Pairwise Intersections and Forbidden Configurations - Archive ouverte HAL
Communication Dans Un Congrès Discrete Mathematics and Theoretical Computer Science Année : 2005

Pairwise Intersections and Forbidden Configurations

Résumé

Let $f_m(a,b,c,d)$ denote the maximum size of a family $\mathcal{F}$ of subsets of an $m$-element set for which there is no pair of subsets $A,B \in \mathcal{F}$ with $|A \cap B| \geq a$, $|\bar{A} \cap B| \geq b$, $|A \cap \bar{B}| \geq c$, and $|\bar{A} \cap \bar{B}| \geq d$. By symmetry we can assume $a \geq d$ and $b \geq c$. We show that $f_m(a,b,c,d)$ is $\Theta (m^{a+b-1})$ if either $b > c$ or $a,b \geq 1$. We also show that $f_m(0,b,b,0)$ is $\Theta (m^b)$ and $f_m(a,0,0,d)$ is $\Theta (m^a)$. This can be viewed as a result concerning forbidden configurations and is further evidence for a conjecture of Anstee and Sali. Our key tool is a strong stability version of the Complete Intersection Theorem of Ahlswede and Khachatrian, which is of independent interest.
Fichier principal
Vignette du fichier
dmAE0104.pdf (127.53 Ko) Télécharger le fichier
Origine Fichiers éditeurs autorisés sur une archive ouverte
Loading...

Dates et versions

hal-01184383 , version 1 (14-08-2015)

Identifiants

Citer

Richard P. Anstee, Peter Keevash. Pairwise Intersections and Forbidden Configurations. 2005 European Conference on Combinatorics, Graph Theory and Applications (EuroComb '05), 2005, Berlin, Germany. pp.17-20, ⟨10.46298/dmtcs.3426⟩. ⟨hal-01184383⟩

Collections

TDS-MACS
86 Consultations
751 Téléchargements

Altmetric

Partager

More