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Exact algorithms for linear matrix inequalities

Didier Henrion1,2,3 Simone Naldi1,2 Mohab Safey El Din4,5,6,7

August 14, 2015

Abstract

Let A(x) = A0 + x1A1 + · · · + xnAn be a linear matrix, or pencil, generated by
given symmetric matrices A0, A1, . . . , An of size m with rational entries. The set
of real vectors x such that the pencil is positive semidefinite is a convex semi-
algebraic set called spectrahedron, described by a linear matrix inequality (LMI).
We design an exact algorithm that, up to genericity assumptions on the input
matrices, computes an exact algebraic representation of at least one point in the
spectrahedron, or decides that it is empty. The algorithm does not assume the
existence of an interior point, and the computed point minimizes the rank of the
pencil on the spectrahedron. The degree d of the algebraic representation of the
point coincides experimentally with the algebraic degree of a generic semidefinite
program associated to the pencil. We provide explicit bounds for the complexity of
our algorithm, proving that the maximum number of arithmetic operations that are
performed is essentially quadratic in a multilinear Bézout bound of d. When the
size m of the pencil is fixed, such a bound, and hence the complexity, is polynomial
in n, the number of variables. We conclude by providing results of experiments
showing practical improvements with respect to state-of-the-art computer algebra
algorithms.
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1 Introduction

Let Sm(Q) be the vector space of m ×m symmetric matrices with entries in Q, and let
A0, A1, . . . , An ∈ Sm(Q). We denote by A(x) = A0+x1A1+· · ·+xnAn the linear matrix, or
pencil, generated by A0, A1, . . . , An, with x = (x1, . . . , xn) ∈ Rn. Since the linear matrix
A(x) is identified by its coefficients A0, A1, . . . , An, we denote the tuple (A0, A1, . . . , An)
by A ∈ Sn+1

m (Q). For every x ∈ Rn, the matrix A(x) is symmetric, with real entries, and
hence its eigenvalues are real numbers.

The central object of this paper is the set of points x ∈ Rn such that the eigenvalues of
A(x) are all nonnegative, that is the associated spectrahedron

S = {x ∈ Rn : A(x) � 0}.

Here � 0 means “positive semidefinite” and the relation A(x) � 0 is called a linear
matrix inequality (LMI). The set S is closed and basic semi-algebraic, since it can be
represented by sign conditions on the coefficients of the characteristic polynomial of the
pencil. Indeed, if Im is the identity matrix in Sm(Q), and det(A(x) + s Im) = fm(x) +
fm−1(x)s+ · · ·+ f1(x)s

m−1 + sm is the characteristic polynomial of A(x), then

S = {x ∈ Rn : f1(x) ≥ 0, . . . , fm(x) ≥ 0}

by Descartes’ rule of signs. Moreover, it is a convex set, since for every x, y ∈ S it holds
A(tx+ (1− t)y) = tA(x) + (1− t)A(y) � 0, for every t ∈ [0, 1]. This paper addresses the
following decision problem for the spectrahedron S :

Main Problem

Compute an exact algebraic representation of at least one point in
S , or decide that S is empty.

We present a probabilistic algorithm for solving this problem. If S is not empty, the
expected output is a rational parametrization of a finite set Z ⊂ Cn meeting S in at least
one point x∗ such that A(x∗) has minimum rank among the matrices in {A(x) : x ∈ S }.
Indeed, as an outcome of designing our algorithm, we also compute the minimum rank
attained by the pencil on the spectrahedron. This parametrization is represented by a
vector (q0, q1, . . . , qn, qn+1) ⊂ Q[t] of univariate polynomials with rational coefficients such
that, for every x = (x1, . . . , xn) ∈ Z, there exists t ∈ C such that

qn+1(t) = 0, and xi =
qi(t)

q0(t)
, i = 1, . . . , n,

(cf. [69]). Moreover, the points in Z are in one-to-one correspondence with the roots of
qn+1. Consequently, from this representation, the coordinates of the feasible point x∗ ∈ S

can be computed with arbitrary precision just by isolating the corresponding solution t∗

of the univariate equation qn+1(t) = 0. If S is empty, the expected output is the empty
list.
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1.1 Motivations

Semidefinite programming can model a large number of computational problems in prac-
tical applications [11, 83]. This includes one of the most important questions in computa-
tional algebraic geometry, that is the general polynomial optimization problem. Indeed,
Lasserre [51] proved that the problem of minimizing a polynomial function over a semi-
algebraic set can be relaxed to a sequence of primal-dual semidefinite programs called LMI
relaxations, and that under mild assumptions the sequence of solutions converge to the
original minimum. Generically, solving a non-convex polynomial optimization problem
amounts to solving a finite-dimensional convex semidefinite programming problem [57].
Numerical algorithms following this approach are available and, typically, guarantees of
their convergence are related to the feasibility (or strict feasibility) of the LMI relaxations.
It is, in general, a challenge to obtain exact algorithms for deciding whether the feasible
set of a semidefinite programming (SDP) problem

min
x∈Rn

n∑

i=1

cixi

s.t. A(x) � 0

(1)

is empty or not. The feasible set of the SDP (1) is defined by an LMI and hence it
is a spectrahedron. Our Main Problem amounts to solving the feasibility problem for
semidefinite programming, in exact arithmetic: given a Q−definable semidefinite program
as in (1) (that is, we suppose that the coefficients of A(x) have rational entries), decide
whether the feasible set S = {x ∈ Rn : A(x) � 0} is empty or not, and compute exactly
at least one feasible point. We would like to emphasize the fact that we do not assume
the existence of an interior point in S . Quite the opposite, we are especially interested in
degenerate cases for which the maximal rank achieved by the pencil A(x) in S is small.

This work is a first step towards an exact approach to semidefinite programming. In
particular, a natural perspective of this work is to design exact algorithms for deciding
whether the minimum in (1) is attained or not, and for computing such a minimum in the
affirmative case. While the number of iterations performed by the ellipsoid algorithm [32]
to compute the approximation of a solution of (1) is polynomial in the number of vari-
ables, once the accuracy is fixed, no analogous results for exact algorithms are available.
Moreover, since the intrinsic complexity of the optimization problem (1) is related to its
algebraic degree δ as computed in [58, 30], the paramount goal is to design algorithms
whose runtime is polynomial in δ. The algorithm of this paper shows experimentally such
an optimal behavior with respect to δ.

Moreover, the class of spectrahedra is of outstanding and independent interest in convex
algebraic geometry. For example, it is currently conjectured, by Helton and Nie [40], that
every convex closed semi-algebraic set S ⊂ Rp admits a semidefinite representation, that is
it can be obtained as the projection of a spectrahedron S ⊂ Rp+d over the first p variables,
with the help of d lifting variables. This conjecture was proved by Scheiderer for p = 2
[76], however without an estimate of the number d of lifting variables. The conjecture
remains unsolved for p ≥ 3. Remark here that when a semidefinite representation of the
set S ⊂ Rp is explicitely given, as

S = {x ∈ Rp : ∃ y ∈ Rd such that (x, y) ∈ S }
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for some linear matrix A(x, y) = A0 +
∑

i xiBi +
∑

j yjCj defining a spectrahedron

S = {(x, y) ∈ Rp+d : A(x, y) � 0},

then solving our Main Problem with input matrices (A0, B1 . . . , C1 . . .) straightforwardly
yields a sample point lying in the semidefinite representable set S (obtained just discarding
the last d variables). Thus we can also use our algorithm for deciding the emptiness of
semidefinite representable sets. Moreover, from [80, Th. 1.1] we know that the irreducible
components of the algebraic boundary of S are in one-to-one correspondence with the
rank strata of S .

Hence, any algorithmic approach to spectrahedra is desirable, mainly via exact computa-
tion, and solving our problem represents a first step towards more challenging decision or
sampling problems involving these semi-algebraic sets or their linear projections. Among
these, computing the affine dimension or a sample point in the relative interior of the input
set seems to be particularly interesting. Indeed, checking full-dimensionality of a spectra-
hedron S , or computing the linear equations of the minimal affine space containing S ,
is important for the primal-dual formulation of the associated SDP problems.

We finally recall that solving LMIs is a basic subroutine of computer algorithms in systems
control and optimization, especially in linear systems robust control [10, 44], but also for
the analysis or synthesis of nonlinear dynamical systems [82], or in nonlinear optimal
control with polynomial data [42, 14].

1.2 State of the art

As mentioned already, the set S is defined by sign conditions on the m coefficients of
the characteristic polynomial of A(x). These coefficients are polynomial functions of
x = (x1, . . . , xn), and hence our Main Problem boils down to deciding the emptiness of a
semi-algebraic set.

Deciding whether a semi-algebraic set is empty or not and, in the negative case, exhibiting
a sample set of its elements, is a central question in computational real algebraic geometry
[7]. A first algorithmic solution is given by Collins’ Cylindrical Algebraic Decomposition
algorithm [15], which solves the stronger problem of real quantifier elimination. The
runtime of Collins’ algorithm is doubly exponential in the number n of variables, while, by
the Thom-Milnor bound, the number of connected components of a semi-algebraic subset
of Rn is singly exponential in n. Thus, many efforts have been made to obtain optimal
complexity bounds, that is also singly exponential in the number n of variables. The first
singly exponential algorithm is due to Grigoriev and Vorobjov [29], and is based on the
critical points method. Further works of Renegar [67], Heintz, Roy and Solernó [36], Basu,
Pollack and Roy [6] also are based on the critical points method and have improved the
previous algorithms. Moreover, the emptiness problem for semi-algebraic sets is related to
that of computing finite sets meeting every connected component of a real algebraic set,
the so-called real root finding problem (cf. [7, Prop. 13.1]). An efficient theoretical tool
for the real root finding problem is the theory of polar varieties, developed in last decades
towards an effective use in real algebraic geometry, see for example [3, 4, 71, 72]. The
probabilistic algorithm in [31], which also relies on the construction of polar varieties,
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can be used to decide the emptiness of S , and its runtime applied to our problem is
essentially cubic in m2n, and linear in the complexity of evaluating the input.

For example, the algorithms in [7, Ch. 13] computes a description of the connected compo-
nents of the input semi-algebraic set. Applied to S , it would run within mO(n) arithmetic
operations. Such algorithms do not exploit the particular structure of spectrahedra un-
derstood as determinantal semi-algebraic sets. This structure has been recently exploited
in [23, 24] for the fast computation of Gröbner bases of zero-dimensional determinantal
ideals. In [48], the authors showed that deciding emptiness of S can be done in time
O(mmin (n,m2)), that is in polynomial time if either n or m is fixed. The main drawback
of this algorithm is that it is based on Renegar’s quantifier elimination, and hence it does
not lead to efficient practical implementations. In [37, 38, 39] we designed a series of algo-
rithms dedicated to the real root finding problem for positive-dimensional determinantal
systems. Finally, the algorithm in [33], a version of [70] for spectrahedra, decides whether
a linear matrix inequality A(x) � 0 has a rational solution, that is whether S contains
a point with coordinates in Q. Remark that such an algorithm is not sufficient to solve
our problem, since, in some degenerate but interesting cases, S is not empty but does
not contain rational points: in Section 5.2 we will apply our algorithm to one of these
examples.

To get a purely algebraic certificate of emptiness for S , one could use the classical ap-
proach by Positivstellensatz [53, 64, 78]. For example, Theorem 3.15 in [53] gives a Pos-
itivstellensatz certificate for the emptiness of any semi-algebraic set. As a snake biting
his tail, this would lead to a family, or hierarchy, of semidefinite programs [51]. Indeed,
by fixing an upper bound for the degrees of the sum-of-squares multipliers, the resulting
problem is semidefinite in their unknown coefficients. Bounds for the degree of Positivstel-
lensatz certificates are exponential in the number of variables and have been computed
in [79] for Schmudgen’s, and in [59] for Putinar’s formulation. In the recent remarkable
result of Lombardi, Perrucci and Roy described in [54], a uniform 5−fold exponential
bound for the degree of the Hilbert 17th problem, which asks for similar certificates for
nonnegative polynomials as sums of squares of rational functions, has been provided. Klep
and Schweighofer recently obtained an emptiness certificate dedicated to the spectrahe-
dral case, by means of special quadratic modules associated to these sets [49]. It is shown
there that deciding emptiness of S amounts to solving a sufficiently large SDP problem
(whose size is exponential in either n or m), but for this latter task one has to use floating
point implementations of interior-point algorithms.

1.3 Contribution and outline

The main contribution of this paper is the design of a computer algebra algorithm for
solving the feasibility problem of semidefinite programming in exact arithmetic. Let us
clarify that we do not claim that an exact algorithm can be competitive with a numerical
algorithm in terms of admissible size of input problems: indeed, SDP solvers based on
interior-point methods [8, 56] can nowadays handle inputs with a high number of variables
that are out of reach for our algorithms. Our goal here can be summarized as follows:

1. we show that the geometry of spectrahedra understood as semi-algebraic sets with
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determinantal structure can be exploited to design dedicated computer algebra al-
gorithms;

2. we give explicit complexity and output-degree upper bounds for computer algebra
algorithms solving exactly the feasibility problem of semidefinite programming;

3. we provide results of practical experiments showing the gain in terms of computa-
tional timings of our contribution with respect to the state of the art in computer
algebra;

4. remarkably, our algorithm does not assume that the input spectrahedron is full-
dimensional, and hence it can also tackle instances with no interior point.

