function I in D(][0, 1]).

We want to apply the random change of time lemma from Billingsley [2, p. 151].
However, )\, is not a good candidate as it is not bounded between [0, 1]. Instead, we
introduce

A (t) :=min (A, (¢),1), t>0.

Observe that by monotonicity,

sup |A7(t) —t[ < sup [An(t) —t].
te[0,1] te[0,1]

Thus, A} converges almost surely to I in D([0, 1]). By Slutsky’s lemma and Proposition
3.2, we also have

On

(Zf(m) s (AL ()eco | = ((Zl(t))te[&l]’]l) (4.5
€[0,1]
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in D([0,1]) x D([0,1]). Furthermore, since A’ is non-decreasing and bounded in [0, 1],
thus by random change of time lemma we obtain

<Zf<mz<t>>

On

) = (Z1(1))iepo, (4.6)
t€(0,1]

in D([0,1]). To obtain the desired result we need to replace A\ by \,. However, by
definition, for all n € (0, 1) fixed,

P(A, #Apon [0,1—n]) <P (TLn(lfn)J > n) — 0 asn — oo.

It then follows that, restricting the convergence of (4.6) in D([0,1 — 7]),

(Zmn(t))

) = (Z1(t))tep0,1-n)
te[0,1—n]

in D([0,1 — n]). This is strictly weaker than the convergence in D([0,1]) that we are
looking for. However, looking back we see an easy fix as follows. If one starts in (4.5)
with weak convergence for Z~§ and A} (modified accordingly) as processes indexed by a
slightly larger time interval, say in D([0,1/(1 — n)]) for any n € (0,1) fixed, the desired
result then follows. O

In view of Lemma 4.2, the following lemma will be sufficient to conclude.
Lemma 4.4. The following limits hold:

1
lim — sup pr(nt) — pr(nA,(t))| = 0 in probability
Jim EMZ; (nt) — Pr(nAn(®))]
and )
lim — sup > [g(nt) — Gr(nAn(t))| = 0 in probability. (4.7)

N0 On tel0,1] 15

Proof. We only prove the second limit. The first one can be proved in a similar way and
is omitted. We first introduce

[N

1
An(t) :=n2(Ap(t) —t) = n"2(T|pe) — nt).
Since 7, is the sum of i.i.d. random variables with exponential distribution of rate 1, and
since n~2 (nt — |nt|) converges to 0 uniformly in ¢, by Donsker’s theorem and Slutsky’s
lemma, we have

(An(®))1eo,1) = B(E))sepo,1) in D([0,1]),

where B is a standard Brownian motion. By the continuous mapping theorem, the
sequence sup;(g 1) |An(t)| weakly converges to sup,¢jq 47 [B(t)], as n — oo. In particular,
(supseqo,1] [An(t)|)n>1 is tight. So, for any 1 > 0, there exits K, > 0 such that for n large
enough,

P < sup |An(t)| > K,,) <n. (4.8)
te0,1]

Now, choose § € (0,1/2) and consider

Api= sup Y |Gk(nt) — Ge(nAn(t))] and  By:= sup Y |Gk(nt) — Gr(nin(t))].
te[0,n=5] E>1 te[n=~8,1] k>1
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Concerning A,,, using the bound in (3.2), we have
A, < sup qu(np\n(t) —t]) = sup Zéjk(n\)\n(n_ﬁt) —n=Pt)).
te[0,n—F) k>1 te0,1 E>1
We can write A
1-5(t
Ap(nPt) —n Pt = 2 o (t)

148
n-z

For any n > 0, using (4.8), by monotonicity of ¢ (-), we infer that for n large enough

P A, < de (n-n’#lﬂg >1—n.
E>1

But

1 1
—Y G (nl—(1+ﬂ)/2Kn) =V (2n<1—,@>/2Kn)
On k>1 On

(1-8)/2
~T(1- a)2a_1K,‘7’n_Ba/2 Lin ) — 0asn — oo.

L(n)'72

Thus, A, /o, converges to 0 in probability as n goes to cc.
Concerning B,,, using the identity (3.2), we can write

B, = s ]Z (1 = 2G,(n min(An (), 1)) G (n|An(t) — t])
ten—"8,1 E>1

= sup e~ 2penminQn (D) g (n| X, () — t]).
te[n—F 1] k>1

An(t)] < K and n2~# > 2K, then

An() =t +n V2N, (8) >t —n V2N, (8)] >t — "T > 2,

and thus min(A,(¢),t) > £. Let n > 0 and K, be as in (4.8). Assume n is large enough so
B

that (4.8) holds and nz—# > 2K, (which is possible since we have chosen 3 € (0,1/2)).
By the preceding observation and by monotonicity of g (-), we infer

Now, for t € [n~7, 1], observe that if for some K > 0,

P|B,< sup Zefpk”ttjk (n . n*%Kn) >1—n.
teln=".1] 431

Now, using 1 —e™® <z and then xze™™ <1 —e " for z > 0, we get

51 1
s S (1) = e (1)

te€[n=7,1] ;=7 E>1
< S el
k>1
< Z (1 - e_pk"17ﬁ> n_%"”BK?7 =2V (K,
k>1
Thus,
1 1

B=1/21/(y,1—B
o Vin )K

On teln=5,1] 15 On
(1-8)
(1 — (B-H(a-a) L)
I'l —a)K,n'""2 O — 0asn— oo,
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since § € (0,1/2). Thus B, /o, converges to 0 in probability as n goes to co. We have
thus proved (4.7). O

To sum up, the desired results now follow from (4.3) and (4.4), Lemmas 4.2, 4.3 and
4.4, and Slutsky’s lemma. O

4.3 The trivariate processes

Finally we conclude by establishing the main theorems.

Proof of Theorems 2.1 and 2.2. We prove Theorem 2.1. The proof for Theorem 2.2 is the
same. We denote by £ the o-field generated by the (ex)r>1 which is then independent
of (Y,,)n>1. Note that the process Z5 is £-measurable. For any continuous and bounded
function f and g from D(]0, 1]) to R, we have

‘E<f (ZT(LWJ)) g (%(LM)) ) B f(Z4)Eg(Zs)

On On

e () ) (22

<E ‘E (7 (Z) ‘ ) - B1(@n)| - lale + B (220 - Eg(z)

n n

~

(Z1)Eg(Z2)

The first term goes to 0 as n — oo thanks to Theorem 2.3 and the dominated convergence
theorem. The second one goes to 0 as n — oo thanks to Theorem 4.1. By [28, Corollary
1.4.5] we deduce that

— (251, 251ty = (Za(0),Za(0)segony

n

in D([0,1])® where Z; and Z, are independent. The rest of the theorem follows from the
identity Z° = Z5 + Z5. O
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