
HAL Id: hal-01184303
https://hal.science/hal-01184303

Preprint submitted on 14 Aug 2015

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Towards a fully scalable balanced parareal method:
application to neutronics

Yvon Maday, Olga Mula, Mohamed-Kamel Riahi

To cite this version:
Yvon Maday, Olga Mula, Mohamed-Kamel Riahi. Towards a fully scalable balanced parareal method:
application to neutronics. 2015. �hal-01184303�

https://hal.science/hal-01184303
https://hal.archives-ouvertes.fr

TOWARDS A FULLY SCALABLE BALANCED PARAREAL
METHOD: APPLICATION TO NEUTRONICS ∗

Y. MADAY∗†‡ , O. MULA§ , AND M. K. RIAHI¶

Abstract. In the search of new approaches for the efficient exploitation of large scale compu-
tational platforms, the parallelization in the time direction for time dependent problems is a very
promising approach. Among the existing methods in this frame, the parallel in time method, since
its introduction in [10], has been developed in many ways that, altogether, allow to identify its pros
and cons. Among the cons, the current approaches present in practice some efficiency limitations
as regards correct scalings that “spoil” the huge potential of the idea. This article is a contribution
towards overcoming this major obstruction by exploiting the idea that the numerical schemes to
parallelize time could be coupled to other iterative numerical algorithms that are needed to solve
the PDE. We present a parareal scheme in which these alternative iterations are truncated (i.e. not
converged) during each parareal iteration but in which convergence is nevertheless achieved across
the parareal iterations. In order to limit the use of too much memory necessitated by the recovery of
these alternative iterations over the parareal iterations, we propose also a compression procedure via
proper orthogonal decomposition. After a mathematical analysis of the convergence properties of this
new approach, we present some numerical results dealing with the application of the scheme to ac-
celerate the time-dependent neutron diffusion equation in a reactor core. The numerical results show
a significant improvement of the performances with respect to the plain parareal algorithm, which
is an important step towards making the parallelization in the time direction be a fully competitive
option for the exploitation of massively parallel computers.

Key words. parareal in time algorithm, degraded fine solver, fixed-point iterations, reduced
basis, neutronics, neutron diffusion equation

AMS subject classifications. AMS subject classifications. 65M12, 65N55, 65Y05

Introduction. In the framework of the approximation of physical or industrial
processes, the number of computing cores that can be dedicated to the simulation
of a particular phenomenon is nowadays very large. Although this already allows
to simulate processes of increasing complexity with an increasing accuracy within a
reasonable clock time, the efficient exploitation of these large scale systems requires
the development of numerical algorithms that present good scalability properties on
the current architecture and should maintain these properties on the next generation
platforms. The idea of task decomposition plays a major role when it comes to address
this issue. In particular, spatial domain decomposition is a very active research area
with impressive success stories in by now a large variety of application fields (see [15]
for an overview). However, it is well-known that its optimal scalability properties are
progressively degraded (and end up by stagnating) as the number of cores/subdomains
increases, hence the need to search for additional parallelism directions. One of the
reasons for this degradation is that, as the number of cores/subdomains increases, the

∗This work was supported in part by the joint research program MANON between CEA-Saclay
and University Pierre et Marie Curie-Paris 6. The authors would like to thank Frédéric Hecht for
useful advices with the implementations with Freefem++. Thank you also to Philippe Parnaudeau
for helping in the access to the computing facilities at Laboratoire Jacques-Louis Lions/UPMC.

∗Sorbonne Universités, UPMC Univ Paris 06, CNRS, UMR 7598, Laboratoire Jacques-Louis
Lions, 4, place Jussieu 75005, Paris, France. (email: maday@ann.jussieu.fr)

†Institut Universitaire de France
‡Division of Applied Mathematics, Brown University, Providence RI, USA.
§Aachen Institute for Advanced Study in Computational Engineering Science (AICES) Graduate

School, Schinkelstrasse 2, 52056 Aachen, Germany (email: mula@aices.rwth-aachen.de)
¶Department of Mathematical Science, New Jersey Institute of Technology, NJ-07102 New Jersey,

USA (email: riahi@njit.edu)

1

2 Towards a Fully Scalable Balanced Parareal Method: application to Neutronics

size of each subdomain tends to diminish and thus the amount of work to perform on
each node become small with respect to the inter-communication time. In this respect,
the parallelization of the time domain carries a lot of potential since most simulations
which are expected to deliver economic, societal and scientific impact from large scale
systems contain time-stepping in some form. While several approaches have been
proposed over the years to decompose the time direction (see [5] for an overview),
they all suffer from severe efficiency limitations which “spoil” the huge potential of
the idea. In this paper, we would like to contribute to overcome this major obstruction
by exploiting the idea that the numerical schemes to parallelize time could be coupled
to other schemes that are needed for the complete resolution of the problem under
consideration.

We will focus on improving the performances of the so-called parareal in time
algorithm (first introduced in [10]), that has been developed over the years in many
ways and has allow to build a community in this effort of parallelizing in the time
direction. The parareal in time algorithm is a domain decomposition technique that
is based on a prediction-correction strategy in which the prediction is performed by a
coarse (and thus computationally cheap) solver G and the correction is done by using
an accurate (but computationally expensive) solver F . If the problem is formulated
over an interval [0, T] and (TN)N=0,...,N is a set of increasing times in this interval,
then the parareal in time method aims at building a sequence of approximations
(Uk

N)k of the exact solution u(TN) at each time TN such that, as k goes to infinity,
Uk
N converges to u(TN). As it will be recalled in section 1, the sequence (Uk

N)k is
defined through a recursion formula involving predictions through G and corrections
through F . The method decomposes the time domain in the sense that it allows to
divide the propagation of the fine solver over [0, T] into propagations on independent
sub-intervals [TN , TN+1] that can be run concurrently on several processors.

As has already been brought up many times in the literature (see, e.g., [2, 1]),
it is well-known that, if k parareal iterations are required to achieve convergence,
then the optimal speedup using N processors is roughly of order N/k. Since the
method usually converges in about three or four parareal iterations, it implies that
the efficiency will be around 1/3 or 1/4, which may already be interesting for big
systems of ODE’s but nevertheless may not be sufficient to justify the investment for
a larger parallel platform. The challenge of overcoming this efficiency limitation has
already been addressed in several previous contributions such as in [12, 11, 13]. They
are all based in diminishing the cost of the fine solver, and take benefit of the iterative
process in order to progressively improve the realization of the fine solver across the
parareal iterations. For example, in [12] (see also [6]), it has been proposed to use a
spatial domain decomposition algorithm to realize the fine solver in which the number
of (spatial domain decomposition) iterations is limited on each (parareal) iteration.
Then, in the following parareal iteration, the spatial iterations are resumed by using
the previous state as an initial guess in the spatial domain decomposition iterations.
This idea can actually be extended to any type of other iterative procedures like, e.g.,
optimal control [12] or high order time stepping [13].