The main idea for solving our Main Problem is to exploit the relation between the geome-
try of spectrahedra and semidefinite programming, and that of the determinantal varieties
associated to the input symmetric pencil A(x). Let us introduce, for r = 0, . . . , m − 1,
the algebraic sets

Dr = {x ∈ Cn : rank A(x) ≤ r}.

These define a nested sequence D0 ⊂ D1 ⊂ · · · ⊂ Dm−1. The Euclidean boundary of S ,
denoted by ∂S , is included in the real trace of the last algebraic set of the sequence:
∂S ⊂ Dm−1 ∩ Rn. In particular, for x ∈ ∂S , the matrix A(x) is singular and one could
ask which elements of the real nested sequence D0∩R

n ⊂ · · · ⊂ Dm−1 ∩R
n intersect ∂S .

Notation 1 If S = {x ∈ Rn : A(x) � 0} is not empty, we define the integer

r(A) = min {rankA(x) : x ∈ S } .

When S is not empty, r(A) equals the minimum integer r such that Dr ∩ Rn intersects
S . We present our first main result, which states that S contains at least one of the
connected components of the real algebraic set Dr(A) ∩ Rn. We denote by Sn+1

m (Q) =
Sm(Q)× · · · × Sm(Q) the (n+ 1)−fold Cartesian product of Sm(Q).

Theorem 2 (Smallest rank on a spectrahedron) Suppose that S 6= ∅. Let C be a
connected component of Dr(A) ∩ Rn such that C ∩ S 6= ∅. Then C ⊂ S and hence
C ⊂ (Dr(A) \ Dr(A)−1) ∩ Rn.

We give a proof of Theorem 2 in Section 2. From this first result, we deduce the following
mutually exclusive conditions on the input symmetric linear pencil A:

• either S = ∅, or

• S contains one connected component C of Dr(A) ∩ Rn.

Consequently, an exact algorithm whose output is one point in the component C ⊂ S ∩
Dr(A) would be sufficient for our goal. Motivated by this fact, we design in Section 3.2
an exact algorithm computing one point in each connected component of Dr ∩ Rn, for
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r ∈ {0, . . . , m − 1}. This algorithm shares some features with those in [37, 39] and
represents a generalization of the algorithm in [38] to the vector space of real symmetric
matrices.

As in [37, 38, 39], the strategy to compute sample points in Dr∩R
n is to build an algebraic

set Vr ⊂ Cn+m(m−r) whose projection on the first n variables is contained in Dr. This set
is defined by the incidence bilinear relation

A(x)Y (y) = 0

where Y (y) is a full-rank m × (m − r) linear matrix whose columns generate the kernel
of A(x) (cf. Section 3.1). Unlike Dr, the incidence variety Vr, up to genericity conditions
on the matrices A0, A1, . . . , An, turns to be generically smooth and equidimensional. The
next theorem presents a complexity result for an exact algorithm solving the Main Problem
under these genericity assumptions.

Theorem 3 (Exact algorithm for LMI) Suppose that for 0 ≤ r ≤ m − 1, the inci-
dence variety Vr is smooth and equidimensional and that its defining polynomial system
generates a radical ideal. Suppose that for r satisfying n <

(
m−r+1

2

)
, the set Dr is empty.

There is a probabilistic algorithm that takes A as input and returns:

1. either the empty list, if and only if S = ∅, or

2. a vector x∗ such that A(x∗) = 0, if and only if the linear system A(x) = 0 has a
solution, or

3. a rational parametrization q = (q0, q1, . . . , qn, qn+1) ∈ Q[t]n+2 such that there exists
t∗ ∈ R with qn+1(t

∗) = 0 and:

• A(q1(t
∗)/q0(t

∗), . . . , qn(t
∗)/q0(t

∗)) � 0 and

• rankA(q1(t
∗)/q0(t

∗), . . . , qn(t
∗)/q0(t

∗)) = r(A).

The number of arithmetic operations performed are in

O˜

(
n
∑

r≤m−1

(
m

r

)
(n+ pr + r(m− r))7

(
pr + n

n

)6
)

if S is empty, and

O˜


n

∑

r≤r(A)

(
m

r

)
(n+ pr + r(m− r))7

(
pr + n

n

)6

 if S is not empty,

with pr = (m− r)(m+ r + 1)/2. If S is not empty, the degree of q is in

O

((
m

r(A)

)(
pr(A) + n

n

)3
)
.

The algorithm of Theorem 3 is described in Section 3. Its probabilistic nature comes from
random changes of variables performed during the procedure, allowing to put the sets Dr
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in generic position. We prove that for generic choices of parameters the output of the
algorithm is correct.

A complexity analysis is performed in Section 4. As highlighted by Theorem 3, the
number of arithmetic operations and the degree of the output representation are bounded
by explicit expressions involving the three parameters m,n and r. These bounds are
computed by exploiting the multilinearity of intermediate polynomial systems generated
during the procedure, and they are not sharp in general. By experiments on randomly
generated symmetric pencils, reported in Section 5, we observe that the output degree
coincides with the algebraic degree of generic semidefinite programs associated to A(x),
that is with data given in [58, Table 2]: this evidences the optimality of our approach. We
did not succeed in proving exact formulas for such degrees. This is a work in progress,
and we leave it as a conjecture (cf. Conjecture 13).

2 The smallest rank on a spectrahedron

In this section, we prove Theorem 2, which relates the geometry of linear matrix in-
equalities to the rank stratification of the defining symmetric pencil. We believe that
the statement of this theorem is known to the community of researchers working on real
algebraic geometry and semidefinite optimization; however, we did not find any explicit
reference in the literature.

Proof of Theorem 2: By assumption, at all points of S , the matrix A has rank at
least r = r(A) and there exists a point in S where the rank of A is exactly r. We consider
the vector function

e = (e1, . . . , em) : Rn −→ Rm

where e1(x) ≤ . . . ≤ em(x) are the ordered eigenvalues of A(x).

Let C ⊂ Dr ∩ Rn be the given connected component such that C ∩ S 6= ∅, and let
x ∈ C ∩S . One has rankA(x) = r and

e1(x) = . . . = em−r(x) = 0 < em−r+1(x) ≤ . . . ≤ em(x).

Suppose that there exists y ∈ C such that y /∈ S ; that is rankA(y) ≤ r but A(y) is not
positive semidefinite. In particular, one eigenvalue of A(y) is strictly negative.

Let g : [0, 1] → C be a continuous semi-algebraic map such that g(0) = x and g(1) = y.
This map exists since C is a connected component of a real algebraic set. The image
g([0, 1]) is compact and semi-algebraic. Let

T = {t ∈ [0, 1] : g(t) ∈ S } = g−1(g([0, 1]) ∩S ).

Since g is continuous, T ⊂ [0, 1] is closed. So it is a finite union of closed intervals. Since
0 ∈ T (in fact, g(0) = x ∈ S ) there exists t0 ∈ [0, 1] and N ∈ N such that [0, t0] ∈ T and
for all p ≥ N , t0 +

1
p
/∈ T .

One gets that g(t0) = x̃ ∈ S and that for all p ≥ N , g(t0 +
1
p
) = x̃p /∈ S . By definition,

x̃, x̃p ∈ C ⊂ Dr ∩ Rn for all p ≥ N , and since x̃ ∈ S , we get rankA(x̃) = r and
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rankA(x̃p) ≤ r for all p ≥ N . We also get that rankA(g(t)) = r for all t ∈ [0, t0]. We
finally have x̃p → x̃ when p→ +∞, since g is continuous. There exists a map

ϕ :
{
p ∈ N : p ≥ N

}
→
{
0, 1, . . . , r

}

which assigns to p the index of eigenvalue-function among e1, . . . , em corresponding to
the maximum strictly negative eigenvalue of A(x̃p), if it exists; otherwise it assigns 0.
Remark that since rankA(x̃p) ≤ r for all p, then 0 ≤ ϕ(p) ≤ r for all p, and the map is
well defined. In other words, the eigenvalues of A(x̃p) are

e1(x̃p) ≤ . . . ≤ eϕ(p)(x̃p) < 0

0 = eϕ(p)+1(x̃p) = . . . = λϕ(p)+m−r(x̃p)

0 ≤ eϕ(p)+m−r+1(x̃p) ≤ . . . ≤ em(x̃p),

for p ≥ N . Since the sequence {ϕ(p)}p≥N is bounded, up to taking a subsequence, it
admits at least a limit point by the Bolzano-Weierstrass Theorem [1, Th. 3.4.8]. Since it
is an integer-value sequence, this limit point is an integer number. Moreover, if 0 ≤ ℓ ≤ r
is a limit point, and {pj}j∈N a subsequence such that ϕ(pj)→ ℓ, then we claim that there
exists an integer N ′ such that ϕ(pj) = ϕ(pj+1) = ℓ for all j ≥ N ′ (which means that
j 7→ ϕ(pj) is constant for j ≥ N ′): this holds since the map ϕ takes only integer values.

Suppose that there exists a limit point ℓ > 0 (strictly positive), and let {pj}j∈N and N ′

be as above. One obtains that ϕ(pj) → ℓ and that this sequence is constant for j ≥ N ′.
Thus, the zero eigenvalues of A(x̃pj ) are

0 = λℓ+1(x̃pj ) = . . . = λℓ+m−r(x̃pj),

for all j ≥ N ′. Since x̃pj → x̃ and e1, . . . , em are continuous functions, we obtain that

e1(x̃) ≤ . . . ≤ eℓ(x̃) ≤ 0,

0 = eℓ+1(x̃) = . . . = eℓ+m−r(x̃),

0 ≤ eℓ+m−r+1(x̃) ≤ . . . ≤ em(x̃).

Since A(x̃) � 0, one gets 0 = e1(x̃) = . . . = eℓ+m−r(x̃), that is A(x̃) has at least ℓ+m−r >
m − r zero eigenvalues. This implies that rankA(x̃) ≤ r − 1, which is a contradiction,
since we assumed x̃ ∈ S and that r is the minimum rank attained by A on S .

We deduce that 0 is the unique limit point of ϕ, hence ϕ converges to 0. We already
showed that in this case ϕ(p) = 0 for p ≥ N ′′, for some N ′′ ∈ N. This means in particular
that for p ≥ N ′′, the number of strictly negative eigenvalues of A(x̃p) = A(g(t0 +

1
p
)) is

zero, that is the matrix A is positive semidefinite at any point in {x̃p : p ≥ N ′′}. So this
set is included in S , which contradicts our assumptions. We conclude that the set C \S
is empty, that is C ⊂ S . By the minimality of the rank r in {rankA(x) : x ∈ S }, one
deduces that C ⊂ (Dr \ Dr−1) ∩ Rn. �

3 Algorithm

Our algorithm is called SolveLMI, and it is presented in Section 3.3. Before, we describe in
Section 3.2 its main subroutine LowRankSym, which is of recursive nature and computes
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one point per connected component of the real algebraic set Dr ∩ Rn. We start, in the
next section, with some preliminaries.

3.1 Preliminaries

Basic notation

We refer to textbooks [7, 16, 35, 18] for the algebraic-geometric background of this paper.
We recall below some basic definitions and notation.

We denote by Sm(Q) the vector space of symmetric matrices of size m with entries in Q.
Similarly, Mp,q(Q) denotes the space of p × q matrices with entries in Q. We denote by
GLn(C) the set of n× n non-singular complex matrices. The tranpose of M ∈Mp,q(Q) is
M ′. The cardinality of a finite set T or the number of entries of a vector v are denoted
by #T and #v.

A vector of polynomials f = (f1, . . . , fs) ⊂ Q[x], with x = (x1, . . . , xn), is called a
polynomial system. The ideal generated by its elements is denoted by 〈f〉 ⊂ Q[x] and
the associated algebraic set {x ∈ Cn : fi(x) = 0, i = 1, . . . , s} by Z(〈f〉). Algebraic sets
define the collection of closed sets of the Zariski topology of Cn. The intersection of a
Zariski closed and a Zariski open set is called a locally closed set. For M ∈ GLn(C) and
Z ⊂ Cn algebraic set, we denote the set {x ∈ Cn : M x ∈ Z} by M−1Z. The real trace
Z(〈f〉)∩Rn is denoted by ZR(〈f〉) and is called a real algebraic set. Given a set S ⊂ Cn,
we denote by I(S) ⊂ C[x] the set of polynomials vanishing at every point of S. The set
I(S) is an ideal of C[x].

