An upper bound for the chromatic number of line graphs - Archive ouverte HAL
Communication Dans Un Congrès Discrete Mathematics and Theoretical Computer Science Année : 2005

An upper bound for the chromatic number of line graphs

Résumé

It was conjectured by Reed [reed98conjecture] that for any graph $G$, the graph's chromatic number $χ (G)$ is bounded above by $\lceil Δ (G) +1 + ω (G) / 2\rceil$ , where $Δ (G)$ and $ω (G)$ are the maximum degree and clique number of $G$, respectively. In this paper we prove that this bound holds if $G$ is the line graph of a multigraph. The proof yields a polynomial time algorithm that takes a line graph $G$ and produces a colouring that achieves our bound.
Fichier principal
Vignette du fichier
dmAE0130.pdf (149.98 Ko) Télécharger le fichier
Origine Fichiers éditeurs autorisés sur une archive ouverte
Loading...

Dates et versions

hal-01184357 , version 1 (14-08-2015)

Identifiants

Citer

Andrew D. King, Bruce A. Reed, Adrian R. Vetta. An upper bound for the chromatic number of line graphs. 2005 European Conference on Combinatorics, Graph Theory and Applications (EuroComb '05), 2005, Berlin, Germany. pp.151-156, ⟨10.46298/dmtcs.3401⟩. ⟨hal-01184357⟩

Collections

TDS-MACS
61 Consultations
919 Téléchargements

Altmetric

Partager

More