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With the increasing complexity of aerospace systems, it has become more 
and more necessary to adopt a global, integrated approach from the very 

early steps and throughout the design process. Tightly coupling aerodynamics, 
propulsion, structure, trajectory, guidance and navigation, while also taking into 
account environmental and societal constraints, as well as manufacturability, 
reliability and maintainability, is a huge challenge. The field of Multidisciplinary 
Design Optimization (MDO) provides some answers on how to integrate 
increasing knowledge into the design process, while reducing the design cycles. 
It consists in a core of key methodologies, such as multi-disciplinary problem 
formulation and decomposition, optimization under uncer tainties and surrogate 
based high-fidelity tool integration, which are validated and enriched through 
confrontation with various kinds of design studies. The aim of this paper is, on the 
one hand, to give a clear view of the challenges at stake and the key difficulties 
that must be overcome and, on the other hand, to focus on some significant 
studies and achievements at Onera over the past decade, either on tools and 
methods, or on dedicated applications, illustrating the progress made and the 
challenges to come. 

MDO approach in an aerospace context and methodological 
challenges 

Context

In a context of technological breakthrough and increasing complexity, 
with technologies interacting together in a way that prevents each of 
them from being handled separately, there is a wide field of development 
for multidisciplinary design methods and tools. Additionally, there are 
increasing constraints that must be taken into account when defining 
new aerospace vehicles, from operational requirements and regulation 
compliance to public acceptance and environmental performance. 

In every scientific domain addressed, such as for example 
aerodynamics, structural mechanics or aeroacoustics, improvements 
can only be obtained by accurately handling complex phenomena, 
which requires, on the one hand, high-fidelity and efficient modeling 
and, on the other hand, large computational resources. This is 
mandatory to enable detailed exploration of the design space and 
significant performance improvements. 

In addition to these disciplinary-centered requirements, the tight 
coupling of several phenomena interacting together makes it a huge 

challenge to find a global optimum for the entire system, which can 
be very far from a collection of single-discipline optimizations. The 
search for this optimal performance stresses the need to adopt an 
integrated design and optimization approach, allowing sufficient 
knowledge to be included in the performance analysis. Traditional 
design processes – where disciplinary knowledge is only handled by 
the dedicated expert or team – must hence be merged into a global 
approach, with corresponding methods and tools. This also requires 
the multi-fidelity problem to be handled, which means keeping the 
system consistency, using low-fidelity approaches and refining some 
key performances, by including high fidelity processes adequately 
coupled to the system analysis. 

Multidisciplinary Design Optimization: in brief

Multidisciplinary Design Optimization (MDO), also known as 
Multidisciplinary Optimization, is a relatively recent field of engineering 
sciences whose objective is to address design problems more 
efficiently by incorporating various disciplines. The MDO has been 
used in a great number of domains, such as structure, automotive, 
electronics or aerospace engineering and allows complex problems, 
which are difficult to handle with the classical design methods, to be 
solved. MDO approaches have emerged between 1970 and 1990, with 
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the increase of computer-aided tools and a need to take into account 
manufacturability, reliability, maintainability and also the worldwide 
spreading of the main aeronautics companies. Indeed, this increase 
has made the numerical optimization of complex problems possible 
and has paved the way for complete system design.

By handling the various disciplines simultaneously, MDO techniques 
facilitate the search for a global optimal design, which may not be 
obtained when the disciplines are handled sequentially. Indeed, in 
most design problems, the various disciplines may lead to antagonistic 
decisions (e.g. structure and aerodynamics in launch vehicle design, 
as we shall see later). In such cases, MDO techniques are aimed at 
finding compromises between the different disciplines, in order to 
achieve a global optimal design.

Handling a series of disciplines at the same time significantly increases 
the complexity of the problem to solve. One of the branches of the 
MDO field is dedicated to making new formulations of the optimization 
problem, aimed at reducing the complexity of the problem and at 
allowing the more efficient use of traditional optimization methods.  
Many MDO methods have been developed and can be found in 
literature [2][3][8][65][70].

Instead of disciplinary codes in a computer, or computer networks, 
MDO may also address design problems involving engineer teams 
all over the world. Indeed, due to the globalization of the industries, 
system design can be distributed among various research centers 
located in different countries. In this case, the data exchanges 
between the teams become a crucial point in the design process and 
MDO provides new tools for the designers, in order to make the design 
process more efficient.

Onera  positioning 

US universities and government agencies have played a large role in 
the development of these methodologies, especially with the work 
on decomposition methods of Dr. Sobieski from NASA Langley, who 
is also founding chairman of the AIAA technical committee on MDO 
[26]. In Europe, several initiatives have been conducted by research 
agencies and universities and now tend to be integrated into a lot of 
FP7 projects. On both sides of the Atlantic, the work is concentrating 
on the development of integrated MDO capabilities, such as ANR-
OMD, OMD2 or the System@tic CSDL projects in France. Taking 
into account this need for design methodology improvement, Onera 
has been making an important internal effort to develop tools and 
techniques that will help to build efficient design processes and 
optimization capabilities. The core of this methodological effort is a 
4-year internal project called DOOM (Multidisciplinary Optimization 
Tooled Approach), conducted between 2004 and 2008, and extended 
by several applicative studies in the field of civil aircraft, Unmanned 
Air Vehicles (UAV), launch vehicles and missiles. This important 
development, together with its central position in the French aerospace 
context, has made it possible to build a strong competency which is 
still continuously under improvement.