Let f = (f1, . . . , fs) ⊂ Q[x]. Its s×n Jacobian matrix is denoted byDf = (∂fi/∂xj)i,j. An
algebraic set Z ⊂ Cn is irreducible if Z = Z1∪Z2 where Z1,Z2 are algebraic sets, implies
that either Z = Z1 or Z = Z2. Any algebraic set is the finite union of irreducible algebraic
sets, called its irreducible components. The codimension of an irreducible algebraic set
Z ⊂ Cn is the maximum rank of Df on Z, where I(Z) = 〈f〉. Its dimension is n −
c. If all the irreducible components of Z have the same dimension, we say that Z is
equidimensional. Otherwise, the union of its irreducible component of dimension p is
called the equidimensional component of dimension p. The dimension of an algebraic set
Z is the maximum of the dimensions of its irreducible components, and it is denoted by
dimZ. The degree of an equidimensional algebraic set Z of codimension c is the maximum
cardinality of finite intersections Z ∩ L where L is a linear space of dimension c. The
degree of an algebraic set is the sum of the degrees of its equidimensional components.

Let Z ⊂ Cn be equidimensional of codimension c, and let I(Z) = 〈f1, . . . , fs〉. The
singular locus of Z, denoted by sing (Z), is the algebraic set defined by f = (f1, . . . , fs)
and by all c×c minors of Df . If sing(Z) = ∅ we say that Z is smooth, otherwise singular.
The points in sing (Z) are called singular, while points in reg (Z) = Z \ sing (Z) are called
regular.

Let Z ⊂ Cn be smooth and equidimensional of codimension c, and let I(Z) = 〈f1, . . . , fs〉.
Let g : Cn → Cm be an algebraic map. The set of critical points of the restriction of g
to Z is the algebraic set denoted by crit (g,Z) and defined by f = (f1, . . . , fs) and by all
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c+m minors of the Jacobian matrix D(f, g). The points in g(crit(g,Z)) are called critical
values, while points in Cm \ g(crit (g,Z)) are called the regular values, of the restriction
of g to Z.

Expected dimension of low rank loci

We first revisit a known fact about the expected dimension of algebraic sets Dr, for
r = 0, . . . , m− 1 when A is a generic symmetric pencil.

Lemma 4 There exists a non-empty Zariski open subset A ⊂ Sn+1
m (C) such that, if

A ∈ A ∩Sn+1
m (Q), for all r = 0, . . . , m−1, the set Dr is either empty or it has dimension

n−
(
m−r+1

2

)
.

Proof : This proof is classical and is given in Appendix A. �

Incidence varieties

Let A(x) = A0+x1A1+ · · ·+xnAn be an n−variate m×m symmetric linear matrix, and
let 0 ≤ r ≤ m− 1. We introduce lifting variables y = (yi,j)1≤i≤m,1≤j≤m−r and we build an
algebraic set whose projection on the x−space is contained in the algebraic set Dr. Let

Y (y) =




y1,1 · · · y1,m−r
...

...
...

...
ym,1 · · · ym,m−r


 .

For ι = {i1, . . . , im−r} ⊂ {1, . . . , m}, with #ι = m−r, we denote by Yι the (m−r)×(m−r)
sub-matrix of Y (y) obtained by isolating the rows indexed by ι. There are

(
m
r

)
such sub-

matrices. For any choice of indices ι = {i1, . . . , im−r} and for any matrix S ∈ GLm−r(Q),
we define the set

Vr(A, ι, S) = {(x, y) ∈ Cn × Cm(m−r) : A(x)Y (y) = 0, Yι − S = 0}.

We denote by f(A, ι, S), or simply by f , when there is no ambiguity on ι and S, the
polynomial system defining Vr(A, ι, S). For M ∈ GLn(C) we denote by f(A ◦M, ι, S) the
entries of A(M x)Y (y) and Yι − S, and by Vr(A ◦M, ι, S) its zero set. Since S has full
rank, any relation Yι − S = 0 implies that Y has full rank and that the projection of Vr
over the x−space is by definition contained in Dr. Often, we will have S = Im−r, the
identity matrix, and in this case we simplify the notation by denoting Vr(A, ι, Im−r) by
Vr(A, ι), and f(A, ι, Im−r) by f(A, ι). We also denote by Uι ∈ Mm−r,m(Q) the full rank
matrix whose entries are in {0, 1}, and such that UιY (y) = Yι. By simplicity we call Uι

the boolean matrix with multi-index ι.

We finally remark the similarity between the polynomial system A(x)Y (y) = 0 and the so-
called complementarity conditions for the solutions of a couple of primal-dual semidefinite
program, see for example [58, Th. 3]. The difference is that, in our case, the special size of
Y (y) and the affine constraint Yι = S force a rank condition on Y (y) and hence on A(x).
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Eliminating redundancies

The polynomial system defining Vr(A, ι, S) contains redundancies induced by polynomial
relations between its generators. These relations can be eliminated to obtain a minimal
polynomial system defining the incidence variety, and allowing to compute the codimen-
sion of Vr, as shown next.

Lemma 5 Let M ∈ GLn(C). Let ι ⊂ {1, . . . , m}, with #ι = m− r, and S ∈ GLm−r(Q).
Let A ∈ Sn+1

m (Q), and f ∈ Q[x, y]m(m−r)+(m−r)2 be the polynomial system defining Vr.
Then we can explicitly construct a subsystem fred ⊂ f of length m(m− r) +

(
m−r+1

2

)
such

that 〈fred〉 = 〈f〉.

Proof : In order to simplify notations and without loss of generality we suppose M = In,
S = Im−r and ι = {1, . . . , m− r}. We substitute Yι = Im−r in A(x)Y (y), and we denote
by gi,j the (i, j)−th entry of the resulting matrix. We denote by fred the following system:

fred = (gi,j for i ≤ j, Yι − Im−r) .

We claim that for 1 ≤ i 6= j ≤ m− r, then

gi,j ≡ gj,i mod 〈gk,ℓ, k > m− r〉 ,

which implies that fred verifies the statement. Let ai,j denote the (i, j)−th entry of A(x).
Let i < j and write

gi,j = ai,j +
m∑

ℓ=m−r+1

ai,ℓyℓ,j and gj,i = aj,i +
m∑

ℓ=m−r+1

aj,ℓyℓ,i.

We deduce that gi,j−gj,i =
∑m

ℓ=m−r+1 ai,ℓyℓ,j − aj,ℓyℓ,i since A is symmetric. Also, modulo
the ideal 〈gk,ℓ, k > m− r〉, and for ℓ ≥ m− r + 1, one can explicit ai,ℓ and aj,ℓ, by using
polynomial relations gℓ,i = 0 and gℓ,j = 0, as follows:

gi,j − gj,i ≡
m∑

ℓ=m−r+1

(
−

m∑

t=m−r+1

aℓ,tyt,iyℓ,j +

m∑

t=m−r+1

aℓ,tyt,jyℓ,i

)
≡

≡
m∑

ℓ,t=m−r+1

aℓ,t (−yt,iyℓ,j + yt,jyℓ,i) ≡ 0 mod 〈gk,ℓ, k > m− r〉 .

The previous congruence concludes the proof. �

We prove below in Proposition 7 and in Corollary 17 that, up to genericity assumptions,
the ideal 〈fred〉 is radical and that the cardinality #fred matches exactly the codimension
of Vr. In the next example, we explicitly write down the redundancies shown in Lemma
5 for a simple case.

Example 6 We consider a 3 × 3 symmetric matrix of unknowns, and the kernel corre-
sponding to the configuration {1, 2} ⊂ {1, 2, 3}. Let




f11 f12
f21 f22
f31 f32


 =




x11 x12 x13

x12 x22 x23

x13 x23 x33






1 0
0 1
y31 y32


 .
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We consider the classes of polynomials f12, f21 in the quotient ring Q[x]
/
〈f31, f32〉 , de-

ducing the following linear relation:

f12 − f21 = y32x13 − y31x23 ≡ −y31x33y32 + y32x33y31 = 0.

Lagrange systems

Let f(A, ι, S) be the polynomial system defining Vr(A, ι, S). We set

c = m(m− r) +

(
m− r + 1

2

)
and e =

(
m− r

2

)
,

so that Vr ⊂ Cc+e and c = #fred (cf. Lemma 5). We define, for a given M ∈ GLn(C),
the polynomial system ℓ = ℓ(A ◦M, ι, S), given by the coordinates of the map

ℓ : Cn × Cm(m−r) × Cc+e −→ Cn+m(m−r)+c+e

(x, y, z) 7−→ (f(A ◦M, ι, S), z′Df(A ◦M, ι, S)− (e′1, 0)) ,

where e1 ∈ Qn is the first element of the standard basis. We define also Z(A ◦M, ι, S) =
Z(ℓ(A ◦M, ι, S)). When S = Im−r, we omit it in the previous notation.

Output representation

As already announced in the preamble of Section 1, the output of our algorithm is a finite
set Z ⊂ Cn represented by a rational univariate representation.

This is a vector q = (q0, q1, . . . , qn, qn+1) ⊂ Q[t] of univariate polynomials with rational
coefficients, such that the polynomials q0 and qn+1 are coprime (that is, there exist a, b ∈
C[t] such that aq0 + bqn+1 = 1, hence q0 and qn+1 do not have common roots) and the set
Z admits the description

Z =

{(
q1(t)

q0(t)
, . . . ,

qn(t)

q0(t)

)
: qn+1(t) = 0

}
.

Moreover, there is a bijective correspondance between the roots of qn+1, counted with
multiplicities, and the points in Z. This correspondance remains bijective when restricted
respectively to the real roots of qn+1 and to the points in Z ∩ Rn.

Such a representation is exact since the coefficients of the output polynomials are rational
numbers. We call the degree of qn+1, the degree of the rational parametrization q. This
integer corresponds to the cardinality of Z, whenever qn+1 is square-free. Thus, we are
interested in giving precise estimates of the degree of q.

3.2 Real root finding for symmetric low rank loci

We describe the main subroutine LowRankSym, which is a variant for symmetric pencils
of the algorithms in [37, 38, 39]. It takes advantage of the particular properties of the
incidence varieties over a symmetric low rank locus, as highlighted by Lemma 5.
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Genericity properties

We define the following properties for a symmetric linear matrix A ∈ Sn+1
m (Q):

• Property P1. We say that A satisfies P1 if, for all ι ⊂ {1, . . . , m}, with #ι = m− r,
and for all S ∈ GLm−r(Q), the incidence variety Vr(A, ι, S) is either empty or smooth
and equidimensional. We will always suppose S = Im−r without loss of generality.

• Property P2. We say that A satisfies P2 if, for all r such that n <
(
m−r+1

2

)
, the

algebraic set Dr has the expected dimension. By Lemma 4, this means that Dr = ∅.
Property P2 holds generically in Sn+1

m (Q), as shown by Lemma 4.

We also define the following properties for a polynomial system f ⊂ Q[x] and a Zariski
open set O ⊂ Cn:

• Property Q. Suppose that f ⊂ Q[x] generates a radical ideal and that it defines an
algebraic set of codimension c, and let O ⊂ Cn be a Zariski open set. We say that
f satisfies Q in O , if the rank of Df is c in Z(〈f〉) ∩O .

Formal description of LowRankSym

The formal description of our algorithm is given next. We suppose that A satisfies P1 and
P2. In particular, since P2 holds, if the input r satisfies n <

(
m−r+1

2

)
then the algorithm

returns the correct answer, that is the empty list.

LowRankSym(A, r)

Input: A symmetric n−variate linear matrix A(x) of size m, encoded by the
m(m+ 1)(n + 1)/2 rational entries of A0, A1, . . . , An, and an integer 1 ≤ r ≤
m− 1;

Output: Either the empty list [ ], if and only if Dr ∩ Rn = ∅, or an error
message stating that the genericity assumptions are not satisfied, or a rational
parametrization q = (q0, q1, . . . , qn, qn+1) ∈ Q[t]n+2, such that for every con-
nected component C ⊂ Dr ∩R

n, with C ∩Dr−1 = ∅, there exists t
∗ ∈ ZR(qn+1)

with (q1(t
∗)/q0(t

∗), . . . , qn(t
∗)/q0(t

∗)) ∈ C.

Procedure:

1. if n <
(
m−r+1

2

)
then return [ ];

2. for ι ⊂ {1, . . . ,m} with #ι = m− r do

• if IsReg((A, ι)) = false then return(“the input is not generic”);

3. return(LowRankSymRec(A, r)).

The previous algorithm uses this subroutine to check the genericity properties:
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• IsReg. Input: A ∈ Sn+1
m (Q), ι ⊂ {1, . . . , m}; Output: true if Vr(A, ι) is empty or

smooth and equidimensional of codimension m(m− r) +
(
m−r+1

2

)
, false otherwise.

The recursive call is described in the next box. We denote by A ◦M the linear matrix
A(M x) for a given M ∈ GLn(C).

LowRankSymRec(A, r)

Procedure:

1. choose M ∈ GLn(Q);

2. q ← [ ]; for ι ∈ {1, . . . ,m} with #ι = m− r do

• qι ← Image(RatParProj(ℓ(A ◦M, ι)),M−1);

• q ← Union(q, qι);

3. choose t ∈ Q; A← (A0 + tA1, A2, . . . , An);

4. q′ ← Lift(LowRankSymRec(A, r), t);

5. return(Union(q, q′)).

