Crooked Maps in Finite Fields - Archive ouverte HAL
Communication Dans Un Congrès Discrete Mathematics and Theoretical Computer Science Année : 2005

Crooked Maps in Finite Fields

Résumé

We consider the maps $f:\mathbb{F}_{2^n} →\mathbb{F}_{2^n}$ with the property that the set $\{ f(x+a)+ f(x): x ∈F_{2^n}\}$ is a hyperplane or a complement of hyperplane for every $a ∈\mathbb{F}_{2^n}^*$. The main goal of the talk is to show that almost all maps $f(x) = Σ_{b ∈B}c_b(x+b)^d$, where $B ⊂\mathbb{F}_{2^n}$ and $Σ_{b ∈B}c_b ≠0$, are not of that type. In particular, the only such power maps have exponents $2^i+2^j$ with $gcd(n, i-j)=1$. We give also a geometrical characterization of this maps.
Fichier principal
Vignette du fichier
dmAE0133.pdf (163.46 Ko) Télécharger le fichier
Origine Fichiers éditeurs autorisés sur une archive ouverte
Loading...

Dates et versions

hal-01184348 , version 1 (14-08-2015)

Identifiants

Citer

Gohar Kyureghyan. Crooked Maps in Finite Fields. 2005 European Conference on Combinatorics, Graph Theory and Applications (EuroComb '05), 2005, Berlin, Germany. pp.167-170, ⟨10.46298/dmtcs.3392⟩. ⟨hal-01184348⟩

Collections

TDS-MACS
49 Consultations
630 Téléchargements

Altmetric

Partager

More