In this paper, we propose to adapt this strategy at the algebraic level, i.e., we place
ourselves in the case where the propagation of the fine solver requires the inversion of a
system through an iterative procedure and we truncate these “internal” iterations on
each parareal iteration. Although the results that will be presented involve a specific
form of this iterative process (Jacobi or Gauss-Seidel type methods), we point out
that our procedure is general and could be applied to any type of linear fixed-point

Y. Maday, O. Mula, M. K. Riahi 3

scheme. With this particular form of iterative schemes, our main result is that, under
several hypothesis, convergence is probably achieved across the parareal iterations in
spite of the “local” degradation of the fine solver. This part of the work is presented
in sections 2 and 3.

The rest of the paper is then devoted to practical issues that arise in the imple-
mentation and to the application of the method to a numerical example. In section
4, we see that the practical realization of this new version of the parareal algorithm
presents an important obstruction. Indeed, for a given parareal iteration, the ini-
tialization of the internal iterations at every time step requires the knowledge of the
fine states of the previous parareal iteration. It is then necessary to store all the
previous fine states, which might be an unfeasible requirement in large problems. We
explain how the use of complexity reduction techniques could be an efficient strategy
to address this memory storage issue.

Finally, in section 5, we apply our method on the time-depending neutron diffusion
model, which is a non-trivial computational model widely used in nuclear industry
as it approximate the very-complex Boltzmann’s neutrons transport model. We then
study the efficiency of our method. Last but not least, we illustrate the feasibility of
“compressing” the information contained by the fine solutions in order to overcome
memory storage limitations. For the reasons that are explained in section 5, we
consider that our numerical application is a preliminary study towards the application
of the method in an involved non-academic framework, namely the resolution of the
aforementioned neutron transport equation in industrial codes. In this respect, the
present work is a sequel of [9] in which the plain parareal method was implemented in
a production code and it will serve as a basis for implementing our parareal method
in this more involved framework in a future work.

1. The plain parareal algorithm. Let us introduce some notation and recall
more in detail the mechanisms of the plain parareal in time algorithm. Let us consider
an evolution problem over an interval [0, T] that reads: Find a time dependent vector
u(t) ∈ R

N solution to the following problem

du(t)

dt
+A(t)u(t) = f(t)

u(0) = u0
(1.1)

where f ∈ RN is given. This problem is either a differential system of dimension
N or may come from the spatial discretization of a parabolic linear Partial Differ-
ential Equation (PDE), then, N denotes the number of degrees of freedom of the
space approximation, and A ∈ RN×N is the inverse of the mass matrix multiplied
by the stiffness matrix. Note that f and A may depend on time, hence the notation
f(t), A(t).

Let s > 0 denote a time step and let τ = ns be a time range, n ∈ N∗. For
a fixed τ , any discretization in time of (1.1) based on the time step s gives rise to
a discrete propagator Pt

τ , that can be implicit or explicit, of Euler, Runge Kutta,
Adams-Bashforth-Moulton, . . . type. Starting from any given “initial” condition at
time t, Pt

τ provides an approximation of the solution of (1.1) at time t+τ . If the time
step s is small enough, the approximation will be accurate, we then denote by F t

τ

such a fine discrete propagator. The accuracy of Pt
τ can be degraded by using larger

time steps s′ > s or a more simple discretization scheme. It can also be degraded
by “simplifying” the approximation of the phenomenon under consideration (e.g. by

4 Towards a Fully Scalable Balanced Parareal Method: application to Neutronics

considering a model with reduced physics). Let us denote by Gt
τ such a coarse discrete

propagator.
Let be given a decomposition of the solution time interval [0, T] into N time

intervals [TN , TN+1], N = 0, . . . ,N − 1 of — say — uniform size ∆T = TN+1 − TN .
The parareal in time algorithm — in its plain version — proposes a series (UN

k)k of
approximations of the solution u(TN) of (1.1) at time TN . The algorithm reads

UN+1
k+1 = GTN

∆T (U
N
k+1) + FTN

∆T (U
N
k)− GTN

∆T (U
N
k), k ≥ 0, 0 ≤ N ≤ N − 1

UN+1
0 = GTN

∆T (U
N
0), 0 ≤ N ≤ N − 1

U0
0 = u0.

(1.2)

As k goes to infinity, (UN
k)k converges to F0

TN
(u0), which is the fine approximation

of u(TN).
Since the algorithm converges to F0

TN
(u0) and not to the exact solution u(TN),

the accuracy of the approximation UN
k is at most the accuracy of the fine solver with

respect to the true solution. Denoting by εF this accuracy, the parareal iterations
should be stopped whenever

(1.3) max
0≤N≤N

‖UN
k −F0

TN
(u0)‖ ≃ εF ,

where ‖.‖ denotes the euclidean norm in RN .
Remark 1.1. The method can be seen as a predictor-corrector strategy in which

the prediction is given by GTN

∆T (U
N
k+1) and the correction is FTN

∆T (U
N
k)− GTN

∆T (U
N
k). It

can also be viewed as an extrapolation of FTN

∆T (U
N
k) by the term GTN

∆T (U
N
k+1)−GTN

∆T (U
N
k)

which allows to correct the fact that the fine propagation FTN

∆T should act on UN
k+1 and

not on UN
k .

2. Definition of the Scalable Balanced Parareal Method : truncated
internal iterations. For the sake of simplicity, we shall assume in what follows that,
for any for any N ∈ {0, . . . ,N− 1}, FTN

∆T uses an Euler backward time discretization
with time step δt and n is the total number of time steps to propagate the solution
between TN and TN+1 : we therefore have the relation ∆T = nδt. As a result, we have
T = N∆T = N nδt and the total number of fine propagations in the whole interval
[0, T] is n = N n.

For n ∈ {0, . . . , n}, let un be the approximation of u(tn) with this fine propagator
for tn = nδt. The discretized version of problem (1.1) then reads as a loop over n,
n ∈ {0, 1, . . . , n− 1} :

Given un ∈ R
N , find un+1 ∈ R

N such that
{
Aun+1 = Bun + fn,

u0 = u0,
(2.1)

where fn = f(tn), A = Id
δt
+A(tn+1) and B = Id

δt
, where Id denotes the identity matrix.

In order not to overload the notations, A and B will be taken constant in this section.
The resolution of problem (2.1) requires the inversion of A. Although the most suitable
techniques to do this inversion depend on the problem under consideration, in general
they involve iterative methods. In the present paper, we have written the theory in
the case of Jacobi or Gauss-Seidel algorithms, but our procedure could be adapted
to other (more involved) fixed-point schemes. In the Jacobi or Gauss-Seidel case,

Y. Maday, O. Mula, M. K. Riahi 5

A is splitted into D and A − D, where D may be D = diag[A] = diag[Id
δt

+ A],

D = Id
δt

+ diag[A] or even D = Id
δt

in the Jacobi case.We are lead to solve

∀n, 0 ≤ n ≤ n− 1, ∀j, 1 ≤ j ≤ J∗
n+1,

un+1,j = (Id−D−1A)un+1,j−1 +D−1Bun,J
∗
n +D−1fn

starting from

un+1,0 = un,J
∗
n ,

with a maximum of J∗
n+1 iterations, sufficiently large to guarantee convergence. As

a matter of self-consistency, u0,J
∗
0 = u0. The total number J∗

n of internal iterations
may be explicitly fixed or depends on the evaluation of some residual. Therefore, it
will usually depend on the time tn, hence the index n in the notation. Convergence
of the iterative scheme is obtained assuming that the norm of the matrix Id−D−1A
verifies

(2.2) ρ := ‖(Id−D−1A)‖ < 1.