The routines appearing in the previous algorithm are described next:

• RatParProj. Input: The Lagrange system ℓ(A ◦M, ι) ⊂ Q[x, y, z]; Output: an er-
ror message if the projection of Z(A ◦M, ι) ∩ {(x, y, z) : rankA(M x) = r} on the
x−space is not finite; otherwise a rational parametrization q ⊂ Q[t] of this projec-
tion.

• Image. Input: a rational parametrization of a set Z ⊂ Q[x1, . . . , xN ] and a matrix
M ∈ GLN(Q); Output: a rational parametrization of M−1Z = {x ∈ CN : M x ∈
Z}.

• Union. Input: two rational parametrizations encoding sets Z1,Z2 ⊂ Q[x1, . . . , xN ];
Output: a rational parametrization of Z1 ∪ Z2.

• Lift. Input: a rational parametrization of a set Z ⊂ Q[x1, . . . , xN ], and t ∈ C;
Output: a rational parametrization of {(t, x) : x ∈ Z}.

3.3 Main algorithm: description

The input of SolveLMI is a symmetric n−variate linear matrix A(x) of size m, that is
the m(m+ 1)(n+ 1)/2 entries of A0, A1, . . . , An. The algorithm makes use of the routine
LowRankSym described previously, to compute sample points in the algebraic sets Dr∩R

n,
for r = 1, . . . , m− 1. The expected output is one of the following four alternatives:
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• an error message, when genericity assumptions are not satisfied;

• the empty list, when S is empty;

• a vector x∗ = (x∗
1, . . . , x

∗
n) such that A(x∗) = 0;

• a rational parametrization q = (q0, q1, . . . , qn, qn+1) ∈ Q[t]n+2, such that there exists
t∗ ∈ ZR(qn+1) with A(q1(t

∗)/q0(t
∗), . . . , qn(t

∗)/q0(t
∗)) � 0.

The different subroutines of SolveLMI are described next:

• SolveLinear. Input: A ∈ Sn+1
m (Q); Output the empty list if A(x) = 0 has no solutions,

otherwise it returns x∗ such that A(x∗) = 0;

• CheckLMI. Input: A ∈ Sn+1
m (Q) and a rational parametrization q ⊂ Q[t]; Output:

true if there exists t∗ ∈ ZR(qn+1) such that A(q1(t
∗)/q0(t

∗), . . . , qn(t
∗)/q0(t

∗)) � 0,
and false otherwise.

The formal description is the following.

SolveLMI(A)

Input: A symmetric n−variate linear matrix A(x) of size m, encoded by the
m(m+ 1)(n + 1)/2 rational entries of A0, A1, . . . , An;

Output: The empty list [ ] if and only if {x ∈ Rn : A(x) � 0} is empty;
or an error message stating that genericity assumptions are not satisfied, or,
otherwise, either a vector x∗ = (x∗1, . . . , x

∗
n) such that A(x∗) = 0, or a rational

parametrization q = (q0, q1, . . . , qn, qn+1) ∈ Q[t]n+2, such that there exists
t∗ ∈ ZR(qn+1) with A(q1(t

∗)/q0(t
∗), . . . , qn(t

∗)/q0(t
∗)) � 0.

Procedure:

1. x∗ ← SolveLinear(A); if x∗ 6= [ ] then return(x∗);

2. for r from 1 to m− 1 do:

• q ← LowRankSym(A, r);

• if q = “the input is not generic” then return (q);

• if q 6= [ ] then b← CheckLMI(A, q);

• if b = true then return(q);

3. return([ ], “the spectrahedron is empty”).

3.4 Main algorithm: correctness

We prove that algorithm SolveLMI returns a correct output if genericity properties on
input data and on random parameters chosen during its execution are satisfied. We write
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down a correctness proof in Theorem 10, page 18; it relies on some preliminary results
that are described before. The proofs of these intermediate results are given in Appendix
B.

The first result is a regularity theorem for the incidence varieties. We focus on property
P1 for the input matrix A (cf. page 14).

Proposition 7 Let m,n, r ∈ N, with 0 ≤ r ≤ m− 1.

1. There exists a non-empty Zariski-open set A ⊂ Sn+1
m (C) such that if A ∈ A ∩

Sn+1
m (Q), then A satisfies P1;

2. if A satisfies P1, there exists a non-empty Zariski open set T ⊂ C such that if
t ∈ T ∩Q, the matrix A0 + tA1 + x2A2 + · · ·+ xnAn satisfies P1.

The second proposition computes the dimension of the set of critical points of the restric-
tion of the map π1 : x→ x1 to Dr \Dr−1. We show that the projection of Z(A◦M, ι, S)∩
{(x, y, z) : rankA(M x) = r} over the x−space is finite and that this set meets the critical
points of the restriction of the map Π1 : (x, y)→ x1 to the incidence variety.

Proposition 8 Let A ∈ Sn+1
m (Q) satisfy P1. Then there exists a non-empty Zariski open

set M1 ⊂ GLn(C) such that, if M ∈M1 ∩Mn,n(Q), for all ι ⊂ {1, . . . , m} of cardinality
m− r and S ∈ GLm−r(Q), the following holds:

1. The system ℓ(A ◦M, ι, S) satisfies Q in {(x, y, z) : rankA(M x) = r};

2. the projection of Z(A ◦M, ι, S) ∩ {(x, y, z) : rankA(M x) = r} on the x−space is
empty or finite;

3. the projection of Z(A ◦M, ι, S) ∩ {(x, y, z) : rankA(M x) = r} on (x, y) contains
the set of critical points of the restriction of Π1 : (x, y) → x1 to Vr(A ◦M, ι, S) ∩
{(x, y) : rankA(M x) = r}.

Finally, we show, after a generic linear change of x variables, closure properties of the
projection maps restricted to Dr. Also, in order to compute sample points on the con-
nected components of Dr ∩ Rn not meeting Dr−1, the next proposition shows that to do
that it is sufficient to compute critical points on the incidence variety Vr.

We denote by πi : R
n → Ri the map sending x = (x1, . . . , xn) to (x1, . . . , xi).

Proposition 9 Let A ∈ Sn+1
m (Q) satisfy P1, and let d = dimDr. There exists a non-

empty Zariski open set M2 ⊂ GLn(C) such that if M ∈M2∩Mn,n(Q), for any connected
component C ⊂ Dr ∩ Rn, the following holds:

1. for i = 1, . . . , d, πi(M
−1C) is closed; further, for t ∈ R lying on the boundary of

π1(M
−1C), then π−1

1 (t) ∩M−1C is finite;
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2. let t lie on the boundary of π1(M
−1C): for x ∈ π−1

1 (t)∩M−1C, with rankA(M x) = r,
there exists ι ⊂ {1, . . . , m} and (x, y) ∈ Vr(A ◦M, ι) such that Π1(x, y) = t.

Propositions 7, 8 and 9 will be proved in Appendix B. We say that hypothesis H holds if:

• The matrix A ∈ Sn+1
m (Q) and all parameters generated by SolveLMI belong to

the Zariski open sets defined in Proposition 7, 8 and 9, for all recursive steps of
LowRankSym;

• A satisfies Property P2.

We can now state the correctness theorem for SolveLMI.

Theorem 10 (Correctness of SolveLMI) Let A ∈ Sn+1
m,m(Q) be the input of SolveLMI.

Suppose that hypothesis H holds. Let S = {x ∈ Rn : A(x) � 0} be the spectrahedron
associated to A. Then two alternatives hold:

1. S = ∅: hence the output of SolveLMI with input A is the empty list;

2. S 6= ∅: hence the output of SolveLMI with input A is either a vector x∗ such that
A(x∗) = 0, if it exists; or a rational parametrization q = (q0, q1, . . . , qn, qn+1) ∈
Q[t]n+2 such that there exists t∗ ∈ ZR(qn+1) with:

• A(q1(t
∗)/q0(t

∗), . . . , qn(t
∗)/q0(t

∗)) � 0 and

• rankA(q1(t
∗)/q0(t

∗), . . . , qn(t
∗)/q0(t

∗)) = r(A) (cf. Notation 1).

Proof : Suppose that the linear system A(x) = 0 has at least one solution. Hence, the
routine SolveLinear with input A returns a vector x∗ such that A(x∗) = 0. Since the
zero matrix is positive semidefinite, we deduce that x∗ ∈ S 6= ∅ and that the rank of A
attains its minimum on S at x∗. We deduce that, if A(x) = 0 has at least one solution,
the algorithm returns a correct output.

Suppose now that either S is empty, or that A(x) has positive rank on S . We claim that
the subroutine LowRankSym is correct, in the following sense: with input the symmetric
linear matrix A of size m and any 1 ≤ r ≤ m − 1, such that A satisfies P1, the output
of LowRankSym(A, r) is a rational parametrization whose solutions meet each connected
component C of Dr such that C ∩ Dr−1 = ∅.

We assume for the moment this claim and consider two possible alternatives:

1. S = ∅. Consequently, CheckLMI outputs false at each iteration of Step 2 in
SolveLMI. Thus the output of SolveLMI is the empty list, and correctness follows.

2. S 6= ∅. Let r ≥ 1 be the minimum rank attained by A(x) on S . Denote by
C ⊂ Dr∩R

n a connected component such that C∩S 6= ∅. By Theorem 2, we deduce
that C ⊂ S , and that C ∩ Dr−1 = ∅, by the minimality of r. Let q be the output
of LowRankSym at Step 2 of SolveLMI. The correctness hypothesis on LowRankSym

implies that q defines a finite set whose solutions meet C, hence S . Consequently,
the subroutine CheckLMI returns true at Step 2, and hence the algorithm stops
returning the correct output q.
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We end the proof by showing that LowRankSym is correct. This is straightforwardly
implied by the correctness of the recursive subroutine LowRankSymRec, which is proved
below by using induction on the number of variables n.

For n <
(
m−r+1

2

)
, since H holds, then Dr is empty, and hence LowRankSym returns the

correct answer [ ] (the empty list).

Let n ≥
(
m−r+1

2

)
, and let (A, r) be the input. The induction hypothesis implies that

for any (n − 1)−variate symmetric linear matrix Ã satisfying P1, then LowRankSymRec

with input (Ã, r) returns a rational parametrization of a finite set meeting each connected
component C̃ ⊂ D̃r such that C̃ ∩ D̃r−1 = ∅, with D̃r = {x ∈ Rn−1 : rank Ã(x) ≤ r}.

Let C ⊂ Dr be a connected component with C∩Dr−1 = ∅, and let M be the matrix chosen
at Step 1. Hence, since H holds, by Proposition 9 the set π1(M

−1C) is closed. There are
two possible scenarios.

First case. Suppose first that π1(M
−1C) = R, let t ∈ Q be the rational number chosen

at Step 3, and let Ã = (A0 + tA1, A2, . . . , An) ∈ Sn
m(Q). We deduce that π−1

1 (t) ∩
M−1C 6= ∅ is the union of some connected components of the algebraic set D̃r = {x ∈
Rn−1 : rank Ã(x) ≤ r} not meeting D̃r−1. Also, since A satisfies P1, so does A ◦M ; by
Proposition 7, then Ã satisfies P1. By the induction assumption, LowRankSymRec with
input (Ã, r) returns at least one point in each connected component C̃ ⊂ D̃r not meeting
D̃r−1, hence one point in C by applying the subroutine Lift at Step 4. Correctness follows.

Second case. Otherwise, π1(M
−1C) 6= R and, since it is a closed set, its boundary is non-

empty. Let t belong to the boundary of π1(M
−1C), and suppose w.l.o.g. that π1(M

−1C) ⊂
[t,+∞). Hence t is the minimum of the restriction of the map π1 toM

−1C. By Proposition
9, the set π−1

1 (t) ∩M−1C 6= ∅ is finite, and for all x in this set, rankA(M x) = r (indeed,
for x ∈ M−1C, then M x ∈ C and hence M x /∈ Dr−1 ∩ Rn). Fix x ∈ π−1

1 (t) ∩M−1C.
By Proposition 9, there exists ι and y ∈ Cm(m−r) such that (x, y) ∈ Vr(A ◦M, ι). Also,
by Proposition 7, the set Vr(A ◦M, ι) is smooth and equidimensional. One deduces that
(x, y) is a critical point of the restriction of Π1 : (x, y)→ x1 to Vr(A◦M, ι) and that there
exists z such that (x, y, z) ∈ Z(A ◦M, ι). Hence, at Step 2, the routine LowRankSymRec

outputs a rational parametrization qι, among whose solutions the vector x lies. �

4 Complexity analysis

Our next step is to estimate the complexity of SolveLMI. This will be measured by counting
the number of arithmetic operations performed over Q, and will essentially rely on the
complexities of state-of-the-art algorithms computing rational parametrizations. We start
in Section 4.1 by computing bounds on the expected output degree.

4.1 Output degree estimates

We first provide a bound on the degree of the rational parametrizations, by computing
Multilinear Bézout bounds (cf. [73, Ch. 11]).
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Proposition 11 Let A ∈ Sn+1
m be the input of SolveLMI. Let pr = (m− r)(m+ r + 1)/2.