Vehicle design studies: how can complexity be mastered? 

A large span of applications

As the French aerospace center for applied research, Onera has an 

assigned mission ranging from developing disciplinary skills in key 
fields, such as aerodynamics, propulsion or structure, to overall 
integration into a coherent system design. For the latter, the challenges 
are to master the complexity of multi-physics and high technology 
systems and to generate innovative concepts beyond well-known 
solutions, with a methodological approach being sufficiently generic to 
be applied to very different domains. In fact, Onera covers the complete 
field of aerospace systems, from civil aircraft to orbital vehicles. This 
paper is focused on air vehicle design. These design studies can be 
related to civil aircraft (integration of new propulsion technologies and 
new concepts such as flying wings), UAVs (from flapping wing micro-
air-vehicles to large size HALE UAVs), conventional and air-breathing 
missiles (mid-life evolutions of an existing system, new high speed 
concepts), launchers and orbital systems (classical ground launched 
systems and innovative air-launch concepts).

CAPECON UAV design
(European cooperation)

Air-breathing strategic missile ASMP-A
(Onera / MBDA)

EOLE air-launch demonstrator
(CNES/ PERSEUS)

Micro launcher for DeDalus air launch 
studies (CNES)

Figure 1 – Examples of vehicle designs in various fields

These design studies also differ by the needs of the customers: 
they can be either technology-oriented (assessment of the system 
impact of a new technology for a subsystem manufacturer), driven by 
industrialization constraints (co-design with industrial actors), require 
performance sensitivity to changes in the constraints (expertise for 
MoD or civil authorities) or be aimed at creating fully new vehicle 
concepts (internal prospective studies).

Typology of studies

To illustrate the differences between these system studies and to better 
characterize the need for adequate design methodology, they can be 
classified along 2 axes: 

•	 The level of modeling fidelity that is required by the study 
(horizontal axis): number of design variables, disciplines involved, 
fidelity of the models (from analytic to high-fidelity Computational Fluid 
Dynamics, or Finite Element Methods);

•	 The “unconventionality” or originality of the design with respect 
to well-known solutions (vertical axis): new exploration topologies, 
unusual flight domain (low Reynolds number, high Mach number, etc.). 
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Four families of design studies can be roughly identified: 
1. Conceptual design of well-known systems (e.g. missile quick 

sizing loops);
2. Exploration of innovative configurations at a conceptual design 

level (e.g. flying wing, Orbital Transfer Vehicles);
3. Preliminary design of well-known systems (e.g. technology 

integration on a civil aircraft);
4. New types of vehicles with insufficiently known physics (e.g. 

scramjet missiles, flapping wing UAVs).

Moving upwards and towards the right on the diagram, the complexity 
of the processes involved increases. More design variables, higher 
fidelity of modeling and greater exploration needs require the definition 
of more and more integrated processes with advanced MDO techniques. 
Furthermore, for a same vehicle, MDO can be applied at different levels 
of the design process and with different degrees of complexity (coupling 
identification, design problem formulation, uncertainty handling, optimal 
use of surrogate models, etc.).

General MDO approach

In this section, we describe the different steps of a generic MDO approach, 
in order to handle a design problem.

Design process set up

The first challenge for advanced MDO is to deal with the 
multidisciplinary aspect of vehicle design. Before talking about design 

space exploration and optimization, the first obstacle to overcome is 
the analysis problem, which means the identification of disciplinary 
couplings and the computation of objectives and constraints as a 
function of the design variables. However, what is quite obvious in the 
case of mono-discipline, or even bi-discipline optimization, becomes 
really challenging when dealing with a process involving at least 4 or 5 
disciplines, with multiple solutions. 

The aim is to build a design process that is compliant with certain 
requirements: robustness of the response, computation time of the 
process, dimension of the design space, or the constraints to be 
fulfilled. From a methodological point of view, how to coherently 
choose the following must be found out:

• The objective function(s) to simultaneously or independently 
optimize: cost, mass, performance, payload, range of action, etc.;

• The design variables: accuracy of the geometric representation, 
discrete choices such as materials and equipment, macroscopic 
versus local representation, etc.;

• The coupling variables: variables that are used to link the various 
disciplines;

• The disciplinary analysis: number of phenomena to be included, 
level of assessment, inputs and outputs, etc.;

• The overall dependencies between disciplines and data 
exchanges: sequence of computations, local couplings, degree of 
freedom in the design, etc.

This requires knowledge about both the application at stake and the 
optimization techniques that will be used. This is why a mix between 
empirical and formal approaches must be used.

MAV

"Innovative configurations" axis: new 
technologies, unconventional architectures

2

1

4

3

OTV

HALE UAV

Air-launch

Launchers

Microlaunchers

Flapping wing 
UAV

Tactical 
missiles

Ramjet 
missile

Scramjet-
based 

conceptual 
design

Aircraft 
propulsion 
integration

Scramjet 
experimental 

vehicle

Macroscopic parametric design 
(Raymer, ∆V budgets, ...)

