Chromatic Turán problems and a new upper bound for the Turán density of $\mathcal{K}_4^-$ - Archive ouverte HAL Access content directly
Conference Papers Discrete Mathematics and Theoretical Computer Science Year : 2005

Chromatic Turán problems and a new upper bound for the Turán density of $\mathcal{K}_4^-$

Abstract

We consider a new type of extremal hypergraph problem: given an $r$-graph $\mathcal{F}$ and an integer $k≥2$ determine the maximum number of edges in an $\mathcal{F}$-free, $k$-colourable $r$-graph on $n$ vertices. Our motivation for studying such problems is that it allows us to give a new upper bound for an old problem due to Turán. We show that a 3-graph in which any four vertices span at most two edges has density less than $\frac{33}{ 100}$, improving previous bounds of $\frac{1}{ 3}$ due to de Caen [1], and $\frac{1}{ 3}-4.5305×10^-6$ due to Mubayi [9].
Fichier principal
Vignette du fichier
dmAE0116.pdf (134.11 Ko) Télécharger le fichier
Origin Publisher files allowed on an open archive
Loading...

Dates and versions

hal-01184394 , version 1 (14-08-2015)

Licence

Identifiers

Cite

John Talbot. Chromatic Turán problems and a new upper bound for the Turán density of $\mathcal{K}_4^-$. 2005 European Conference on Combinatorics, Graph Theory and Applications (EuroComb '05), 2005, Berlin, Germany. pp.77-80, ⟨10.46298/dmtcs.3437⟩. ⟨hal-01184394⟩

Collections

TDS-MACS
99 View
582 Download

Altmetric

Share

Gmail Mastodon Facebook X LinkedIn More