The actual implementation of the parallel algorithm thus combines this Jacobi (or
Gauss Seidel) iterative procedure with the parareal algorithm introduced in (1.2).
The number of internal iterations to achieve convergence now depends on n and k
so we will denote them as J∗

n,k. Let FTN

J∗,∆T be the fine solver over [TN , TN+1] if we
perform these J∗

n,k internal iterations and achieve convergence at every time step.
With the new fine solver being defined this way, the plain parareal in time scheme
(1.2) can be considered as being exact.

Instead of (the recommended) J∗
n,k, we propose, for the definition of the scalable

balanced parareal method (SBPM) to perform only few internal iterations J at every
time step with

J < min
k∈{0,...,K−1}
n∈{1,...,n}

J∗
n,k,

Where K denotes the number of parareal iterations to achieve (1.3).
Provided that this limit on the number of internal iterations does not destroy the

convergence of the outer (parallel) iterations, this will accelerate the computations in
the parareal scheme for two reasons:

• We reduce the number of internal iterations at every parareal iteration.
• The total number of internal iterations performed by FTN

J∗,∆T varies with the
time interval [TN , TN+1] (because J

∗
n,k depends on n and k). Since, in prac-

tice, the fine propagations FTN

J∗,∆T , 0 ≤ N ≤ N−1 are computed concurrently
at every parareal iteration, the internal iterative process creates an imbalance
in the tasks that no longer arises if we prescribe a constant number J of it-
erations at every time step.

The truncation yields a non converged version F̃TN

J,∆T of FTN

J∗,∆T , gives rise to the
SBPM that reads :

UN+1
k+1,J = GTN

∆T (U
N
k+1,J) + F̃TN

J,∆T (U
N
k,J)− GTN

∆T (U
N
k,J), k ≥ 0, 0 ≤ N ≤ N − 1

UN+1
0,J = GTN

∆T (U
N
0,J), 0 ≤ N ≤ N − 1

U0
0,J = U0

0 = u0

(2.3)

We analyse in what follows, under which hypothesis the scheme SBPM converges
similarly to (1.2) (i.e. in a similar number of parareal iterations).

6 Towards a Fully Scalable Balanced Parareal Method: application to Neutronics

3. Convergence analysis of the fully scalable balanced parareal scheme.
The main result in this respect is given in Theorem 3.2. In order to introduce it, it
is necessary to explain more in detail the procedure over each interval [TN , TN+1]

that allows to define what we have denoted as F̃TN

J,∆T . The following notation will be
important to easily switch from the global framework over [0, T] to the local one over
each [TN , TN+1]. For any n ∈ {0, . . . , n}, we denote by tNn := TN + nδt the local time

steps, where tN0 = TN and tNn = TN+1. The approximated fine solution F̃TN

J,∆T (U
N
k,J)

at time TN+1 is obtained by solving for n = 0, . . . , n− 1 and j = 1, . . . , J
{
un+1,j
k = (Id−D−1A)un+1,j−1

k +D−1Bun,Jk +D−1fn,

u0,Jk = UN
k,J ,

(3.1)

where un,jk denotes the approximation of u(tNn) at the k-th parareal iteration and j-th
internal iteration and we set

(3.2) F̃TN

J,∆T (U
N
k,J) = u

n,J

k .

Note that the scheme (3.1) is incomplete in the sense that it is necessary to define a
starting guess un+1,0

k to initialize each internal iterations. We propose to take either

(Case I)

{
un+1,0
k = un,Jk , if k = 0

un+1,0
k = un+1,J

k−1 , if k ≥ 1,
(3.3)

or

(Case II)

{
un+1,0
k = un,Jk , if k = 0

un+1,0
k = un+1,J

k−1 + un,Jk − un,Jk−1, if k ≥ 1.
(3.4)

An initialization of the form (3.3) (resp. (3.4)) will be denoted in the following as “first
case” (resp. “second case”). Note that, in the first case, we take over the internal
iterations at the point where they were stopped in the previous parareal iteration
k− 1. In addition to this, in the second case, we also better take the dynamics of the
process into account through the terms un,Jk − un,Jk−1.

Remark 3.1. Note that due to the definition of the above starting guesses, the
notation (3.2) is incomplete since actually F̃ also depends on quantities at the pre-
vious iteration k − 1. For the sake of simplicity, we shall not explicitly write this
dependance.

Let us now turn to the convergence analysis of the SBPM (2.3). Theorem 3.2
shows that, under reasonable hypothesis, the error

EN
k,J = ‖UN

k,J − UN‖

between the parareal solution UN
k,J and the sequential fine solution UN := uN.n tends

to zero for all N ∈ {0, . . .N} as the parareal iterations k tend to infinity.
Theorem 3.2. Assume that we have the following stability hypothesis on F t

τ , G
t
τ

and δGt
τ := F t

τ − Gt
τ :

‖δGt
τ (t, x)‖ ≤ C(‖x‖)τεδG(3.5a)

‖F t
τ (t, x)−F t

τ (t, y)‖ ≤ (1 + Cτ)‖x − y‖,(3.5b)

‖Gt
τ (t, x)− Gt

τ (t, y)‖ ≤ (1 + Cτ)‖x − y‖,(3.5c)

‖δGt
τ (t, x)− δGt

τ (t, y)‖ ≤ CτεδG‖x− y‖(3.5d)

Y. Maday, O. Mula, M. K. Riahi 7

Assume in addition that

(3.6) ‖Id−A−1B‖ ≤ Cδt

and that

(3.7) ρJ ≤ Cδtε2δG , in Case I,

or

(3.8) ρJ ≤ Cmin
(
δtεδG , ε

2
δG

)
, in Case II.

Then, there exists a constant C > 0 such that

max
N∈{0,...N}

EN
k,J ≤ Cεk+1

δG , k ≥ 0

for the parareal algorithm (2.3) with J internal iterations and with the first type of
initialization (3.3).

Remark 3.3 (Remarks on the hypothesis of Theorem 3.2).
• Hypothesis (3.5a) to (3.5d) are classical to prove the convergence of the plain
parareal algorithm. In particular, note that (3.5a) and (3.5d) mean that Gt

τ

is εδG accurate with respect to F t
τ .

• Hypothesis (3.6) is classical in the numerical analysis of the fine solver. In-
deed, it allows to prove that the fine propagator is δt accurate. In addition,
note that it implies that

(3.9) ‖A−1B‖ ≤ 1 + Cδt

which is an inequality that will be used in the proof of the theorem. In a system
of differential equations of the form of (1.1), the constant C will be of a fixed
size that is independent of the spatial discretization. Finally, note that this
property (3.6) can be weakened in the case where the system comes from the
spatial discretization of a partial differential equation, like the heat equation.
In this cases, A is symmetric positive definite and A−1B is a contraction,
i.e., we have a better condition than (3.9)

‖A−1B‖ < 1.