Air-launch 
demonstrator

Advanced 
aircraft
design

Figure 2 – Typology of design studies
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Generic formulation of a MDO problem and classical MDO methods

Once the various previous choices have been made, incorporating the 
largest amount of knowledge possible to evaluate the design objectives 
and constraints, the next step is to formulate the problem, in order to be 
able to use suitable optimization algorithms. 

The general formulation of an MDO problem can be written as follows:

Minimize ( , , )f x y z

With respect to z

( , , ) 0g x y z ≤ (1)

( , , ) = 0h x y z (2)

Subject to i ji j j j ji {1,···,n}, j i, y {c (x  , y  , z )}∀ ∈ ∀ ≠ = (3)

i i i ii {1,···,n},R (x ,y ,z ) 0∀ ∈ = (4)

{ }

min ( , , )
( , , ) 0
( , , ) 0

, ( , , ) 0

, , ( , , )
i i i i i

i j i i ji j j j

f x y z
g x y z
h x y z
R x y z

y c x y z≠

<
=

∀ =

∀ ∀ =

Multidisciplinary design optimization process

Multidisciplinary analysis

z

Subsystem 1

1 1 1 1 1 1( , , ) 0 or ( , )R x y z x X z y= =

Subsystem i
( , , ) 0 or ( , )i i i i i iR x y z x X z y= =

1C

iC

nC

Subsystem n
( , , ) 0 or ( , )n n n n n nR x y z x X z y= =

Figure 3 – General MDO process

A general MDO process is illustrated in Figure 3.  This process involves 
several types of variables. These variables play specific roles and are 
regrouped into three categories:

• z: design variables. These variables change all along the 
optimization process, in order to find the optimal design. They can be 
used in one or several subsystems;

• y: coupling variables. These variables are used to link the 
different subsystems and to evaluate the consistency of the design 
with regard to the couplings c (equations 3);

• x: state (or disciplinary) variables. These variables can vary 
during the disciplinary analysis, in order to find equilibrium in the state 
equations (Disciplinary Equations 4). Unlike z, the state variables are 
not independent degrees of freedom, but rather depend on the design 
variables z, the coupling variables y and the state equations. The cases 
in which x are given by explicit functions of z and y are uncommon 
in engineering applications. The x variables are most often defined 
by implicit functions, which generally require specific optimization 
methods for solving complex industrial problems.

The disciplinary equations can be handled in different ways, using 
disciplinary analyzers (i.e. the subsystems are in charge of solving 
the equations 4 by the subsystems), disciplinary evaluators (i.e. 
the subsystems just compute the values of the residuals R in the 
equations 4) or a Multidisciplinary Analysis (i.e. the subsystem level is 
responsible for solving the coupling equations 3 and the residuals 4).

DISCIPLINARY ANALYZER DISCIPLINARY EVALUATOR

Subsystem analysis

| ( , , ) 0
or ( , )
i i i i i

i i i i

x R x y z
x X z y

=
=

                                                    ix

Subsystem evaluation

( , , ) ?i i i iR x y z =

( , , )i i i ic x y z

( , , )i i i ic x y z

,i iz y

( , , )i i ix y z

( , , )i i i ic x y z

( , , )i i i ic x y z

, ,i i iz y x

Figure 4 – Disciplinary analysis and evaluation

Many MDO methods are proposed in literature. The main methods 
can be grouped into two categories with respect to the use of one 
optimization level (MultiDiscipline Feasible MDF, Individual Discipline 
Feasible IDF, All At Once AAO [8], etc.) or multiple optimization levels 
(Collaborative Optimization CO [14], Bi-Level Integrated System 
Synthesis BLISS [63], Concurrent Sub-Space Optimization CSSO 
[66], Analytical Target Cascading ATC [46], etc.). [5] [65] can be 
consulted for more details regarding MDO formulations in aerospace 
design. The choice of the appropriate formulations depends on various 
characteristics of the problem to be solved, such as the search space 
dimension, the number of couplings, the disciplinary objectives, the 
availability of analytical sensitivity calculations, etc. Some papers (e.g. 
[69]) propose benchmark studies of the main MDO formulations in 
several test cases, in order to help the designer to choose which MDO 
formulation is the most appropriate for his problem.

Multidisciplinary analysis

Subsystem 1
analyzer

                           1x

Subsystem i
analyzer

( , , ) 0 
or ( , )

i i i i

i i i i

R x y z
x X y z

=
=

                           ix

Subsystem n
analyzer

                           nx

z f,g,h

1iy

Optimizer
( )

( )
( )

min ( , , )

( , , ) 0

( , , ) 0

f Xc z y z

g Xc z y z

h Xc z y z

<

=

Figure 5 – MDF
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Some of these formulations have been compared, on a simplified 
Supersonic Business Jet aircraft design test case, in the frame of a 
PhD thesis at Onera [18]. These formulations have been compared 
in terms of convergence robustness, number of disciplinary calls and 
practical implementation difficulties. The analysis has shown that there 
is no preferred or universal approach for all types of problems, but a 
lot of knowledge could be accumulated to drive the choice for a new 
problem, depending on the requirements (discipline or interdisciplinary 
feasibility at each stage of the optimization process, convergence 
consistency requirements, natural structure of the MDA – mono or 
bi-level, possible use of global sensitivity equations, compromise 
between CPU time and accuracy, etc.). These formulations were also 
analyzed in the framework of a PhD thesis on launcher MDO (see the 
next section), for which new approaches were proposed.

