$K_{\ell}^{-}$-factors in graphs - Archive ouverte HAL
Communication Dans Un Congrès Discrete Mathematics and Theoretical Computer Science Année : 2005

$K_{\ell}^{-}$-factors in graphs

Résumé

Let $K_ℓ^-$ denote the graph obtained from $K_ℓ$ by deleting one edge. We show that for every $γ >0$ and every integer $ℓ≥4$ there exists an integer $n_0=n_0(γ ,ℓ)$ such that every graph $G$ whose order $n≥n_0$ is divisible by $ℓ$ and whose minimum degree is at least $(\frac{ℓ^2-3ℓ+1}{/ ℓ(ℓ-2)}+γ )n$ contains a $K_ℓ^-$-factor, i.e. a collection of disjoint copies of $K_ℓ^-$ which covers all vertices of $G$. This is best possible up to the error term $γn$ and yields an approximate solution to a conjecture of Kawarabayashi.
Fichier principal
Vignette du fichier
dmAE0139.pdf (132.53 Ko) Télécharger le fichier
Origine Fichiers éditeurs autorisés sur une archive ouverte
Loading...

Dates et versions

hal-01184359 , version 1 (14-08-2015)

Licence

Identifiants

Citer

Daniela Kühn, Deryk Osthus. $K_{\ell}^{-}$-factors in graphs. 2005 European Conference on Combinatorics, Graph Theory and Applications (EuroComb '05), 2005, Berlin, Germany. pp.199-202, ⟨10.46298/dmtcs.3403⟩. ⟨hal-01184359⟩

Collections

TDS-MACS
186 Consultations
699 Téléchargements

Altmetric

Partager

More