We start with the proof of the Theorem in “Case I” for the initialization (3.3);
the proof in that case requires the following intermediate result.

Lemma 3.4. With the hypothesis of Theorem 3.2, in “Case I”, we have for
0 ≤ N ≤ N

‖F̃TN

J,∆T (U
N
k,J)−FTN

∆T (U
N
k,J)‖

≤

{
C∆Tδtε2δG , k = 0,

C∆TρJ [nρJ]k + c
∑k

ℓ=1[nρ
J]ℓ[EN

k−ℓ,J + EN
k−ℓ+1,J], k ≥ 1.

(3.10)

Proof. For any k ≥ 0, the term FTN

∆T (U
N
k,J) is the solution u

n
k to the following

exact fine solver over [TN , TN+1] given by
{
un+1
k = A−1Bunk +A−1fn, 0 ≤ n ≤ n− 1

u0k = UN
k,J .

(3.11)

8 Towards a Fully Scalable Balanced Parareal Method: application to Neutronics

while the degraded fine propagator F̃TN

J,∆T (U
N
k,J) is the solution u

n,J
k to problem (3.1)

that we recall here : for 0 ≤ n ≤ n− 1 and 1 ≤ j ≤ J ,

{
un+1,j
k = (Id−D−1A)un+1,j−1

k +D−1Bun,Jk +D−1fn,

u0,Jk = UN
k,J ,

(3.12)

Let us now introduce an auxiliary notation û
n
k defined through

{
ûn+1
k = A−1Bun,Jk +A−1fn, 0 ≤ n ≤ n− 1,

û0k = UN
k,J ,

(3.13)

We now define the error sequences for 0 ≤ j ≤ J, 0 ≤ n ≤ n, k ≥ 0,

ẽn,jk = un,jk − unk ,

ênk = ûnk − unk ,

dn,jk = un,jk − ûnk = ẽn,jk − ênk .

Note that, with these notations, the term ‖F̃TN

J,∆T (U
N
k,J)− FTN

∆T (U
N
k,J)‖ that we want

to bound reads ‖ẽ
n,J
k ‖. By subtracting (3.11) to (3.13), we infer that

(3.14) ên+1
k = A−1Bẽn,Jk , 0 ≤ n ≤ n− 1

Similarly, subtracting (3.12) to (3.13), we can derive that dn+1,j
k = (Id−D−1A)dn+1,j−1

k ,
which with a bootstrap over j yields

(3.15) dn+1,j
k = (Id−D−1A)Jdn+1,0

k

The term dn+1,0
k can be evaluated as follows

(3.16) dn+1,0
k = ẽn+1,0

k − ên+1
k = ẽn+1,0

k −A−1Bẽn,Jk ,

where we have used (3.14) to derive the last equality. For k ≥ 0, 0 ≤ n ≤ n − 1, we
thus obtain

(3.17) ẽn+1,J
k = dn+1,J

k + ên+1
k = (Id−D−1A)J ẽn+1,0

k +[Id−(Id−D−1A)J]A−1Bẽn,Jk

which, thanks to (3.9) and (2.2) allows to bound ‖ẽn+1,J
k ‖ by

(3.18) ‖ẽn+1,J
k ‖ ≤ ρJ‖ẽn+1,0

k ‖+ (1 + ρJ)(1 + Cδt)‖ẽn,Jk ‖.

We now bound ‖ẽn+1,0
k ‖ = ‖un+1,0

k − un+1
k ‖ by using the first type of initialization of

the iterations on j that was defined in (3.3). It can easily be seen that, in this case,

‖ẽn+1,0
k ‖ ≤

{
‖ẽn,Jk ‖+ ‖unk − un+1

k ‖, k = 0,

‖ẽn+1,J
k−1 ‖+ ‖un+1

k−1 − un+1
k ‖, k ≥ 1.

(3.19)

Note also that, by property (3.9), we have, on one hand,

(3.20) ‖unk − un+1
k ‖ ≤ Cδt, k ≥ 0

Y. Maday, O. Mula, M. K. Riahi 9

and, on the other hand, we can bound ‖un+1
k−1 − un+1

k ‖ as

‖un+1
k−1 − un+1

k ‖ = ‖FTN

(n+1)δt

(
UN
k−1,J

)
−FTN

(n+1)δt

(
UN
k,J

)
‖

≤ (1 + C(n+ 1)δt) ‖UN
k−1,J − UN

k,J‖

≤ (1 + C(n+ 1)δt) [‖UN
k−1,J − UN‖+ ‖UN

k,J − UN‖]

= (1 + C∆T) [EN
k,J + EN

k−1,J], k ≥ 1.(3.21)

By using (3.19), (3.20) and (3.21) in inequality (3.18), we infer

‖ẽn+1,J
k ‖ ≤

CδtρJ + θ‖ẽn,Jk ‖, k = 0, 0 ≤ n ≤ n− 1

ρJ max
0≤m≤n

‖ẽm,J
k−1‖+ ρJ (1 + C∆T) [EN

k,J + EN
k−1,J] + θ‖ẽn,Jk ‖, k ≥ 1, 0 ≤ n ≤ n− 1,

where θ = (1 + Cδt)(1 + 2ρJ). A bootstrap over n yields (note that ẽ0,Jk ≡ 0)

‖ẽn+1,J
k ‖ ≤

1− θn

1− θ
CδtρJ , k = 0, 0 ≤ n ≤ n− 1

1− θn

1− θ
ρJ
(

max
0≤m≤n

‖ẽm,J
k−1‖+ (1 + C∆T) [EN

k,J + EN
k−1,J]

)
, k ≥ 1, 0 ≤ n ≤ n− 1.

For 0 ≤ n ≤ n, we have 1−θn

1−θ
≤ nθn ≤ nθn. Besides, θn ≤ C(1 + nδt)(1 + 2nρJ) with

a moderate constant C since δt and ρJ are small quantities. Since ρJ ≤ Cδtε2δG , we
have that nθn ≤ C(1 + ∆T)(1 + 2C∆Tε2δG), which implies that

(3.22)
1− θn

1− θ
≤ Cn,

with a moderate constant C. Therefore, for k = 0,

(3.23) max
0≤m≤n

‖ẽm,J
k=0‖ ≤ C∆TρJ , 0 ≤ n ≤ n,

which concludes the proof of the Lemma for k = 0 since ‖F̃TN

J,∆T (U
N
k=0,J)−FTN

∆T (U
N
k=0,J)‖ =

‖ẽn,Jk=0‖ ≤ max
0≤m≤n

‖ẽm,J
k=0‖. In the case k ≥ 1, inequality (3.22) yields

max
0≤m≤n

‖ẽm,J
k ‖ ≤ CnρJ

(
max

0≤m≤n
‖ẽm,J

k−1‖+ (1 + C∆T) [EN
k,J + EN

k−1,J]

)
,

which, by a bootstrap argument over k gives the desired result

max
m,0≤m≤n

‖ẽm,J
k ‖ ≤ C∆TρJ [nρJ]k + c

k∑

ℓ=1

[nρJ]ℓ[EN
k−ℓ,J + EN

k−ℓ+1,J], k ≥ 1.