Examples of application of some of the MDO methods described 
above (e.g. BLISS, CO and MDF) will be exposed in the next section. 
There are 2 extremes that should be avoided when performing the 
multi-disciplinary optimization: 

• Optimizing the entire system by considering the Multidisciplinary 
Design Analysis (MDA) as a black box (which is known as the MDF 
formulation) is the most natural approach, but can be very costly if the 
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MDA convergence is difficult to obtain, especially when gradients need 
to be computed. No disciplinary expertise is included in that process;

• Optimizing the different disciplines separately and linking the 
disciplinary optimizations (Figure 10) is often the case in an industrial 
context, but disciplinary specialists tend to strive towards the improvement 
of objectives and fulfillment of constraints in terms of variables in their 
own discipline. This generates side effects that other disciplines must 
absorb, usually to the detriment of the overall system performance.

PROPULSION

TRAJECTORY

WEIGHTS/SIZING

AERODYNAMICS

Convergence?

Initialization

NO

YES

END

Figure 10 – Traditional design process

After having determined the most appropriate MDO formulation for the 
design problem, the suitable optimization algorithms for the problem 
must be selected. This is the subject of the following section.

Choice of the optimization algorithms

Basically, the optimization algorithms can be divided into two 
categories, with respect to whether or not they require sensitivity 
calculations. Since the presentation of the optimization algorithms is 
not the focus of the current paper, we only give a short description of 
these two categories. 

The gradient-based methods are the most classical optimization 
algorithms. Basically, these algorithms consist in differentiating the 
objective function and the constraints, in order to adjust the variables. 
Complete descriptions of these algorithms can be found in [21][50]. A 
commonly used gradient-based algorithm is the Sequential Quadratic 
Programming (SQP) algorithm. For more details about this algorithm, 
[13] [27] [50] can be consulted.

Gradient-free algorithms may present some interest in the MDO field, 
because the engineering (industrial) simulation codes may not have 
been designed to provide the sensitivity information in an efficient 
manner. Moreover, these algorithms allow non-differentiable and 
non-convex functions (and constraints) to be worked with, whereas 
the classical gradient-based algorithms require some differentiability 
and smoothness properties of the objective and the constraints. We 
can find many gradient-free algorithms in literature. The most popular 
algorithms are the Genetic Algorithm [28] [34], the Nelder & Mead 
algorithm [49], Simulated Annealing [38], etc. Several algorithms, 
such as Efficient Global Optimization [36], CMA-ES [31], may present 
some interest in terms of calculation time reduction and optimization 
efficiency in the search for the global optimum.

Integration of high fidelity tools: surrogate models

MDO formulations can provide better accounting for the interactions between 
disciplines. However, they also introduce the need, on the one hand, to 
automate the execution of each disciplinary code and, on the other hand, to 
have low computational cost models in the loop, which is in contradiction 
with introducing more knowledge at early steps of the design process. The 
challenge is then the smart use of the most advanced modeling tools, using 
response surface modeling to lower the computational cost [23] [73].

Box 1 - Typology of Multi-Disciplinary Analyses 

When using an integrated Multidisciplinary Analysis, some key questions must be addressed, e.g., how objectives and constraints must 
be computed, given a set of design variables and how must the couplings be handled? The answers to these questions are not unique and 
may have different consequences on the design process performance (time to converge, accuracy, degrees of freedom) depending on the 
coupling choices that are made (iteration loops, introduction of design rules at a disciplinary level, local variables calculated internally by 
the disciplines models, etc.). 3 typical processes are put forward: 
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sequentially. Sizing and 
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design space, but leads also to 
local minima and the task of the 
optimization algorithm is hard.
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Reduced model

MDO is most often a time consuming process, whose cost increases 
with the number of design variables and the duration of the disciplinary 
evaluations. A common way to reduce this computational cost 
consists in substituting these high fidelity models by reduced models. 
These approaches could be classified by their method of construction. 
The reduced-order models (ROM) are based on the physical equations 
and complexity reduction is provided by simplifying assumptions, 
projection on a reduced basis [44], or substitution by a behavioral 
model. As long as they are sufficiently accurate, these models must 
be used preferably. Otherwise, when these models are not available 
or any more representative, the metamodels (also called surrogate 
models, regression model, or response surface models), exclusively 
based on some changes of the reference model, become an interesting 
alternative. 

The polynomial regression [61] metamodeling techniques have benefited 
from the development of response surface methodologies [48] and more 
recently from the design and analysis of computer experiments with the 
Kriging statistical model [57]. Moreover, artificial neural networks [61], 
radial basis functions [35], splines [24], or support vector machines 
[24] from statistical learning have proved their efficiency in regression. 
All of these models could be classified by their degrees of liberty, the 
type of their basis functions and the learning technique. Consequently, 
their areas of application are not the same and their performances can 
be evaluated depending on these criteria:

• Implementation: the complexity of program implementation, 
method robustness and speed execution;

• Respect of physical problem specificities: bounds, strongly 
nonlinear behavior, symmetries;

• Quality of prediction: accuracy, consistency relating to size of 
design of experiments.
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the mass of the vehicle. The 
optimization is well guided, but 
the convergence of the MDA is 
longer and the design freedom 
is low.
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Metamodel construction

The construction of a metamodel requires three steps: selection, 
identification and validation.