If H holds, for all ι ⊂ {1, . . . , m}, the degree of the rational parametrization qι returned
by LowRankSymRec at Step 2 is bounded above by

θ(m,n, r) =
∑

k∈Gm,n,r

(
pr

n− k

)(
n− 1

k + pr − 1− r(m− r)

)(
r(m− r)

k

)
,

with Gm,n,r = {k : max{0, n− pr} ≤ k ≤ min{n−
(
m−r+1

2

)
, r(m− r)}}. Moreover, for all

m,n, r, θ(m,n, r) is bounded above by
(
pr+n
n

)3
.

Proof : We can simplify the polynomial system f(A, ι) defining the incidence variety
Vr(A, ι) to a system of pr bilinear equations with respect to variables x = (x1, . . . , xn)
and y = (ym−r+1,1, . . . , ym,m−r). Indeed, by Lemma 5, the incidence variety is defined
by Yι − S = 0 and by m(m − r) − e = pr entries of A(x)Y (y), where e =

(
m−r
2

)
is

the number of redundancies. Hence we just eliminate equations Yι − S = 0 and the
variables corresponding to the entries of Yι. Consequently, the Lagrange system can be
also simplified, by admitting only pr Lagrange multipliers z (corresponding to the pr
equations defining the simplified system A(x)Y (y) = 0). We can also eliminate the first
Lagrange multiplier z1 (since z 6= 0, one can assume z1 = 1) and impose a rank defect
on the truncated Jacobian matrix obtained by Df by eliminating the first column (that
containing the derivatives with respect to x1).

The bound θ(m,n, r), by [73, Ch. 11], is the coefficient of the monomial snxs
r(m−r)
y spr−1

z in
the expansion of

(sx + sy)
pr(sy + sz)

n−1(sx + sz)
r(m−r).

This can be easily obtained by writing down such an expansion and solving the associated
linear system forcing the constraints on the exponents of the monomials. The result is

exactly the claimed closed formula. The estimate θ(m,n, r) ≤
(
pr+n
n

)3
can be obtained by

applying the following formula:

(
a+ b

a

)3

=

min(a,b)∑

i1,i2,i3=0

(
a

i1

)(
b

i1

)(
a

i2

)(
b

i2

)(
a

i3

)(
b

i3

)

with a = n and b = pr. �

We straightforwardly deduce the following global estimate on the degree of the output
parametrization q.

Corollary 12 Let A ∈ Sn+1
m be the input of SolveLMI, and suppose that S is not empty.

Let θ(m,n, r) be the bound computed in Proposition 11. If H holds, the sum of the degrees
of the rational parametrizations computed during SolveLMI is bounded above by

∑

r≤r(A)

(
m

r

)
θ(m,n, r).

The degree of the rational parametrization whose solutions intersect S is at most
(

m

r(A)

)
θ(m,n, r(A)) ∈ O

((
m

r(A)

)(
pr(A) + n

n

)3
)
.
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Proof : We recall that, by Proposition 11, for any ι ⊂ {1, . . . , m} of cardinality m−r, the
degree of the rational parametrization returned by LowRankSymRec at Step 2 is bounded
above by θ(m,n, r). The proof follows since:

1. the number of subsets ι ⊂ {1, . . . , m} of cardinality m− r is
(

m
m−r

)
=
(
m
r

)
;

2. SolveLMI stops when r reaches r(A).

�

In the column deg of Table 1 we report the degrees of the rational parametrization qι
returned by LowRankSymRec at Step 2, compared with its bound θ(m,n, r) computed in
Proposition 11. For this table, the input are randomly generated symmetric pencils with
rational coefficients. When the algorithm does not compute critical points (that is, when
the Lagrange system generates the empty set) we put deg = 0.

We recall that the routine LowRankSymRec computes points in components of the real
algebraic set Dr ∩ Rn not meeting the subset Dr−1 ∩ Rn, hence of the expected rank r.
Moreover, we recall that LowRankSym calls recursively its subroutine LowRankSymRec,
eliminating at each call the first variable. Hence, the total number of critical points
computed by LowRankSym for a given expected rank r is obtained by summing up the
integer in column deg for every admissible value of n. We remark here that both the degree
and the bound are constant and equal to 0 if n is large enough. Hence, the previous sum is
constant for large values of n. Similar behaviors appear, for example, when computing the
Euclidean Distance degree (EDdegree) of determinantal varieties, as in [17] or [60]. In [60,
Table 1], the authors report on the EDdegree of determinantal hypersurfaces generated
by linear matrices A(x) = A0 + x1A1 + · · · + xnAn: for generic weights in the distance
function, and when the codimension of the vector space generated by A1, . . . , An is small
(for us, when n is big, since matrices Ai are randomly generated, hence independent for
n ≤

(
m+1
2

)
= dim Sm(Q)) the EDdegree is constant. Analogous comparisons can be done

with results in [60, Example 4] and [60, Corollary 3.5].

The values in column deg of Table 1 must also be compared with the associated algebraic
degree of semidefinite programming. Given integers k,m, r with r ≤ m − 1, Nie, Ranes-
tad, Sturmfels and von Bothmer computed in [58, 30] formulas for the algebraic degree
δ(k,m, r) of a generic semidefinite program associated tom×m k−variate linear matrices,
with expected rank r. Since the values in column deg match exactly the corresponding
values in [58, Table 2], we conclude this section with the following expected result, which
is a work in progress.

Conjecture 13 Let A ∈ Sn+1
m (Q) be the input of SolveLMI, and suppose that S = {x ∈

Rn : A(x) � 0} is not empty. Let δ(k,m, r) be the algebraic degree of a generic semidef-
inite program with parameters k,m, r as in [58, 30]. If property H holds, then the sum
of the degrees of the rational parametrizations computed during SolveLMI is given by the
formula

r(A)∑

r=1

(
m

r

) min(n,pr+r(m−r))∑

k=pr−r(m−r)

δ(k,m, r),

where pr = (m− r)(m+ r + 1)/2.
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(m, r, n) deg θ(m,n, r) (m, r, n) deg θ(m,n, r)

(3, 2, 2) 6 9 (4, 3, 9) 0 0
(3, 2, 3) 4 16 (5, 2, 5) 0 0
(3, 2, 4) 0 15 (5, 2, 6) 35 924
(3, 2, 5) 0 6 (5, 2, 7) 140 10296
(3, 2, 6) 0 0 (5, 3, 3) 20 84
(4, 2, 3) 10 35 (5, 3, 4) 90 882
(4, 2, 4) 30 245 (5, 4, 2) 20 30
(4, 2, 5) 42 896 (5, 4, 3) 40 120
(4, 2, 6) 30 2100 (5, 4, 4) 40 325
(4, 2, 7) 10 3340 (5, 4, 5) 16 606
(4, 2, 8) 0 3619 (6, 3, 3) 0 0
(4, 2, 9) 0 2576 (6, 3, 4) 0 0
(4, 2, 12) 0 0 (6, 3, 5) 0 0
(4, 3, 3) 16 52 (6, 3, 6) 112 5005
(4, 3, 4) 8 95 (6, 4, 2) 0 0
(4, 3, 7) 0 20 (6, 4, 3) 35 165
(4, 3, 8) 0 0 (6, 5, 3) 80 230

Table 1: Degrees and bounds for rational parametrizations

4.2 The complexity of SolveLMI

Complexity of some subroutines

We first provide complexity estimates for subroutines SolveLinear, CheckLMI, Project, Lift,
Image and Union.

• The subroutine SolveLinear computes, if it exists, a solution of the linear system
A(x) = 0. This can be essentially performed by Gaussian elimination. The com-
plexity of solving

(
m+1
2

)
linear equations in n variables is hence linear in

(
m+1
2

)
and

cubic in n.

• The subroutine CheckLMI can be performed as follows. Let q = (q0, q1, . . . , qn, qn+1) ⊂
Q[t] be the rational parametrization in the input of CheckLMI, and let A(x) be the
symmetric pencil. The spectrahedron S = {x ∈ Rn : A(x) � 0} is the semi-
algebraic set defined, e.g., by sign conditions on the coefficients of the characteristic
polynomial

p(s, x) = det(A(x) + s Im) = fm(x) + fm−1(x)s+ · · ·+ f1(x)s
m−1 + sm.

That is, S = {x ∈ Rn : fi(x) ≥ 0, ∀ i = 1, . . . , m}. We make the substitution
xi ← qi(t)/q0(t) in A(x) and compute the coefficients of p(s, x(t)), that are rational
functions of the variable t. Hence CheckLMI boils down to deciding on the sign
of m univariate rational functions (that is, of 2m univariate polynomials) over the
finite set defined by qn+1(t) = 0. We deduce that the complexity of CheckLMI is
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polynomial in m and on the degree of qn+1 (that is, on the degree of q) see [7,
Ch. 13].

• Estimates for the complexities of Project, Lift, Image and Union are given in [73,
Ch. 10]. In particular, if θ = θ(m,n, r) is the bound computed in Proposition 11,
and ñ = n + r(m− r) + pr, then:

– By [73, Lemma10.1.5], Project is performed within ñ2θ2 arithmetic operations;

– By [73, Lemma10.1.6], Lift is performed within ñθ2 arithmetic operations;

– By [73, Lemma10.1.1], Image is performed within ñ2θ + ñ3 arithmetic opera-
tions;

– By [73, Lemma10.1.3], Union is performed within ñθ2 arithmetic operations.

Complexity of the main subroutine and of the whole algorithm

The complexity of LowRankSym can be estimated by computing the complexity of the
recursive subroutine LowRankSymRec, which strictly depends on the computation of the
rational parametrization. This computation can be performed via the symbolic-homotopy
described in [47], and we base our complexity analysis on this reference. Indeed, we will
be able to express the number of arithmetic operations as, essentially, a quadratic function
of the bound θ(m,n, r) computed in Proposition 11.

We recall that for symmetric pencils, the simplified Lagrange system (cf. the proof of
Proposition 11) contains:

• pr = (m− r)(m+ r + 1)/2 polynomials of multidegree bounded by (1, 1, 0);

• n− 1 polynomials of multidegree bounded by (0, 1, 1);

• r(m− r) polynomials of multidegree bounded by (1, 0, 1).

Let us denote by ℓ this system. We denote by

∆xy = {1, xi, yj, xiyj : i = 1, . . . , n, j = 1, . . . , r(m− r)}

∆yz = {1, yj, zk, yjzk : j = 1, . . . , r(m− r), k = 2 . . . , pr}

∆xz = {1, xi, zk, xizk : i = 1, . . . , n, k = 2, . . . , pr}

the supports of the aforementioned three groups of polynomials. Let ℓ̃ ⊂ Q[x, y, z] be a
polynomial system such that:

• the length of ℓ̃ equals that of ℓ;

• for i = 1, . . . , n− 1 +m2 − r2, the support of ℓ̃i equals that of ℓi;

• the solutions of ℓ̃ are known.
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We build the homotopy
tℓ + (1− t)ℓ̃ ⊂ Q[x, y, z, t], (2)

where t is a new variable. The system (2) defines a 1−dimensional algebraic set, that is
a curve. From [47, Proposition 6.1], if the solutions of ℓ̃ are known, one can compute a
rational parametrization of the solution set of system (2) within O((ñ2N logQ+ ñω+1)ee′)
arithmetic operations over Q, where: ñ is the number of variables in ℓ; N = pr#∆xy +
(n − 1)#∆yz + r(m − r)#∆xz; Q = max{‖q‖ : q ∈ ∆xy ∪ ∆yz ∪ ∆xz}; e is the number
of isolated solutions of ℓ; is the degree of the curve Z(tℓ+ (1− t)ℓ̃); ω is the exponent of
matrix multiplication.

The following lemma gives a bound on the degree of the curve Z(tℓ+ (1− t)ℓ̃).

Lemma 14 Let Gm,n,r and θ(m,n, r) be respectively the set and the bound defined in
Proposition 11, and suppose that Gm,n,r is not empty. Let e′ be the degree of Z(tℓ+ (1− t)ℓ̃).
Then

e′ ∈ O ((n + pr + r(m− r)) min{n, pr} θ(m,n, r)) .

Proof : The proof of this Lemma is technical and similar to that of [39, Lemma 10]. It
is given in Appendix C. �

We use this degree estimate to conclude our complexity analysis of LowRankSym.

Proposition 15 Let A ∈ Sn+1
m (Q) be the input of SolveLMI and 0 ≤ r ≤ m − 1. Let

θ(m,n, r) be the bound defined in Proposition 11. Let pr = (m− r)(m+ r + 1)/2. Then
Step 2 of LowRankSymRec returns a rational parametrization within

O˜

((
m

r

)
(n + pr + r(m− r))7 θ(m,n, r)2

)

arithmetic operations over Q.

Proof : Let ℓ be the simplified Lagrange system as in the proof of Proposition 11. We
consider the bound on the degree of the homotopy curve given by Lemma 14. We deduce
the claimed complexity result by applying [47, Proposition 6.1], and by recalling that
there are

(
m
r

)
many subsets of {1, . . . , m} of cardinality m− r. �

We straightforwardly deduce the following complexity estimate for SolveLMI. Recall that
pr = (m− r)(m+ r + 1)/2.