Proof. [Proof of Theorem 3.2 in “Case I” for the initialization (3.3)] We proceed
by induction over k. In the case k = 0, UN+1

k=0,J = GTN

∆T (U
N
k=0,J) for 0 ≤ N ≤ N − 1

and U0
0,J = u0. Thus, for 0 ≤ N ≤ N − 1,

EN+1
0,J = ‖UN+1

0,J − UN+1‖

= ‖GTN

∆T (U
N
0,J)−FTN

∆T (U
N)‖

≤ ‖GTN

∆T (U
N
0,J)− GTN

∆T (U
N)‖ + ‖GTN

∆T (U
N)−FTN

∆T (U
N)‖

≤ (1 + C∆T)‖UN
0,J − UN‖+ C∆TεδG = (1 + C∆T)EN

0,J + C∆TεδG ,

10 Towards a Fully Scalable Balanced Parareal Method: application to Neutronics

where we have used hypothesis (3.5c) and (3.5a) to derive the last inequality. A
bootstrap argument over N allows to derive the result

(3.24) max
N∈{0,...N}

EN+1
0,J ≤ CεδG .

For k ≥ 1, we proceed as follows. From (2.3), we can write for k ≥ 0

UN+1
k+1,J − UN+1 = GTN

∆T (U
N
k+1,J)− GTN

∆T (U
N)− GTN

∆T (U
N
k,J) + GTN

∆T (U
N)

+ F̃TN

J,∆T (U
N
k,J)−FTN

∆T (U
N)

= GTN

∆T (U
N
k+1,J)− GTN

∆T (U
N)− [GTN

∆T −FTN

∆T](U
N
k,J) + [GTN

∆T −FTN

∆T](U
N)

+ F̃TN

J,∆T (U
N
k,J)−FTN

∆T (U
N
k,J).(3.25)

By taking norms in (3.25) and using (3.5c) and (3.5d), we derive for k ≥ 0

(3.26) EN+1
k+1,J ≤ [1 + C∆T]EN

k+1,J + CεδG∆TE
N
k,J + ‖F̃TN

J,∆T (U
N
k,J)−FTN

∆T (U
N
k,J)‖.

By using the assumption that ρJ ≤ Cδtε2δG and the induction hypothesis

max
N∈{0,...N}

EN
p,J ≤ Cεp+1

δG , 0 ≤ p ≤ k

in inequality (3.10), we derive that

‖F̃TN

J,∆T (U
N
k,J)−FTN

∆T (U
N
k,J)‖ ≤ C∆Tεk+2

δG , k ≥ 0.

Using this inequality in (3.26) yields

EN+1
k+1,J ≤ [1 + C∆T]EN

k+1,J + C∆Tεk+2
δG , k ≥ 0.

Finally, a bootstrap over N gives

EN+1
k+1,J ≤ Cεk+2

δG , 0 ≤ N ≤ N− 1.

We finish by the proof of the Theorem in “Case II” for the initialization (3.4).
Here again we start with some preliminary lemmas

Lemma 3.5. With the hypothesis of Theorem 3.2, in “Case II”, If k = 0 and
n = 1,

(3.27) ‖ẽ1,00 ‖ ≤ Cδt.

In addition, if k = 0, we have

(3.28) max
0≤m≤n

‖ẽm,0
0 ‖ ≤ C∆TρJ

If k ≥ 1 and n = 1,

(3.29) ‖ẽ1,0k ‖ ≤ max
0≤m≤n

‖ẽm,J
k−1‖+ Cδt(1 + ∆T)[EN

k,J + EN
k−1,J]

In addition, for k ≥ 1,

(3.30) max
0≤m≤n

‖ẽm,0
k ‖ ≤ max

0≤m≤n
‖ẽm,J

k ‖+2 max
0≤m≤n

‖ẽm,J
k−1‖+Cδt(1+∆T)[EN

k,J +EN
k−1,J]

Y. Maday, O. Mula, M. K. Riahi 11

Also, for k ≥ 1, 0 ≤ n ≤ n− 1,

(3.31) ‖αn
k‖ = ‖un+1

k − unk − un+1
k−1 + unk−1‖ ≤ Cδt (1 + C∆T) [EN

k,J + EN
k−1,J].

Proof. The result for k = 0 was proven in the lemma for the first type of initial-
ization. For k ≥ 1 and 0 ≤ n ≤ n− 1, we have with the second type of initialization,

ẽn+1,0
k = un+1,0

k − un+1
k

= un+1,J
k−1 + un,Jk − un,Jk−1 − un+1

k

= ẽn+1,J
k−1 + ẽn,Jk − ẽn,Jk−1 − αn

k ,(3.32)

where

(3.33) αn
k := un+1

k − unk − un+1
k−1 + unk−1, k ≥ 1, 0 ≤ n ≤ n− 1.

From (3.32) we derive

(3.34) ‖ẽn+1,0
k ‖ ≤ max

0≤m≤n
‖ẽm,J

k ‖+ 2 max
0≤m≤n

‖ẽm,J
k−1‖+ ‖αn

k‖.

Let us bound ‖αn
k‖. For this, it is first all immediate from (3.11) that

un+1
k − un+1

k−1 = A−1B[unk − unk−1],

from which we derive

un+1
k −unk−u

n+1
k−1+u

n
k−1 = −(Id−A−1B)[unk−u

n
k−1] = −(Id−A−1B)[A−1B]n[u0k−u

0
k−1]

By using (3.6) in the last formula, for k ≥ 1 and 0 ≤ n ≤ n− 1 we get,

(3.35) ‖αn
k‖ = ‖un+1

k − unk − un+1
k−1 + unk−1‖ ≤ Cδt (1 + Cnδt) ‖UN

k,J − UN
k−1,J‖,

where again (3.11) has been used hence, improving (3.20), by a factor δt, indeed

(3.36) ‖αn
k‖ = ‖un+1

k −unk −u
n+1
k−1+u

n
k−1‖ ≤ Cδt (1 + C∆T) [EN

k,J +EN
k−1,J], k ≥ 1.

When k ≥ 1 and n = 0, relation (3.32) reads

(3.37) ẽ1,0k = ẽ1,Jk−1 − α0
k,

and easily yields the desired bound by using (3.36). We then need the following
result for the iterations k ≥ 1 the proof of which is straightforward

Lemma 3.6. Let us set A := B + (Id − B)A−1B , B := (Id − D−1A)J and

K :=
∑J−1

p=0 (Id−D−1A)pD−1B then

(3.38)

‖A‖n ≤ 1 + nδt

‖B‖ ≤ ρJ

‖K‖ ≤ (1 + Cδt)

Lemma 3.7. If, for k ≥ 0,

(3.39) EN
k,J ≤ εk+1

δG , 0 ≤ N ≤ N,

12 Towards a Fully Scalable Balanced Parareal Method: application to Neutronics

then, with the hypothesis of Theorem 3.2 for Case II, we have for k ≥ 0,

‖F̃TN

J,∆T (U
N
k,J)−FTN

∆T (U
N
k,J)‖ ≤ εk+2

δG , 0 ≤ N ≤ N.(3.40)

Proof. For any k ≥ 0, the term FTN

∆T (U
N
k,J) is the solution u

n
k to the following

exact fine solver over [TN , TN+1] given by

{
un+1
k = A−1Bunk +A−1fn, 0 ≤ n ≤ n− 1

u0k = UN
k,J .