• The selection step is aimed at selecting the set of simulation 
points and the most appropriate metamodeling technique. Since 
defining a representative experiment design is difficult for high 
dimensional systems, the reduction of the problem dimension should 
be studied. This can be done by selecting only the most influent 
parameters through a sensitivity analysis. The sampling of simulation 
points is crucial for the prediction quality of the metamodel and 
the robustness of its construction. For computer experiments, the 
design must be “space filling”, that is, the simulation points must 
be evenly and adequately spread over the design of interest [39] to 
provide information from the complete design space. Depending on 
the final dimension and knowledge of the problem, adapted suitable 
metamodeling technique is chosen;

• Once the surrogate model is selected, its coefficients are the 
solution of a least square minimization problem whose complexity 
depends on the number of coefficients to be adjusted. This model 
fitting [61] uses samples reserved for the statistical learning, while 
another set is dedicated to validation tests and is in relation with 
the bias-variance trade-off, the result of the model parameter tuning 
compromise between learning and generalization samples;

• Finally, the evaluation of model prediction quality, evaluated by 
means of the model generalization error on the validation samples, 
allows the model to be validated or not. Statistical techniques, such 
as leave-one-out, cross validation or bootstrap, provide an estimation 
of this error.

The choice of the metamodel most suited to the problem can be made 
by having knowledge regarding the physical problem: input and output 
dimensions, behavior, number and location of samples and by fulfilling 
criteria, such as expected prediction accuracy or robustness of the 
construction. However, there is not always a cheap surrogate model 
able to satisfy all of these features. That is why many works dealing 
with the metamodeling technique, devoted to a specific problem, 
are under development. Since the best metamodel is the one that 
takes into account all of the available information of the reference 
problem, new approaches strive to integrate additional data, or a basis 
decomposition, linked with the problem in the metamodel construction. 

Metamodeling for complex systems

A first example of methodology is the adaptive design of experiments, 
appropriate for expensive evaluations of the reference problem. The 
method consists in selecting new samples and updating the metamodel. 
The process is iterated until the desired error of the model is reached. 
These simulation points are chosen for their capacity to decrease the 
model uncertainty and result from an analytical expression of the model 
error, or statistical techniques like bootstrap [25]. Unfortunately, this 
approach is no more suitable for extremely costly evaluations of the 
reference problem. Recent methods are aimed at constructing models 
based on multilevel fidelity evaluations. Their purpose is to construct 
a surrogate model with many samples resulting from low fidelity 
evaluations corrected by a few high fidelity samples. Space mapping 
[9] constructs a matching function between a low fidelity model and 
a high fidelity model for correcting surrogate model evaluations in 
optimization problems. More recently, the construction of the Kriging 

model has been extended to samples of multilevel fidelity, using the 
space mapping technique. This co-Kriging model is described in [22]. 
Another illustration is provided by a strategy of trust-region model 
managing of the fidelity of surrogate models for MDO problems [54]. 
Multimodal problems require complex regression models involving 
a lot of coefficients. The resulting optimization problem can be very 
difficult and consequently requires a large set of samples. A mixture of 
experts combines several surrogate models that fit the clustered data 
set locally, rather than globally. Hence, the difficulty no longer lies in 
the construction of a global surrogate model, but rather in the domain 
decomposition and combination function.

Surrogate models for multidisciplinary optimization

Metamodeling techniques are particularly suited to MDO problems, 
in which discipline evaluations are costly and can be processed 
independently. In a general way, surrogate models are substituted into 
the disciplinary simulation [62]. However, the objective or constraints 
of the problem can also be approximated, in order to obtain the 
optimal point more easily. Moreover, the multilevel formulations were 
also adapted to the use of metamodels. Multidisciplinary feasible 
(MDF) formulations with the substitution of objective functions by 
metamodels are detailed in [37][60]. An extended formulation of 
BLISS to disciplinary metamodels is proposed in [67]. An adaptation 
of CSSO to artificial neural networks is detailed in [59]. An integration 
of moving least squares in the CO formulation is presented in [74].

High-fidelity modeling: surrogate model investigation

Within the framework of the DOOM methodological project carried out at 
Onera, significant research was made in regard to several RSM techniques, 
including neural networks, Kriging-based RSM, SVM, RBF, etc. These 
methods were applied on two test cases in the fields of structure (left) 
and aerodynamics (right), each being characterized by 5 parameters : 
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Figure 11 – Structure and aerodynamics, RSM test cases

The tests on 4 different kind of RSM with variable sample size showed 
the same behavior for both physics, which is illustrated by the chart on 
the right. It shows the error of the surrogate models along the X-axis 
and the percentage of validation points along the Y-axis, where the 
surrogate error is smaller than the X-axis error. 
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The Kriging methods appear to be quite efficient, but they are sensitive 
to the parameter tuning accuracy, RBF show acceptable results but 
little improvement is shown when the sample size increases and the 
neural network methods are difficult to tune, but offer greater degrees 
of freedom. 
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Figure 12 – Distribution of several surrogate models

Two examples of MDO applications at Onera 

Many projects have been achieved at Onera involving the development 
of MDO techniques. For example, the construction of the UCoDe (UAV 
Conceptual Design) tool, inherited from the Onera project HALERTE. It 
consists in an integrated UAV design platform wrapped in the Model 
Center environment, which has been developed for 10 years through 
various studies. More details about this project can be found in [11][12]
[29][33][42]. This section is focused on two examples of recent use of 
MDO techniques at Onera: the design of aircraft and launch vehicles.