Theorem 16 (Complexity of SolveLMI) Let A ∈ Sn+1
m (Q) be the input symmetric pen-

cil and suppose that H holds. Then the number of arithmetic operations performed by
SolveLMI are in

O˜

(
n
∑

r≤m−1

(
m

r

)
(n+ pr + r(m− r))7

(
pr + n

n

)6
)

if S is empty, and

O˜



n
∑

r≤r(A)

(
m

r

)
(n+ pr + r(m− r))7

(
pr + n

n

)6


 if S is not empty.
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Proof : The proof is immediate since:

• From Proposition 15, we deduce that LowRankSymRec runs essentially within O (̃
(
m
r

)
(n+

pr + r(m− r))7 θ(m,n, r)2) arithmetic operations;

• θ(m,n, r) ≤
(
n+pr
n

)3
by Proposition 11;

• there are at most n recursive calls of LowRankSymRec in LowRankSym;

• SolveLMI stops when r reaches r(A) if S 6= 0, otherwise it stops when r = m− 1;

• the cost of subroutines SolveLinear, CheckLMI, Project, Lift, Image and Union is neg-
ligible.

�

5 Experiments

Algorithm SolveLMI has been implemented in a maple function, and it is part of a
more general library called spectra (Semidefinite Programming and Exact Computation
Towards Real Algebra), to be released in September 2015. It collects efficient and exact
algorithms solving a large class of problems in real algebraic geometry and semidefinite
optimization.

We present in this section our computational experiments, all performed on a machine
with the following characteristics: Intel(R) Xeon(R) CPU E7540@2.00GHz with 256 Gb
of RAM. We use FGb [22] for fast computation of Gröbner bases. To compute the
rational parametrizations we use the implementation in maple of the change-of-ordering
algorithm FGLM [26] and of its improved versions [27, 25].

5.1 Generic symmetric pencils

We implemented the function LowRankSym and tested the running time of the imple-
mentation with input generic symmetric linear matrices. We recall that the algorithm
SolveLMI amounts to iterating LowRankSym by increasing the expected rank r. Generic-
ity of the data is ensured by fixing a natural number N ∈ N and by generating numerators
and denominators uniformly in the interval [−N,N ]. We report in Table 2 the timings
and the degrees of output rational parametrizations.

In this table, m is the size of the input matrix, n is the number of variables and r is
the expected maximum rank (that is, the index of the algebraic set Dr). We compare
our timings (reported in column LRS) with those of the function PointsPerComponents

(column PPC) of the library raglib developed by the third author [68]. The input of
PointsPerComponents are the (r+1)× (r+1) minors of the linear matrix, and the output
is a rational parametrization of a finite set meeting each connected component of Dr∩R

n.
The symbol∞ means that we did not succeed in computing the parametrizations after 48
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(m, r, n) PPC LRS totaldeg deg (m, r, n) PPC LRS totaldeg deg

(3, 2, 2) 0.2 8 9 6 (4, 3, 9) ∞ 28 40 0
(3, 2, 3) 0.3 11 13 4 (4, 3, 10) ∞ 29 40 0
(3, 2, 4) 0.9 13 13 0 (4, 3, 11) ∞ 30 40 0
(3, 2, 5) 5.1 14 13 0 (5, 2, 2) 0.6 0 0 0
(3, 2, 6) 15.5 15 13 0 (5, 2, 3) 0.9 0 0 0
(3, 2, 7) 31 16 13 0 (5, 2, 4) 1 1 0 0
(3, 2, 8) 109 17 13 0 (5, 2, 5) 1.6 1 0 0
(3, 2, 9) 230 18 13 0 (5, 2, 7) ∞ 25856 175 140
(4, 2, 2) 0.2 0 0 0 (5, 3, 2) 0.4 1 0 0
(4, 2, 3) 0.3 2 10 10 (5, 3, 3) 0.5 3 20 20
(4, 2, 4) 2.2 9 40 30 (5, 3, 4) ∞ 1592 110 90
(4, 2, 5) 12.2 29 82 42 (5, 3, 5) ∞ 16809 317 207
(4, 2, 6) ∞ 71 112 30 (5, 4, 2) 0.5 7 25 20
(4, 2, 7) ∞ 103 122 10 (5, 4, 3) 10 42 65 40
(4, 2, 8) ∞ 106 122 0 (5, 4, 4) ∞ 42 105 40
(4, 2, 9) ∞ 106 122 0 (5, 4, 5) ∞ 858 121 16
(4, 3, 3) 1 10 32 16 (6, 3, 3) 4 0 0 0
(4, 3, 4) 590 21 40 8 (6, 3, 4) 140 1 0 0
(4, 3, 5) ∞ 22 40 0 (6, 3, 5) ∞ 2 0 0
(4, 3, 6) ∞ 24 40 0 (6, 3, 6) ∞ 704 112 112
(4, 3, 7) ∞ 26 40 0 (6, 4, 2) 0.6 1 0 0
(4, 3, 8) ∞ 27 40 0 (6, 5, 3) ∞ 591 116 80

Table 2: Timings and degrees for dense symmetric linear matrices

hours. Column deg contains the degree of the parametrization returned by LowRankSym-

Rec at Step 2, or 0 if the empty list is returned. Column totaldeg contains the sum of the
values in deg for k varying between 1 and n. For example, for m = 4, r = 2, for n ≤ 2
and n ≥ 8 the algorithm does not compute critical points, while it computes rational
parametrizations of degree respectively 10, 30, 42, 30, 10 for n = 3, 4, 5, 6, 7; the number
82 in column totaldeg for (m,n, r) = (4, 2, 5) is obtained as the sum 10 + 30 + 42 of the
integers in column deg for m = 4, r = 2 and n = 3, 4, 5. We remark that, as for Table 1,
the value in column deg for a given triple m,n, r coincides with the algebraic degree of
semidefinite programming, that is with δ(n,m, r) as defined in [58].

Our algorithm allows to tackle examples that are out of reach for raglib and that,
most of the time, the growth in terms of running time is controlled when parameters m
and r are fixed. This shows that our dedicated algorithm leads to practical remarkable
improvements: indeed, for example, 4×4 linear matrices of expected rank 2 are treated in a
few minutes, up to linear sections of dimension 9; we are also able to sample hypersurfaces
in R5 defined by the determinant of 5 × 5 symmetric linear matrices; finally, symmetric
linear matrices of size up to 6 with many rank defects are shown to be tractable by our
approach.

We observe that most of the time is spent to compute a Gröbner basis of the Lagrange
systems, and for this we use new fast algorithms for the change of monomial orderings
[25]: we believe that exploiting the special monomial structure of these systems could
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lead to dedicated algorithms for computing their Gröbner bases.

5.2 Scheiderer’s spectrahedron

We consider the following 6× 6 symmetric pencil in 6 variables:

A(x) =




1 0 x1 0 −3/2− x2 x3

0 −2x1 1/2 x2 −2− x4 −x5

x1 1/2 1 x4 0 x6

0 x2 x4 −2x3 + 2 x5 1/2
−3/2− x2 −2− x4 0 x5 −2x6 1/2

x3 −x5 x6 1/2 1/2 1




.

The matrix A is the Gram matrix of the trivariate polynomial

f(u1, u2, u3) = u4
1 + u1u

3
2 + u4

2 − 3u2
1u2u3 − 4u1u

2
2u3 + 2u2

1u
2
3 + u1u

3
3 + u2u

3
3 + u4

3.

In other words, f = v′A(x)v for all x ∈ R6, where v = (u2
1, u1u2, u

2
2, u1u3, u2u3, u

2
3) is the

monomial basis of the vector space of homogeneous polynomials of degree 2 in u1, u2, u3.
The polynomial f is nonnegative over R6 and hence, since it is homogeneous of degree
4 in 3 variables, by Hilbert’s theorem (cf. [45]) it is a sum of at most three squares of
polynomials in R[u1, u2, u3], namely there exist f1, f2, f3 ∈ R[u1, u2, u3] such that f =
f 2
1 + f 2

2 + f 2
3 . Moreover, the spectrahedron S = {x ∈ R6 : A(x) � 0} parametrizes

all the sum-of-squares decompositions of f , and it is a particular example of a Gram
spectrahedron (cf. [62, Sec. 6]).

Scheiderer proved in [75] that f does not admit a sum-of-squares decomposition in the
ring Q[u1, u2, u3], that is, the summands in the decomposition cannot be chosen to have
rational coefficients, answering a question of Sturmfels. By Scheiderer’s result, we can
deduce that the spectrahedron S does not contain points with rational coordinates. In
particular, it is not full-dimensional (its affine hull has dimension ≤ 5) by straightforward
density arguments.

We first easily check that S does not contain any point x with rankA(x) = 0 and 1 (and
precisely, that D0 ∩R

6 = D1 ∩R
6 = ∅) via the routine SolveLinear and LowRankSym with

r = 1. Further, for r = 2, the algorithm returns the following rational parametrization of
D2 ∩ R6:

x1 =
3+16t

−8+24t2
x2 =

8−24t2

−8+24t2

x3 =
8+6t+8t2

−8+24t2
x4 =

16+6t−16t2

−8+24t2

x5 =
−3−16t
−8+24t2

x6 =
3+16t

−8+24t2

where t has to be chosen among the solutions of the univariate equation

8t3 − 8t− 1 = 0.

The set D2 is, indeed, of dimension 0, degree 3, and it contains only real points. In
particular, the technical assumption P2 is not satisfied, since the expected dimension of
D2 is −1. Conversely, the regularity assumptions on the incidence varieties are satisfied.
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By applying CheckLMI one gets that two of the three points lie on S , that is those with
the following floating point approximation up to 9 certified digits:




−0.930402926
−1.000000000
0.731299211
−0.268700788
0.930402926
−0.930402926




and




−0.127050844
−1.000000000
−0.967716166
−1.967716166
0.127050844
−0.127050844




.

These correspond to the two distinct decompositions of f as a sum of 2 squares. An ap-
proximation of such representations can be computed by factorizing the matrix A(x(t∗)) =
V ′V where t∗ is the corresponding root of 8t3 − 8t− 1 and V ∈M2,6(R) is full rank. The
corresponding decomposition is f = v′V ′V v = ||V v||2. At the third point of D2 ∩ R6:




1.057453771
−1.000000000
1.236416954
0.2364169545
−1.057453771
1.057453771




the matrix A(x) is indefinite, so it is not a valid Gram matrix.

To conclude, algorithm SolveLMI allows to design a computer-aided proof of Scheiderer’s
results about the polynomial f . In particular, we are able to compute a parametrization
of the two possible decompositions of f as a sum of two squares in R[u1, u2, u3], showing
that the Gram spectrahedron S of f is not empty and that the minimum rank attained
by A on S is two. This example is interesting since the interior of S is empty and,
typically, this can lead to numerical problems when using interior-point algorithms to
approximate a feasible point.

6 Conclusion

In this paper, we have presented an exact algorithm that computes an algebraic repre-
sentation of at least one feasible point of a linear matrix inequality A(x) � 0, or that
detects emptiness of the spectrahedron S = {x ∈ Rn : A(x) � 0}. The main strategy
is to reduce the input problem to a sequence of real root finding problems for the loci of
rank defects of A(x): if S is not empty, we have shown that computing sampling points
on determinantal varieties is sufficient to sample S , and that it can be done efficiently.
Indeed, the arithmetic complexity is essentially quadratic on a multilinear Bézout bound
on the output degree.

This is, to our knowledge, the first exact computer algebra algorithm tailored to linear
matrix inequalities. We conjecture that our algorithm is optimal since the degree of the
output parametrization matches the algebraic degree of a generic semidefinite program,
with expected rank equal to the minimal achievable rank on S . Since deciding the
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emptiness of S is a particular instance of computing the minimizer of a linear function
over this set (namely, of a constant), our algorithm is able to compute minimal-rank
solutions of special semidefinite programs, which is, in general, a hard computational task.
Indeed, numerical interior-point algorithms typically return approximations of feasible
matrices with maximal rank among the solutions (those lying in the relative interior of
the optimal face). Moreover, the example of Scheiderer’s spectrahedron shows that we can
also tackle degenerate situations with no interior point which are typically numerically
troublesome.

To conclude, as highlighted by the discussions in Section 5, our viewpoint includes an ef-
fective aspect, by which it is essential to translate into practice the complexity results that
have been obtained. This is the objective of our maple library spectra, to be released
in September 2015. It has to be understood as a starting point towards a systematic exact
computer algebra approach to semidefinite programming and related questions.

A Proof of Proposition 4

Proof : Let x̃ denote the vector of m(m + 1)/2 variables xi,j, 1 ≤ i ≤ j ≤ m, and let
X ∈ Sm(Q[x̃]) be the symmetric matrix with entries xi,j. Let minors (r + 1, X) be the
list of (r + 1)× (r + 1) minors of X and let Z = Z(minors (r + 1, X)) ⊂ Cm(m+1)/2. Let
G(m − r,m) be the Grassmannian of (m − r)−planes in Cm: it is an affine variety of
dimension r(m− r) (cf. [35, Lec. 6]). Let

I = {(X,H) ∈ Cm(m+1)/2−1 ×G(m− r,m) : H ⊂ ker(X)}.

