Quadratic LYM-type inequalities for intersecting Sperner families - Archive ouverte HAL
Communication Dans Un Congrès Discrete Mathematics and Theoretical Computer Science Année : 2005

Quadratic LYM-type inequalities for intersecting Sperner families

Résumé

Let $\mathcal{F}\subseteq 2^{[n]}$ be a intersecting Sperner family (i.e. $A \not\subset B, A \cap B \neq \emptyset$ for all $A,B \in \mathcal{F}$) with profile vector $(f_i)_{i=0 \ldots n}$ (i.e. $f_i=|\mathcal{F} \cap \binom{[n]}{i}|$). We present quadratic inequalities in the $f_i$'s which sharpen the previously known linear $\mathrm{LYM}$-type inequalities.
Fichier principal
Vignette du fichier
dmAE0108.pdf (115.08 Ko) Télécharger le fichier
Origine Fichiers éditeurs autorisés sur une archive ouverte
Loading...

Dates et versions

hal-01184375 , version 1 (17-08-2015)

Identifiants

Citer

Christian Bey. Quadratic LYM-type inequalities for intersecting Sperner families. 2005 European Conference on Combinatorics, Graph Theory and Applications (EuroComb '05), 2005, Berlin, Germany. pp.37-40, ⟨10.46298/dmtcs.3418⟩. ⟨hal-01184375⟩

Collections

TDS-MACS
97 Consultations
650 Téléchargements

Altmetric

Partager

More