Aircraft design: the ARTEMIS project

Context

Airbus Flight Physics defined a strategy called Multi-Disciplinary Design 
Capability (MDDC) aimed at an enhancement of the aircraft development 
process, from the initial concept definition to the validation of the detailed 
product. The objective is to enable both a more robust design, based on a 
better knowledge of the aircraft (higher fidelity tools), and the possibility 
of keeping several design options [45] as long as possible.

To initiate the implementation of the MDDC in an industrial environment, 
Airbus star ted project ARTEMIS (Advanced R&T Enablers for 
Multidisciplinary Integrated Systems) to identify and complete the 
necessary technical progress to be made in different disciplines, as a first 
step, and then to carry out studies to increase the readiness level of these 
techniques. Launched in September 2008, the first phase, called ARTEMIS 
eXternal Research Forum (XRF), scheduled different workshops between 
European research centers (DLR, Onera, QinetiQ) in order to provide the 
state of the art in Multi-Disciplinary Optimization at different stages of the 

aircraft design process and the identification of the necessary scientific 
developments in 5 areas (data modeling, multi-disciplinary processes, 
optimization toolboxes, framework and tool integration). After several 
iterations between its specialists based on conclusions from past projects, 
Onera  proposed at the end of ARTEMIS XRF a 5 years roadmap on the 
necessary steps to gradually implement MDDC. This roadmap is divided 
into two main research axes, and the part of the work performed at Onera 
is aimed at achieving the milestones identified for the first two years. 

Bi-disciplinary bi-level design process

The Bi-Disciplinary process is aimed at optimizing the shape of the wing 
(planform, airfoil and twist) and its internal structure. The process is 
based on high fidelity tools used at the detailed design level. For CFD, elsA 
(Onera code) is used, while for CSM, NASTRAN is used. The architecture 
of this optimization process follows the BLISS approach. An asset of this 
method is the possibility to carry out the disciplinary optimizations in an 
independent manner. A general description of this method is given in the 
following figure, where:

• Xa correspond to Aerodynamic variables;
• Xs correspond to Structure variables;
• Z corresponds to system variables.

MDA Aero-Structure

CFD Optim / Xa CSM Optim / Xs

Adjoint Aero-Structure 
Gradient / Xa, Xs , Z

Post-Optimal sensitivities 
or RSMs

System Optimization / Z
Z+ΔZ
X+ΔX

Figure 13 – BLISS approach into ARTEMIS project

In a first step, for a given set of disciplinary variables (X0) and 
system variables (Z0), the multidisciplinary aero-structure analysis 
is completed, resulting in a consistent set of data. Subsequently, 
the calculation of coupled sensitivities and the disciplinary 
optimization are carried out, resulting in a new set of disciplinary 
variables. Using post-optimal sensitivity analysis [14], the total 
derivatives with respect to system variables of the Drag and Structural 
Weight are evaluated. The optimization of the system with respect 
to the system variables is completed by a trust-region approach, to 
control the validity model of the reduced-model.
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Global aircraft design process 

This design process is aimed at performing the complete aircraft 
optimization (large number of disciplines involved and lower fidelity 
tools) at the conceptual design level (MG2 to MG3).

The constraints taken into consideration during this optimization 
process are:

• Limitations regarding the span, to meet airport constraints;
•  Limitations on geometric parameters, to avoid unfeasible geometries;
• Approach speed;
• Take off field length considering a One Engine Inoperative (OEI) 

condition.

The multidisciplinary process of GAP is based on 4 modules, with 
strong interactions: aerodynamics (cruise configuration and low 
speed, from empirical equations), propulsion (thrust and specific 
consumption function of Mach and altitude, given by existing 
databases, or a rubber engine model), weight estimation (combination 
of fixed weights, empirical data and physics-based sizing) and mission 
performances (calculation of state variables over the whole mission). 
It is mostly based on aircraft conceptual design rules [54][55] and will 
also be aimed in the following steps at integrating the definition of the 
control system in the design loop [1][16][40][45][53].

A key point of the proposed roadmap is the introduction of a coupling 
between the Bi-Disciplinary Process and the Global Aircraft Process, 
in order to benefit from the assets of each approach and thus improve 
the respective optimization processes. Figure 14 gives an overview of 
the coupling between the two processes. 