(3.41)

while the degraded fine propagator F̃TN

J,∆T (U
N
k,J) is the solution u

n,J
k to problem (3.1)

that we recall here: for 0 ≤ n ≤ n− 1 and 1 ≤ j ≤ J ,

{
un+1,j
k = (Id−D−1A)un+1,j−1

k +D−1Bun,Jk +D−1fn,

u0,Jk = UN
k,J ,

(3.42)

We now define the error sequence

ẽn,jk
:= un,jk − unk , 0 ≤ j ≤ J, 0 ≤ n ≤ n, k ≥ 0,

where, by definition, ẽ0,jk = 0. With these notations, the term ‖F̃TN

J,∆T (U
N
k,J) −

FTN

∆T (U
N
k,J)‖ that we want to bound reads ‖ẽn,Jk ‖. For k ≥ 0, 0 ≤ n ≤ n − 1, we

have derived in (3.17)

ẽn+1,J
k = (Id−D−1A)J ẽn+1,0

k + [Id− (Id−D−1A)J]A−1Bẽn,Jk ,

which, by using the second type of initialization (3.4) can be written for k ≥ 1 as
(3.43)

ẽn+1,J
k =

(
B + (Id− B)A−1B

)
ẽn,Jk + B

(
ẽn+1,J
k−1 − ẽn,Jk−1

)
− Bαn

k , 0 ≤ n ≤ n− 1,

where αn
k := un+1

k − unk − un+1
k−1 + unk−1. This expression motivates the analysis of the

expression

(3.44) ẽn+1,J
k−1 − ẽn,Jk−1 = un+1,J

k−1 − un+1
k−1 − un,Jk−1 + unk−1, k ≥ 1, 0 ≤ n ≤ n− 1.

For this, we first notice that from (3.41) we obtain, for 1 ≤ n ≤ n− 1

un+1
k−1 − unk−1 = A−1

(
B[unk−1 − un−1

k−1] + [fn − fn−1]
)
,

then, using the fact that ρ = ‖Id−D−1A‖ < 1, we derive A−1D =
∑∞

p=0(Id−D
−1A)p,

hence

(3.45) un+1
k−1 − unk−1 =

∞∑

p=0

(Id−D−1A)pD−1
(
B[unk−1 − un−1

k−1] + [fn − fn−1]
)

Y. Maday, O. Mula, M. K. Riahi 13

for 1 ≤ n ≤ n− 1. Equation (3.45) rewrites

un+1
k−1 − unk−1 = (Id−D−1A)J

∞∑

p=0

(Id−D−1A)pD−1
(
B[unk−1 − un−1

k−1] + [fn − fn−1]
)

+
J−1∑

p=0

(Id−D−1A)pD−1
(
B[unk−1 − un−1

k−1] + [fn − fn−1]
)

= (Id−D−1A)J [un+1
k−1 − unk−1]

+

(
J−1∑

p=0

(Id−D−1A)pD−1

)
(
B[unk−1 − un−1

k−1] + [fn − fn−1]
)
.

On the other hand, (3.42) leads to

un+1,J
k−1 − un,Jk−1 = (Id−D−1A)J [un+1,0

k−1 − un,0k−1]

+

(
J−1∑

p=0

(Id−D−1A)pD−1

)(
B[un,Jk−1 − un−1,J

k−1] + [fn − fn−1]
)
,

for 1 ≤ n ≤ n− 1. By subtraction, we get for k ≥ 1 and 1 ≤ n ≤ n− 1,

ẽn+1,J
k−1 − ẽn,Jk−1 = (Id−D−1A)J [ẽn+1,0

k−1 − ẽn,0k−1]

+

(
J−1∑

p=0

(Id−D−1A)pD−1B

)
(ẽn,Jk−1 − ẽn−1,J

k−1).

A bootstrap argument over n yields for k ≥ 1 and 1 ≤ n ≤ n− 1,

(3.46) ẽn+1,J
k−1 − ẽn,Jk−1 =

n∑

ℓ=1

Kn−ℓB
(
ẽℓ+1,0
k−1 − ẽℓ,0k−1

)
+Kn

(
ẽ1,0k−1 − ẽ0,0k−1

)
,

where we note that, in fact, ẽ0,0k−1 = 0 by definition. By inserting (3.46) in (3.43) and
by rearranging terms, we get for 1 ≤ n ≤ n− 1, k ≥ 1,

(3.47) ẽn+1,J
k = Aẽn,Jk − Bαn

k + Bvnk−1 + BKnẽ1,0k−1,

where vnk−1 :=
∑n

m=1K
n−mB(ẽm+1,0

k−1 − ẽm,0
k−1). A bootstrap over n yields for 1 ≤ n ≤

n− 1, k ≥ 1,

(3.48) ẽn+1,J
k = Aẽ1,Jk −

n∑

ℓ=1

An−ℓBαℓ
k +

n∑

ℓ=1

An−ℓB2vℓk−1 +

(
n∑

ℓ=1

An−ℓBKℓ

)
ẽ1,Jk−1.

By taking norms in the last expression, we can derive the following bound for ‖ẽn+1,J
k ‖,

‖ẽn+1,J
k ‖ ≤ ‖A‖n‖ẽ1,Jk ‖+ n‖B‖ max

1≤ℓ≤n
‖A‖n−ℓ max

1≤ℓ≤n
‖αℓ

k‖

+ n‖B‖ max
1≤ℓ≤n

‖A‖n−ℓ max
1≤ℓ≤n

‖vℓk−1‖

+ n‖B‖‖ẽ1,Jk−1‖ max
1≤ℓ≤n

‖A‖n−ℓ max
1≤ℓ≤n

‖K‖ℓ, 1 ≤ n ≤ n− 1, k ≥ 1,(3.49)

14 Towards a Fully Scalable Balanced Parareal Method: application to Neutronics

from which we shall derive the desired result by bounding recursively max0≤m≤n ‖ẽm,J
k ‖

for k ≥ 1. The case k = 0 has been treated in the previous theorem for the first ini-
tialization. The result is valid here and reads,

(3.50) max
0≤m≤n

‖ẽm,J
0 ‖ ≤ C∆TρJ ≤ C∆Tε2δG ,

where the last inequality comes from the fact that, by hypothesis here, ρJ ≤ Cmin
(
δtεδG , ε

2
δG

)
.

In addition, for k ≥ 0,
(3.51)

‖ẽ1,Jk ‖ ≤ ρJ‖ẽ1,0k ‖ ≤

{
CρJδt, if k = 0

CρJ
(
max0≤m≤n ‖ẽm,J

k−1‖+ Cδt(1 + ∆T)[EN
k,J + EN

k−1,J]
)
, if k ≥ 1

where we have used (3.27) and (3.29) to bound ‖ẽ1,0k ‖.

Finally, since max1≤ℓ≤n ‖vℓk‖ ≤ 2n‖B‖‖K‖nmax1≤ℓ≤n ‖ẽℓ,0k ‖, then, if k = 0,
using (3.28) and (3.38) we derive

(3.52) max
1≤ℓ≤n

‖vℓ0‖ ≤ CnρJ (1 + ∆T)∆TρJ .