Let π1 and π2 be the projections of I respectively onto the first and the second fac-
tor. Then π2 maps I surjectively onto G(m − r,m), and for H ∈ G(m − r,m), then
dim π−1

2 (H) = r(r + 1)/2. To check this last dimension count, suppose without loss of
generality that H is generated by the first m − r vectors of the standard basis: then
π−1
2 (H) is the set of symmetric matrices such that the first m − r columns and, hence,

the first m− r rows, are zero.

We deduce by the Theorem on the Dimension of Fibers [77, Sect. 6.3, Th. 7] that I is
irreducible of dimension r(m−r)+r(r+1)/2. Thus Z = π1(I) is irreducible, of dimension
r(m−r)+r(r+1)/2 (and codimension

(
m−r+1

2

)
) since any fiber of π1 is finite. We conclude

that Dr has the claimed dimension by applying Bertini’s theorem [77, Ch. 2,Sec. 6]. �

B Proof of Propositions 7, 8 and 9

B.1 Proof of Proposition 7

Proof of Assertion 1: Suppose w.l.o.g. that M = In and S = Im−r. For ι ⊂ {1, . . . , m}
of cardinality m− r, let fred be the polynomial system given by Lemma 5. We prove that
there exists a non-empty Zariski open set Aι ⊂ Sn+1

m (C) such that, if A ∈ Aι ∩ Sn+1
m (Q),

fred generates a radical ideal and Z(fred) is empty or equidimensional, of codimension the
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length of fred, that is m(m− r) +
(
m−r+1

2

)
. We conclude that, for A ∈ Aι, A satisfies P1.

Then, we conclude by defining A = ∩ιAι, non-empty and Zariski open.

Suppose w.l.o.g. that ι = {1, . . . , m− r}. We consider the map

ϕ : Cn+m(m−r) × Sn+1
m (C) −→ Cm(m−r)+(m−r+1

2 )

(x, y, A) 7−→ fred

and, for a fixed A ∈ Sn+1
m (C), its section map ϕA : C

n+m(m−r) → C
m(m−r)+(m−r+1

2 ) defined
by ϕA(x, y) = ϕ(x, y, A). Remark that, for any A, Z(ϕA) equals Vr(A, ι).

Suppose ϕ−1(0) = ∅: this implies that, for all A ∈ Sn+1
m (C), Z(fred) = Vr(A, ι) = ∅, that

is A satisfies P1 for A ∈ Aι = Sn+1
m (C).

If ϕ−1(0) 6= ∅, we prove below that 0 is a regular value of ϕ. We conclude that by Thom’s
Weak Transversality Theorem [73, Section 4.2] there exists a non-empty and Zariski open
set Aι ⊂ Sn+1

m (C) such that if A ∈ Aι ∩ Sn+1
m (Q), 0 is a regular value of ϕA. Hence,

by applying the Jacobian criterion (cf. [18, Theorem 16.19]) to the polynomial system
fred, we deduce that for A ∈ Aι ∩ Sn+1

m (Q), Vr(A, ι) is smooth and equidimensional of
codimension #fred.

Let Dϕ be the Jacobian matrix of ϕ: it contains the derivatives of polynomials in fred with
respect to variables x, y, A. We recall that A is a short-hand notation for the vector of
symmetric matrices (A0, A1, . . . , An) ∈ Sn+1

m (C); we denote by aℓ,i,j the variable encoding
the (i, j)−th entry of the matrix Aℓ. We isolate the columns of Dϕ corresponding to:

• the derivatives with respect to variables {a0,i,j : i ≤ m− r or j ≤ m− r};

• the derivatives with respect to variables yi,j such that i ∈ ι.

Let (x, y, A) ∈ ϕ−1(0), and consider the evaluation of Dϕ at (x, y, A). The above columns
contain the following non-singular blocks:

• the derivatives w.r.t. {a0,i,j : i ≤ m − r or j ≤ m − r} of the entries of A(x)Y (y)
after reduction, that is I(m−r)(m+r+1)/2;

• the derivatives w.r.t. {yi,j : i ∈ ι} of polynomials in Yι − Im−r, that is I(m−r)2 .

Hence, the above columns define a maximal non-singular sub-matrix of Dϕ at (x, y, A),
of size m(m − r) +

(
m−r+1

2

)
= #fred. Indeed, the entries of Yι − Im−r do not depend on

variables a0,i,j. Since (x, y, A) ∈ ϕ−1(0) is arbitrary, we deduce that 0 is a regular value
of ϕ, and we conclude. �

Proof of Assertion 2: Fix ι ⊂ {1, . . . , m} with #ι = m − r. Since A satisfies P1,
Vr(A, ι) is either empty or smooth and equidimensional of codimensionm(m−r)+

(
m−r+1

2

)
.

Suppose first that Vr = ∅. Hence for all t ∈ C, Vr ∩{x1− t = 0} = ∅, and we conclude by
defining T = C. Otherwise, consider the restriction of the projection map π1 : (x, y)→ x1

to Vr(A, ι). By Sard’s Lemma [73, Section 4.2], the set of critical values of the restriction
of π1 to Vr(A, ι) is included in a finite subset H ⊂ C. We deduce that, for t ∈ T = C\H,
the linear matrix (A0 + tA1, A2, . . . , An) satisfies P1. �
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In the proof of Assertion 1 of Theorem 7, we have shown a stronger property of Vr(A, ι),
holding generically with respect to input parameters A0, A1, . . . , An. This is highlighted
by the next statement.

Corollary 17 Let A ⊂ Sn+1
m (Q) be the non-empty Zariski open set defined in Proposition

7, and let A ∈ A . Then for every ι ⊂ {1, . . . , m} with #ι = m− r, the ideal 〈fred〉 = 〈f〉
is radical, and Vr(A, ι) is a complete intersection of codimension #fred.

Proof : We recall from the proof of Assertion 1 of Theorem 7 that, for A ∈ A , the
rank of the Jacobian matrix of fred is #fred = m(m − r) +

(
m−r+1

2

)
at every point of

Vr(A, ι). By the Jacobian criterion [18, Theorem 16.19], the ideal 〈fred〉 is radical and
the algebraic set Z(fred) = Vr(A, ι) is smooth and equidimensional of codimension #fred.
Hence I(Vr(A, ι)) can be generated by a number of polynomials equal to the codimension
of Vr(A, ι), and we conclude. �

B.2 Proof of Proposition 8

We recall that for a given symmetric pencil A ∈ Sn+1
m (Q), S ∈ GLm−r(C) and for ι ⊂

{1, . . . , m} of cardinality m−r, we have denoted by f = f(A, ι, S) the polynomial system
defining Vr(A, ι, S). We set

c = m(m− r) +

(
m− r + 1

2

)
and e =

(
m− r

2

)
.

Then f has length c + e = m(m − r) + (m − r)2, and e is the number of redundancies
that are eliminated by Lemma 5. By Lemma 5 and by Proposition 7, we deduce that:

• there exists fred ⊂ f of length c, such that Z(fred) = Z(f) = Vr;

• for A ∈ A (defined in Proposition 7), A satisfies P1 and Vr = Vr(A, ι, S) is smooth
and equidimensional of codimension c, for all ι ⊂ {1, . . . , m}.

In particular, the rank of Df is constantly equal to c if evaluated along a point in Vr.

Let A(x) be a symmetric linear matrix, and consider the locally closed set: Dr \ Dr−1 =
{x ∈ Cn : rankA(x) = r}. The set Dr \ Dr−1 is given by the union of sets Dr ∩ {x ∈
Cn : detN(x) 6= 0} where N runs over all r× r sub-matrices of A(x). Fix S ∈ GLm−r(Q)
and ι as above. Let N be the upper left r × r sub-matrix of A(x), and consider the
corresponding block division of A:

A =

(
N Q
P ′ R

)
(3)

with P,Q ∈ Mr,m−r(Q) and R ∈ Mm−r,m−r(Q). Here P = Q but we will not need to use
this fact. Let Q[x, y]detN be the local ring obtained by localizing Q[x, y] at 〈detN〉. Let
Y (1) (resp. Y (2)) be the matrix obtained by isolating the first r (resp. the last m − r)
rows of Y (y). Hence, the local equations of Vr in {(x, y) : detN(x) 6= 0} are given by:

Y (1) +N−1QY (2) = 0, Σ(N)Y (2) = 0, Yι − S = 0, (4)
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where Σ(N) = R − P ′N−1Q is the Schur complement of N in A. This follows from the
following straightforward equivalence holding in the local ring Q[x, y]detN :

(
N Q
P ′ R

)
Y (y) = 0 iff

(
Ir 0
−P ′ Im−r

)(
N−1 0
0 Im−r

)(
N Q
P ′ R

)
Y (y) = 0.

Let w ∈ Cn be a non-zero vector and consider the projection map induced by w

Πw : (x1, . . . , xn, y) 7→ w1x1 + · · ·+ wnxn.

For A ∈ A (given by Proposition 7), for all ι and S as above, the critical points of the
restriction of Πw to Vr(A, ι, S) are encoded by the polynomial system

f(A, ι, S), (g, h) = z′
(

Df
DΠw

)
= z′

(
Dxf Dyf
w′ 0

)
, (5)

where z = (z1, . . . , zc+e, 1) is a vector of Lagrange multipliers. Indeed, equations induced
by (g, h) imply that the vector w is normal to the tangent space of Vr at (x, y).

We prove an intermediate lemma towards Proposition 8.

Lemma 18 Let A ∈ Sn+1
m (Q) satisfy P1. Then there exists a non-empty Zariski open

set W ⊂ Cn such that, if w ∈ W , for all ι ⊂ {1, . . . , m} of cardinality m − r and
S ∈ GLm−r(Q), the following holds:

1. the system (f, g, h) in (5) satisfies Q in {(x, y, z) : rankA(x) = r};

2. the projection of Z(f, g, h)∩ {(x, y, z) : rankA(x) = r} on the x−space is empty or
finite;

3. the projection of Z(f, g, h)∩ {(x, y, z) : rankA(x) = r} on (x, y) contains the set of
critical points of the restriction of Πw to Vr ∩ {(x, y) : rankA(x) = r}.

Proof of Assertion 1: The strategy relies on applying Thom Weak Transversality
Theorem and the Jacobian criterion, as in the proof of Proposition 7.

We prove below the following claim: given a r × r sub-matrix N of A(x), there exists
WN ⊂ Cn such that for w ∈ WN , (f, g, h) satisfies Q in {(x, y, z) : detN 6= 0}. We
straightforwardly deduce Assertion 1 by defining W =

⋂
N WN , where N runs over all

r × r sub-matrices of A(x).

Let Uι ∈ C(m−r)×m be the boolean matrix such that UιY (y) = Yι, and let Uι = (U
(1)
ι | U

(2)
ι )

be the subdivision with U
(1)
ι ∈ C(m−r)×r and U

(2)
ι ∈ C(m−r)×(m−r). We recall from (4) the

local equations of Vr:

Y (1) +N−1QY (2) = 0, Σ(N)Y (2) = 0, UιY (y)− S = 0.

We deduce the equality

S = U (1)
ι Y (1) + U (2)

ι Y (2) = (U (2)
ι − U (1)

ι N−1P )Y (2)
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and hence that both Y (2) and U
(2)
ι −U

(1)
ι N−1P are non-singular matrices in the local ring

Q[x, y]detN . We deduce that the above local equations of Vr are equivalent to

Y (1) +N−1QY (2) = 0, Σ(N) = 0, Y (2) − (U (2)
ι − U (1)

ι N−1P )−1S = 0,

in the local ring Q[x, y]detN . We collect the above equations in a system f̃ , of length c+e.
Hence, the Jacobian matrix of f̃ is

Df̃ =




Dx[Σ(N)]i,j 0(m−r)2×m(m−r)

⋆
Ir(m−r) ⋆

0 I(m−r)2



 .

By hypothesis, the rank of Df̃ is constant and equal to c if evaluated at (x, y) ∈ Z(f̃) =
Vr(A, ι, S) ∩ {(x, y) : detN 6= 0}. We similarly define

(g̃, h̃) = z′
(

Df̃
w′ 0

)

with z = (z1, . . . , zc+e, 1). The structure of Df̃ implies that polynomial h̃i reads z(m−r)2+i,
for i = 1, . . . , m(m− r), and hence it can be eliminated, together with the corresponding
variables z(m−r)2+i. Hence, one can consider the equivalent equations (f̃ , g̃, h̃) where the
last m(m− r) variables z do not appear in g̃.

Let us define the map

ϕ : Cn+c+e+m(m−r) × Cn −→ Cn+c+e+m(m−r)

(x, y, z, w) 7−→ (f̃ , g̃, h̃)

and, for w ∈ Cn, its section map ϕw : (x, y, z) 7→ p(x, y, z, w). In the last part of this
proof, we show that 0 is a regular value of the map p, and we conclude.

We first exclude the trivial situation ϕ−1(0) = ∅, by defining in this case WN = Cn.