Design 
variables

Design 
variables

Family of
optimized vehicles

Inputs for the objective 
function of the

Bi-Disciplinary Process

Inputs for the objective 
function of the

Global Aircraft Process

Model refinements 
based on HiFi data

Global Aircraft Process:
- Aerodynamics
- Weight
- Populsion
- Performance for a mission

Bi-Disciplinary Process:
- BLISS formulation
- HiFi structural models
- HiFi aerodynamics models

Constraints

Constraints

Mission 
specifications

Figure 14 – Coupling between the Global Aircraft Process and the Bi-Discipli-
nary Process

MDO applied to launch vehicle design: SWORD method

Context

Launch Vehicle Design (LVD) is a complex problem, which involves 
many disciplines (propulsion, aerodynamics, structure, trajectory, 
etc.). These disciplines may have antagonistic objectives (e.g. 
structure and aerodynamics) and may require Multidisciplinary 
Design Optimization (MDO) methods to handle the couplings and to 

Box 2 - Uncertainty handling

Uncertainties are becoming increasingly pervasive in the world of engineering systems. They can take, for instance, some random forms 
(operations, parameter-driven, shapes, physical model parameters) or epistemic descriptions (form driven, unknown unknowns). Uncertainty 
can consequently play a key role in designing the “best” engineering systems. Possible manners to use and characterize uncertainty in 
MDO are described next.

System and disciplinary analysis in MDO must be run thousands of times and involves a great computation burden. Approximation methods 
should be used to construct metamodels of the high-fidelity models and substitute them in the optimization, so as to balance the accuracy 
and cost [52]. To build approximation models, design-of-experiment (DOE) techniques [4][32] can be used, to sample data in the design 
domain with the knowledge of parameter uncertainty. The accuracy of the approximation models is dependent on the number of samples 
and on the positions of the samples in the design space. Nevertheless, too many samples could result in a computation burden in the 
construction of the metamodel itself. There is thus a trade-off between the sampling size and the metamodel accuracy.

Uncertainty analysis also allows the uncertainty distribution characteristics of the system performances under the impacts of design 
uncertainties to be described, and also determines which input parameters are the most influent on its performances. For complex systems 
with multiple disciplines, the direct propagation of uncertainties can be difficult to process for uncertainty analysis [51]. For that purpose, 
methods that could be used for uncertainty analysis are notably Monte-Carlo simulations [56], first order-second Moment analysis [72], 
stratified sampling, sensitivity analysis [68], etc.

Uncertainty can also influence the optimization process, such as the results based on first order reliability approximation in [43][47]. The 
first issue related to setting up the optimization problem is the selection of objectives. The output of the uncertainty model will be the mean 
and the stochastic distribution of each attribute. Therefore, it is straightforward to normalize these values, resulting in the mean of the 
performances and its distribution [30].

Uncertainty and design is becoming increasingly central to MDO and to decision making. New techniques in MDO that deal with uncertainty 
appropriately have the potential to impact many aerospace systems and problems of interest (e.g. [19][41][58][75][76]). Nevertheless, 
new approaches must be developed to make problems tractable and frameworks being developed today must take into account possible 
organizational structures dictated by design under uncertainty methods.
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facilitate the quest for compromises. The most used MDO method 
in LVD is the Multidiscipline Feasible method (MDF). In this method, 
all of the optimization variables are handled at the same level, and 
a Multidisciplinary Analysis (MDA) is performed upon each iteration, 
ensuring the consistency of the couplings. 

In order to decouple the computationally expensive MDA, classical 
decomposition used in LVD is performed according to the various 
disciplines. This decomposition makes possible the use of single-
level methods (Individual Discipline Feasible, All At Once) or multi-
level methods (Collaborative Optimization, Concurrent Subspace 
Optimization, Bi-Level Integrated Systems Synthesis, etc.). This 
discipline-wise decomposition does not exploit the main specificity of 
the LVD, which is the combination of the optimizations of the design 
and trajectory variables [5]. Indeed, the trajectory optimization is often 
considered as a black box and is optimized in the same way as for the 
other disciplines.

SWORD method

In order to place the trajectory optimization at the center of the 
optimization process, a new decomposition method, called the Stage-
Wise decomposition for Optimal Rocket Design (SWORD) method, has 
been developed [6]. This bi-level method splits up the LVD problem 
according to the different flight phases and transforms the global MDO 
problem into the coordination of smaller ones. Each stage is optimized 
separately and the different stages are coordinated through the trajectory 
optimization, via the state vectors at the stage separations. 

GLOBAL OPTIMIZER

Stage n optimizer

Stage i optimizer

Stage 1 optimizer

Propulsion

Propulsion

Weights

Weights

Weights

Trajectory

Trajectory

Trajectory

Stage n mass

Objective function
State vectors at stage 

separations

Stage i mass

Propulsion

Figure 16 – SWORD architecture

Application case: optimization of a three-stage launch vehicle

The LVD problem to be solved is the optimization of a three-stage 
cryogenic launch vehicle. The objective function to be minimized is 
the Gross-Lift-Off-Weight (GLOW). The payload mass is equal to 4 
tons and the target orbit is a Geostationary Transfer Orbit.
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Comparison with MDF in case of global search

In order to be consistent with the literature dealing with the MDO 
methods in launch vehicle design [10][17][20][71], the SWORD 
method has been compared with MDF using a same Genetic Algorithm 
in a very large search space. The comparison is performed considering 
the same computation time (10 hours). Ten runs have been carried out 
from random initializations and three comparative criteria have been 
selected for the comparison: 

• The best found design at the stopping time of the algorithm;
• The time elapsed to find a first feasible design from random 

initialization;
• The improvement of the objective function during the optimization 

process.
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Figure 17 – Results of the comparison

SWORD clearly outperforms MDF in the case of global search 
optimization in a very large search space. Indeed, this method leads 
to the best design, is able to find a feasible design in a minimum time 
and leads to the best improvement of the objective function during the 
optimization. However, even though the SWORD method allows the 
efficiency of the MDO process to be clearly improved with respect to 
MDF, this study has shown that the use of a global search alone is not 
sufficient to obtain an optimum within an acceptable calculation time 
(a few hours). Therefore, the development of a specific optimization 
strategy is necessary.