If k ≥ 1, using (3.29) and (3.38),
(3.53)

max
1≤ℓ≤n

‖vℓk‖ ≤ Cn(1+∆T)

(
max

0≤m≤n
‖ẽm,J

k ‖+ 2 max
0≤m≤n

‖ẽm,J
k−1‖+ Cδt(1 + ∆T)[EN

k,J + EN
k−1,J]

)
.

Let us come back to the bound for max0≤m≤n ‖ẽm,J
k ‖. If k ≥ 1, by bounding the

members of the right hand side of (3.49) with (3.38), (3.51), (3.31), (3.52), we derive

max
0≤m≤n

‖ẽm,J
1 ‖ ≤ C(1 + ∆T)ρJ

(
max

0≤m≤n
‖ẽm,J

0 ‖+ Cδt(1 + ∆T)[EN
1,J + EN

0,J]

)

+ CnρJ(1 + ∆T)δt(1 + C∆T)[EN
1,J + EN

0,J]

+ Cnρ2J(1 + ∆T)n(1 + ∆T)∆TρJ

+ CnρJρJδt(1 + ∆T)2,

which gives the desired result

(3.54) max
0≤m≤n

‖ẽm,J
1 ‖ ≤ Cε3δG

thanks to the bound (3.8) on ρJ , hypothesis (3.39) on EN
k,J and the bound (3.28)

for max0≤m≤n ‖ẽm,J
0 ‖. We now derive the result for k ≥ 2 by induction where the

recurrence hypothesis is max0≤m≤n ‖ẽm,J
p ‖ ≤ Cεp+2

δG , 0 ≤ p ≤ k − 1. In a similar
manner as we have just derived in the case k = 1, for any k ≥ 2 we have

max
0≤m≤n

‖ẽm,J
k ‖

≤ C(1 + ∆T)ρJ
(

max
0≤m≤n

‖ẽm,J
k ‖+ Cδt(1 + ∆T)[EN

k,J + EN
k−1,J]

)

+ nρJ(1 + ∆T)δt (1 + C∆T) [EN
k,J + EN

k−1,J]

+ (nρJ)2(1 + ∆T)2
(

max
0≤m≤n

‖ẽm,J
k−1‖+ 2 max

0≤m≤n
‖ẽm,J

k−2‖+ Cδt(1 + ∆T)[EN
k−1,J + EN

k−2,J]

)

+ nρJ(1 + ∆T)2ρJ
(

max
0≤m≤n

‖ẽm,J
k−2‖+ Cδt(1 + ∆T)[EN

k−1,J + EN
k−2,J]

)
,

Y. Maday, O. Mula, M. K. Riahi 15

from which we infer that

(3.55) max
0≤m≤n

‖ẽm,J
k ‖ ≤ εk+2

δG

thanks to the recurrence hypothesis, the bound (3.8) on ρJ and (3.39) on EN
k,J .

Then the proof of the theorem in Case II proceeds exactly as in the first case.

4. Mitigation of potential memory storage issues. In the above described
parareal scheme, the initialization of the internal iterations with (3.3) or (3.4) requires

the knowledge of the fine states un,Jk−1 at all times tNn (n = 0, . . . , n) from the previous
iteration k−1. From an implementation point of view, given that the computation of
each interval [TN , TN+1] is performed by different processors, this implies that each
processor must store the previous n fine solutions corresponding to its time interval.
This point can easily become an important bottleneck given the high memory demand
that the storage of all these states can represent in many cases. An example is when
the problem comes from the discretization of a PDE : each state has a size N equal
to the number of degrees of freedom in the space direction, i.e. the size of the finite
element mesh if such a discretization has been chosen.

We propose to address this issue by complexity reduction techniques : over every
interval [TN , TN+1], we propose to store the surrogates

(4.1) πM

[
un,Jk−1

]
, n = 0, . . . , n

instead of the elements

(4.2) un,Jk−1, n = 0, . . . , n

where πM is the projection operator over an appropriate space XM of dimension M
much smaller than n. This transforms the previous n × N storage requirement into
a M ×N + nM , since for every n, n = 0, . . . , n, we store the M coefficients of each
un,Jk−1 in a given basis of XM and the knowledge of the basis requires the storage of
M ×N data.

We define

εcompr := max
0≤n≤n

‖un,Jk−1 − πM

[
un,Jk−1

]
‖

as the error due to the “compression” procedure. The “perturbed” initializations read
in this case

(Case I)

{
un+1,0
k = un,Jk , if k = 0,

un+1,0
k = πM

[
un+1,J
k−1

]
, if k ≥ 1,

(4.3)

or

(Case II)

{
un+1,0
k = un,Jk , if k = 0,

un+1,0
k = πM

[
un+1,J
k−1

]
+ un,Jk − πM

[
un,Jk−1

]
, if k ≥ 1.

(4.4)

This raises the questions:
1. How to build the reduced basis XM without storing all the fine elements?
2. What is the smallest dimension M that allows to have good convergence

properties in XM for our standards? Is this dimension compatible with our
storage limitations?

16 Towards a Fully Scalable Balanced Parareal Method: application to Neutronics

3. Are the convergence properties of our parareal scheme degraded with the use
of the surrogates (4.1)? To what extend?

In the present paper, the answer to these questions will not be provided with theo-
retical arguments but only through numerical results (see section 5.3). Nevertheless,
this enters in the frame of Theorem 3.2 since this additional error can be treated in
the non converged part of the error (3.3).

Regarding the first and second points, a first approach could be to use some
collocation method. For example, one could store a small set of solutions at different
times and then interpolate to obtain the surrogates at other times. In our numerical
simulations, another idea related to the construction of model reduction has been
tested: assume that the dimension M is fixed a priori by our memory limitations.
During the process of storing all the solutions {un,Jk−1}n in (4.2), we compress them
regularly by using a Proper Orthogonal Decomposition (POD), and we denote by
XM the regularly updated reduced basis spanned by the largestM modes. Note that
we do not wait to have the complete knowledge of all the fine solutions (4.2) that
would imply storing the full set of solutions, we propose instead to build XM through
what could be called a “moving-window POD”. Let us explain the procedure through
an example: assume that M = 10 and that we can store a maximum number of
Mmax = 20 elements. Let us fix n = 100 (then n = 0, . . . , 100). We start by storing
the first 20 fine solutions (n = 0, . . . , 19) and extract out of these 20 modes a first

POD basis X
(1)
10 of dimension 10. We now have in memory 10 elements so we continue

by storing the next 10 fine solutions (n = 20, . . . , 29). We now perform a second POD

with the 10 basis functions of X
(1)
10 and the 10 new fine solutions. This gives X

(2)
10 .

And we continue the process.

Remark 4.1. Note that the construction of the reduced basis XM and the “com-
pression” of the fine solutions into XM will slightly degrade the parallel efficiency of
the scheme and its impact should be evaluated. A more detailed study about this par-
ticular point and also on how to determine their dimension M on the run will be
analyzed in future works.

