Decomposable graphs and definitions with no quantifier alternation - Archive ouverte HAL
Communication Dans Un Congrès Discrete Mathematics and Theoretical Computer Science Année : 2005

Decomposable graphs and definitions with no quantifier alternation

Résumé

Let $D(G)$ be the minimum quantifier depth of a first order sentence $\Phi$ that defines a graph $G$ up to isomorphism in terms of the adjacency and the equality relations. Let $D_0(G)$ be a variant of $D(G)$ where we do not allow quantifier alternations in $\Phi$. Using large graphs decomposable in complement-connected components by a short sequence of serial and parallel decompositions, we show examples of $G$ on $n$ vertices with $D_0(G) \leq 2 \log^{\ast}n+O(1)$. On the other hand, we prove a lower bound $D_0(G) \geq \log^{\ast}n-\log^{\ast}\log^{\ast}n-O(1)$ for all $G$. Here $\log^{\ast}n$ is equal to the minimum number of iterations of the binary logarithm needed to bring $n$ below $1$.
Fichier principal
Vignette du fichier
dmAE0106.pdf (172.62 Ko) Télécharger le fichier
Origine Fichiers éditeurs autorisés sur une archive ouverte
Loading...

Dates et versions

hal-01184380 , version 1 (14-08-2015)

Identifiants

Citer

Oleg Pikhurko, Joel Spencer, Oleg Verbitsky. Decomposable graphs and definitions with no quantifier alternation. 2005 European Conference on Combinatorics, Graph Theory and Applications (EuroComb '05), 2005, Berlin, Germany. pp.25-30, ⟨10.46298/dmtcs.3423⟩. ⟨hal-01184380⟩

Collections

TDS-MACS
92 Consultations
668 Téléchargements

Altmetric

Partager

More