Dedicated optimization strategy

Principle

The choice of the optimization algorithms is a key point in LVD. Indeed, 
both global and local searches are required, in order to explore a large 
search space and to converge efficiently toward an optimum. We have 
taken into account the four following requirements to develop the 
optimization strategy:

• The ability to quickly find feasible designs (i.e. satisfying the 
design and coupling constraints) from random initialization;

• The ability to converge from very large search domains (no 
accurate estimations of the optimization variables variation domains 
are required);

• Once a feasible domain is reached, the ability to efficiently 
converge toward an optimum.

In order to meet all of these requirements, we propose a three-phase 
strategy using the proposed stage-wise decomposition [7]. In the 
first phase, we exploit the flight-phase decomposition to perform a 
sequential exploration of the system-level optimization variable sets. 
Once feasible designs are found, a first optimization phase using the 

Nelder & Mead algorithm [49] is carried out to reach the vicinity of an 
optimum. Finally, in order to converge quickly toward an optimum, 
a bi-level gradient-based optimization, using Post-Optimality Analysis 
[14] and Global Sensitivity Synthesis [63], is achieved.

Results

In order to evaluate the efficiency and the robustness of the proposed 
optimization strategy, 10 runs have been carried out from different 
randomized initializations. The system-level variable search domains 
have been defined as very large, in order to estimate the efficiency of 
the method without requiring any a priori knowledge on design variables 
from the user. Figure 4 presents the change in the relative difference 
(in percentage) between the best found design and the reference 
optimum (which is obtained with fine tunings on the optimizers and 
design variable variation domains). 
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Figure 18 – Study case synthesis

The different divisions of colored left bars represent the 12 feasible 
designs obtained after Phase I, which are used to initialize the Nelder & 
Mead algorithm. In all of the cases, the optimization process converges 
with a maximal relative difference of 0.2% between the found design 
and the reference optimum. Indeed, the relative distance between 
the found design and the reference optimum is reduced by 96% on 
average, in a calculation time of approximately 4 hours (MATLAB, 
2.4GHz Dual Core Pentium/Windows XP), which is very satisfactory in 
early design launch vehicle studies. 

Conclusion and perspectives

Striving to achieve increasingly complex system integration studies 
and to generate innovative aerospace vehicle concepts, one faces 
the challenge of developing robust, efficient and innovative design 
methodologies. Comprehensive investigation of process set up, 
uncertainty quantification, high-fidelity tool integration and formal 
decomposition of the optimization strategy is mandatory, but this 
theory must always be tested and validated on ‘real-life’ design cases. 
The on-going methodological actions at Onera  in the field of conceptual 
layout, control system design or RSM advanced techniques, together 
with the application in more and more industrial design cases, pave 
the way to a real “off the shelf” multi-level, multi-fidelity and multi-
disciplinary capability n
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Acronyms

AAO (All At Once)
ANR (Association Nationale pour la Recherche)
ARTEMIS (Advanced R&T Enablers for Multidisciplinary Integrated Systems)
ASMP (Air Sol Moyenne Portée / Medium-Range Air to Surface Missile)
ATC (Analytical Target Cascading)
BLISS (Bi-Level Integrated System Synthesis)
CMA-ES (Covariance Matrix Adaptation Evolution Strategy)
CO (Collaborative Optimization)
CSDL (Complex System Design Lab)
CSSO (Concurrent SubSpace Optimization)
DeDalus (Design of Dual-use Air Launch UAV Systems)
DOE (Design Of Experiments)
DOOM (Démarche Outillée d’Optimisation Multidisciplinaire)
FP7 (Framework Program 7)
GAP (Global Aircraft Process)
GLOW (Gross Lift Off Weight)
HALE (High Altitude Long Endurance)
HALERTE (Haute Altitude Longue Endurance des Robots Transportant des Equipements)

IDF (Individual Discipline Feasible)
LVD (Launch Vehicle Design)
MDA (MultiDiscipinary Analysis)
MDDC (Multi-Disciplinary Design Capability)
MDF (Multi Discipline Feasible)
MDO (Multidisciplinary Design Optimization)
OMD (French acronym for MDO)
OEI (One Engine Inoperative)
PERSEUS (Projet Européen de Recherche Spatiale Etudiant Universitaire et 
Scientifique)
SQP (Sequential Quadratic Programming)
RSM (Response Surface Methodology)
SVM (Support Vector Machine)
RBF (Radial Basis Function)
SWORD (Stage-Wise decomposition for Optimal Rocket Design)
UAV (Unmanned Air Vehicle)
UCoDe (UAV Conceptual Design)
XRF (eXternal Research Forum)
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