Quadratic LYM-type inequalities for intersecting Sperner families
Résumé
Let $\mathcal{F}\subseteq 2^{[n]}$ be a intersecting Sperner family (i.e. $A \not\subset B, A \cap B \neq \emptyset$ for all $A,B \in \mathcal{F}$) with profile vector $(f_i)_{i=0 \ldots n}$ (i.e. $f_i=|\mathcal{F} \cap \binom{[n]}{i}|$). We present quadratic inequalities in the $f_i$'s which sharpen the previously known linear $\mathrm{LYM}$-type inequalities.
Origine | Fichiers éditeurs autorisés sur une archive ouverte |
---|
Loading...