Otherwise, let (x, y, z, w) ∈ ϕ−1(0). We first observe that polynomials in f̃ just depend
on variables x and y, hence their contribution in the Jacobian matrix Dϕ at (x, y, z, w)
is the block Df̃ , whose rank is c, since (x, y) ∈ Vr. Hence, we deduce that the row-rank
of Dϕ at (x, y, z, w) is at most n + c + m(m − r). Further, by isolating the columns
corresponding to

• the derivatives with respect to x, y,

• the derivatives with respect to w1, . . . , wn, and

• the derivatives with respect to z(m−r)2+i, i = 1, . . . , m(m− r),

one obtains a (n + c + e +m(m − r)) × (2n + 2m(m − r)) sub-matrix of Dϕ with rank
n + c+m(m− r). �

Proof of Assertion 2: From Assertion 1 we deduce that the locally closed set E =
Z(f, g, h) ∩ {(x, y, z) : rankA(x) = r} is empty or e−equidimensional. If it is empty, we
are done. Suppose that it is e−equidimensional. Consider the projection map

πx : Cn+m(m−r)+c+e −→ Cn

(x, y, z) 7−→ x
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and its restriction to E . Let x∗ ∈ πx(E). Then rankA(x∗) = r and there exists a unique
y ∈ Cm(m−r) such that f(x∗, y) = 0. Hence the fiber π−1

x (x∗) is isomorphic to the linear
space defined by {

(z1, . . . , zc+e) : (z1, . . . , zc+e)Df = (w′, 0)
}
.

Since the rank of Df is c, one deduces that π−1
x (x∗) is a linear space of dimension e, and

by the Theorem on the Dimension of Fibers [77, Sect. 6.3, Theorem 7] we deduce that
πx(E) has dimension 0. �

Proof of Assertion 3: Since the set Vr ∩ {(x, y) : rankA(x) = r} is smooth and
equidimensional, by [73, Lemma 3.2.1], for w 6= 0, the set crit (Πw,Vr) coincides with the
set of points (x, y) ∈ Vr such that the matrix

D(f,Πw) =

(
Df
DΠw

)

has a rank ≤ c. In particular there exists z = (z1, . . . , zc+e, zc+e+1) 6= 0, such that
z′D(f,Πw) = 0. One can exclude that zc+e+1 = 0, since this implies that Df has a
non-zero vector in the left kernel, which contradicts the fact that A satisfies P1. Hence
without loss of generality we deduce that zc+e+1 = 1, and we conclude. �

We can finally deduce the proof of Proposition 8.

Proof of Proposition 8: Define M1 as the set of matrices M ∈ GLn(C) such that
the first row of M−1 is contained in the set W defined in Lemma 18. The proof of all
assertions follows from Lemma 18 since, for M ∈M1, one gets the equality

(
Df(A ◦M, ι, S)
e′1 0 · · · 0

)
=

(
Df(A,U, S) ◦M

w′ 0 · · · 0

)(
M 0
0 Im(m−r)

)
, (6)

where w′ is the first row of M−1. Indeed, for z = (z1, . . . , zc+e), we deduce from the
previous relation that the set of solutions to the equations

f(A, ι, S) = 0, z′Df(A, ι, S) = (w′, 0) (7)

is the image of the set of solutions of

f(A ◦M, ι, S) = 0, z′Df(A ◦M, ι, S) = (e′1, 0) (8)

by the linear map




x
y
z



 7→




M−1 0 0
0 Im(m−r) 0
0 0 Ic+e








x
y
z



 .

This last fact is straightforward since from (6) we deduce that system (8) is equivalent to

f(A ◦M, ι, S) = 0, z′ (Df(A, ι, S) ◦M) = (w′, 0).

Hence the three assertions of Proposition 8 are straightforwardly deduced by those of
Lemma 18. �
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B.3 Proof of Proposition 9

For the proof of Assertion 1 of Proposition 9, we need to recall some notation introduced
in [37, Sec. 5]. Let Z ⊂ Cn be an algebraic set of dimension d. Its equidimensional
component of dimension p, for 0 ≤ p ≤ d, is denoted by Ωp(Z). We define

S (Z) = Ω0(Z) ∪ · · · ∪ Ωd−1(Z) ∪ sing ΩdZ

where we recall that sing V denotes the singular locus of an algebraic set V, and

C (πi,Z) = Ω0(Z) ∪ · · · ∪ Ωi−1(Z) ∪
d⋃

r=i

crit (πi, reg ΩrZ).

In the previous expression, regV denotes V \ sing V, πi the canonical projection map over
the first i variables, and crit (g,V) the set of critical points of the restriction of a map g
to V. For M ∈ GLn(C) we recursively define

• Od(M
−1Z) = M−1Z;

• Oi(M
−1Z) = S (Oi+1(M

−1Z)) ∪ C (πi+1,Oi+1(M
−1Z)) ∪ C (πi+1,M

−1Z) for i =
0, . . . , d− 1.

In [37, Prop. 17] we proved that for any algebraic set Z ⊂ Cn of dimension d, when M
is chosen generically in GLn(C) (that is, out of a proper algebraic set) the algebraic sets
Oi(M

−1Z) have dimension at most i and are in Noether position with respect to x1, . . . , xi

(cf. [77, 18] for a background in Noether position). Also, we used the previous fact in
[37, Prop. 18] to prove closure properties of the restriction of projection maps πi to the
connected components of Z ∩ Rn.

Proof of Assertion 1: We denote by M2 ⊂ GLn(C) the non-empty Zariski open set
defined in [37, Prop. 17], for the algebraic set Dr. Hence, for M ∈ M2, we deduce by
[37, Prop. 18] that for i = 1, . . . , d, and for any connected component C ⊂ Dr ∩ Rn, the
boundary of πi(M

−1C) is contained in πi(Oi−1(M
−1Dr)∩M

−1C) ⊂ πi(M
−1C), and hence

that πi(M
−1C) is closed. Moreover, let C ⊂ Dr ∩ Rn be a connected component and let

t ∈ R be in the boundary of π1(M
−1C). Then [37, Lemma19] implies that π−1

1 (t)∩M−1C
is finite. �

Proof of Assertion 2: Let M ∈M2. Consider the open set

O = {(x, y) ∈ Cn+m(m−r) : rankA(M x) = r, rankY (y) = m− r}.

Its projection Πx(O) on the x−space is the locally closed set

M−1(Dr \ Dr−1) = {x ∈ Cn : rankA(M x) = r}.

We consider the restriction of polynomial equations in A(M x)Y (y) = 0 to O . By defini-
tion of O , we can split the locally closed set O ∩ Z(A(M x)Y (y)) into the union

O ∩ Z(A(M x)Y (y)) =
⋃

ι ⊂ {1, . . . , m}
#ι = m− r

(
Oι ∩ Z(A(M x)Y (y))

)
,

35



where Oι = {(x, y) : det Yι 6= 0}, and Yι is the square submatrix of Y obtained by isolating
the rows indexed by ι.

Let C ⊂ Dr ∩ Rn be a connected component. Let t lie in the frontier of π1(M
−1C), and

x ∈ π−1
1 (t) ∩M−1C with rankA(M x) = r. Hence there exists ι ⊂ {1, . . . , m} such that

x lies in the projection of Vr(A ◦M, ι) on the x−space. Hence there exists y such that
(x, y) ∈ Vr(A ◦M, ι) and such that π1(x, y) = t. �

C Proof of Lemma 14

Proof : Similarly to Proposition 11, we exploit the multilinear structure of the system
defining the homotopy curve, that is tℓ+(1− t)ℓ̃, to compute its degree e′. The system is
bilinear with respect to the four groups x, y, z, t. We recall the cardinalities #x = n,#y =
r(m − r),#z = pr − 1,#t = 1, with pr = (m − r)(m + r + 1)/2. By [73, Ch. 11], e′ is
bounded by the sum of the coefficients of

q = (sx + sy + st)
pr(sy + sz + st)

n−1(sx + sz + st)
r(m−r)

modulo I = 〈sn+1
x , s

r(m−r)+1
y , sprz , s2t 〉 ⊂ Z[sx, sy, sz, st]. We see that q = q1 + st(q2 + q3 +

q4) + g with s2t that divides g and

q1 = (sx + sy)
pr(sy + sz)

n−1(sx + sz)
r(m−r)

q2 = prst(sx + sy)
pr−1(sy + sz)

n−1(sx + sz)
r(m−r)

q3 = (n− 1)st(sx + sy)
pr(sy + sz)

n−2(sx + sz)
r(m−r)

q4 = r(m− r)st(sx + sy)
pr(sy + sz)

n−1(sx + sz)
r(m−r)−1.

Hence q ≡ q1+q2+q3+q4 mod I, and the bound is given by the sum of the contributions of
q1, q2, q3 and q4. The contribution of q1 in the previous bound is the sum of the coefficients
of its class modulo I ′ = 〈sn+1

x , s
r(m−r)+1
y , sprz 〉. This has been computed in Proposition 11,

and coincides with θ(m,n, r).

We compute the contribution of q2. Let q2 = prstq̃2 with q̃2 ∈ Z[sx, sy, sz]. It is sufficient
to compute the sum of the coefficients of q̃2 modulo I ′ (defined above), multiplied by pr.
Since deg q̃2 = n − 2 + pr + r(m − r), and since the maximal powers admissible modulo

I ′ are snx, s
r(m−r)
y , spr−1

z , three configurations are possible.

(A) The coefficient of sn−1
x s

r(m−r)
y spr−1

z in q̃2, that is

ΣA =
∑

k∈GA

(
pr − 1

n− 1− k

)(
n− 1

k − 1 + pr − r(m− r)

)(
r(m− r)

k

)

where GA = {max{0, n− pr} ≤ k ≤ min{n− pr + r(m− r), r(m− r)}};

(B) The coefficient of snxs
r(m−r)−1
y spr−1

z in q̃2, that is

ΣB =
∑

k∈GB

(
pr − 1

n− k

)(
n− 1

k − 1 + pr − r(m− r)

)(
r(m− r)

k

)

where GB = {max{0, n− pr + 1} ≤ k ≤ min{n− pr + r(m− r), r(m− r)}};
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(C) The coefficient of snxs
r(m−r)
y spr−2

z in q̃2, that is

ΣC =
∑

k∈GC

(
pr − 1

n− k

)(
n− 1

k − 2 + pr − r(m− r)

)(
r(m− r)

k

)

where GC = {max{0, n− pr + 1} ≤ k ≤ min{n− pr + r(m− r) + 1, r(m− r)}}.

Hence we need to bound the expression pr(ΣA + ΣB + ΣC). One can easily check that
ΣA ≤ θ(m,n, r) and ΣB ≤ θ(m,n, r), while the same inequality is false for ΣC . However,
we claim that ΣC ≤ (1 + min{n, pr}) θ(m,n, r) and hence that the contribution of q2 is
pr(ΣA + ΣB + ΣC) ∈ O (pr min{n, pr} θ(m,n, r)). We prove below this claim.

We define

χ1 = max{0, n− pr} χ2 = min{n− pr + r(m− r), r(m− r)}

α1 = max{0, n− pr + 1} α2 = min{n− pr + r(m− r) + 1, r(m− r)}

so that θ(m,n, r) sums over χ1 ≤ k ≤ χ2 and ΣC over α1 ≤ k ≤ α2. Remark that
χ1 ≤ α1 and χ2 ≤ α2. Denote by ϕ(k) the k−th term in the sum defining ΣC , and by
γ(k) the k−th term in the sum defining θ(m,n, r). Then for all indices k, admissible both
for θ(m,n, r) and ΣC , that is for α1 ≤ k ≤ χ2, one gets, by basic properties of binomial
coefficients, that

ϕ(k) = Ψ(k) γ(k) with Ψ(k) =
k − 1 + pr − r(m− r)

n− k − pr + r(m− r)− 1
.

When k runs over all admissible indices, the rational function Ψ(k) is non-decresing
monotone, and its maximum is attained in Ψ(χ2) and is bounded by min{n, pr}. By that
we deduce the claimed inequality ΣC ≤ (1 + min{n, pr}) θ(m,n, r) since if χ2 < α2 then
χ2 = α2 − 1 and ϕ(α2) is bounded above by θ(m,n, r).

Contributions of q3 and q4. As for q2, we deduce that the contribution of q3 is in
O (n min{n, pr} θ(m,n, r)) and that of q4 is in O (r(m− r) min{n, pr} θ(m,n, r)). �
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occupation measures and LMI relaxations. SIAM J. Control Opt. 47(4):1643–
1666, 2008.

[43] D. Henrion. Semidefinite geometry of the numerical range. Electronic Journal of
Linear Algebra, 20:322–332, 2010.

[44] D. Henrion. Optimization on linear matrix inequalities for polynomial systems
control. Lecture notes of the International Summer School of Automatic Control,
Grenoble, France, September 2014.
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[78] K. Schmüdgen. The K-moment problem for compact semi-algebraic sets. Mathe-
matische Annalen, 289:203–206, 1991.

[79] M. Schweighofer. On the complexity of Schmüdgen Positivstellensatz. Journal of
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