5. An application to neutronics.

5.1. Overview of the general context and goals of our study. Accurate
simulations of the evolution of the population of free neutrons in a reactor core R
are critical in nuclear safety calculations, since the collision of free neutrons with fuel
parts of the core leads to a chain of fission reactions that has to be kept under control
to ensure the safety of the process. The concentration of free neutrons is usually
modeled through an associated quantity called angular flux ψ which is governed by
a linear Boltzmann equation whose terms physically express a balance between the
free neutrons that are created and those that disappear in the core. We will place
ourselves in the three dimensional case where ψ depends on seven variables, namely
the time t ∈ [0, T], the position within the reactor r ∈ R ⊂ R3 and the velocity of
the neutrons v =

√
2E/mω, where E ∈ [Emin, Emax] stands for the energy of the

neutron, ω = v/|v| ∈ S2 stands for the direction of the velocity and m is the mass
of the neutron. This is a highly complex problem that requires a lot of simulations.
In spite of the use of some standard acceleration techniques employed in nuclear
solvers (see, e.g., [9] and [14, Chapter 1]), the computing times for the resolution of
this equation on realistic core geometries still remain too long with respect to the
nuclear industry requirements. Hence our interest in exploring “less conventional”
acceleration strategies like the parallelization of the time variable.

Y. Maday, O. Mula, M. K. Riahi 17

The ability of the parareal in time algorithm to speed up simulations based on
these kinetic transport equations has been illustrated in [9] . As was explained above
(and is quite classical, see, e.g., [1]), the scalability of the approach is rather low which
is actually the motivation of this paper.

As a first step, instead of studying the evolution of ψ, we consider in the present
paper, the evolution of the so-called scalar flux φ(t, r, E) :=

∫
S2
ψ(t, r,ω, E)dω′, which

is the average of ψ over the angular variable. It is well-known (see, e.g. [4, Chapter
XXI]) that φ is the solution of a parabolic equation which is less computationally
expensive than the original Bolzmann equation. This simplification is actually very
widespread in the field of nuclear calculations because it leads to accurate enough
results in most of the usual cases on outputs like the generated power.

Another simplification that is traditionally done consists in averaging in the en-
ergy variable. This further approximation, known as the multi-group approach, is
based on the division of the energy interval into G subintervals ([Emin, Emax] =
[EG, EG−1] ∪ · · · ∪ [E1, E0]) and leads to consider the set Φ = {φg}g∈{1,G} as the
new unknown solution (see, e.g., [7, Chapter 3] or [4, Chapter XXI]).

Finally, the fission chain reaction that takes place inside the core leads to the
presence of some radioactive isotopes that emit neutrons with a given delay (we refer to
them as precursors of delayed neutrons). This phenomenon must be taken into account
in the balance equation, hence the coupling of the parabolic equation for φ with a set
of first order ODE’s expressing the evolution inR of the precursors’ concentration that
will be denoted as C = {Cℓ}ℓ∈{1,...,L}. As a result, the problem consists in finding for

all (t, r) ∈ [0, T]× R the set of multigroup fluxes φ(t, r) =
(
φ1(t, r), . . . , φG(t, r)

)T

and the set of precursors’ concentrations C(t, r) = (C1(t, r), . . . , CL(t, r))
T that are

the solution of:

(5.1)

1

V g
∂tφ

g(t, r)−∇. [Dg(t, r)∇φg(t, r)] + σg
t (t, r)φ

g(t, r)

−
G∑

g′=1

σg′→g
s (t, r)φg

′

(t, r)

−χg
p(t, r)

G∑
g′=1

(
1− βg′

(t, r)
)
(νσf)

g′

(t, r)φg
′

(t, r)

−
L∑

ℓ=1

λℓχ
g
d,ℓ(t, r)Cℓ(t, r) = 0, ∀g ∈ {1, . . . , G}

∂tCℓ(t, r) = −λℓCℓ(t, r)

+
G∑

g′=1

βg′

ℓ (t, r)(νσf)
g′

(t, r)φg
′

(t, r), ∀ℓ ∈ {1, . . . , L}.

φg(t, r) = 0, ∀(t, r) ∈ [0, T]× ∂R.

The initial conditions φ(0, r) and C(0, r) are generally given by the resolution of
the stationary diffusion equation. The coefficient V g is the neutron velocity, Dg

is the diffusion coefficient, σg
t is the total cross-section and σg′→g

s is the scattering
cross-section from energy group g′ to energy group g. The coefficients χg

p and χg
d,ℓ

are respectively the prompt spectrum in energy group g and the delayed spectrum
of precursor ℓ in energy g. Finally, the terms λℓ and βg

ℓ are respectively the decay
constant and the delayed neutron fraction of precursor ℓ at energy g.

Our computations will be done with a solver implemented in Freefem++ whose
properties and accuracy have been presented in [3] for this diffusion problem. The

18 Towards a Fully Scalable Balanced Parareal Method: application to Neutronics

validation of the code and the parareal implementation is based on the so-called
TWIGL benchmark [8], which is a well-known test case in the field of neutronics. It
represents a rod withdrawal in a three-dimensional core

R = {(x, y, z) ∈ R
3| 0 ≤ x ≤ 220 cm; 0 ≤ y ≤ 220 cm; 0 ≤ z ≤ 200 cm}.

A cross-sectional view at the height z = 180 cm is specified in Figure 1. The first group
of rods (blue) is withdrawn from t = 0 (z = 100 cm measured starting from below)
until t = 26.6 s. (z = 180 cm) at a constant speed (see Figure 1). The second group
of rods (red) is inserted from t = 7.5 s. (z = 180 cm) until t = 47.7 s. (z = 60 cm) the
simulation was performed up to final time T = 70 s.

x

y

220 cm

220 cm

0
0

Ref ector

Fuel 1

Fuel 2

Rods 1

Rods 2

0 10 20 30 40 50 60 70
0

0.5

1

1.5

2

2.5x 10
6

Time (s)

P
ow

er
 (

M
W

)

Figure 1: TWIGL benchmark. On the left: Cross-sectional view of the core at the
height z = 180 cm. On the right: power evolution computed with our solver.

In what follows, we provide a preliminary study on the speed-up of the method
by analyzing the number of fine internal iterations that are performed in each of the
choices of starting guesses (case I or II). Finally, we also present here some first results
concerning the impact of the use of surrogates for the internal starting guesses with
a moving-window POD basis.

An extension of these results to the “full case” (Boltzmann equation + industrial
solver) will be provided on a sequel of this paper.

5.2. Discretization of the model and application of the parareal algo-
rithm with a degraded fine solver. For the resolution of (5.1), we define a fine
solver that is built by applying an Euler backward discretization with time step δt. We

denote by φn(r) =
(
φ1,n(r), . . . , φG,n(r)

)T
and Cn(r) = (Cn

1 (r), . . . , C
n
L(r))

T
the

approximation of φ(t, r) and C(t, r) at time t = tn with this fine solver, n = 0, . . . , n.
At each time step, we are led to the resolution of a system that can be written in a
block form:

Given φn and Cn, find φn+1 and Cn+1 such that:
(
An+1

1,1 An+1
1,2

An+1
2,1 A2,2

)(
φn+1

Cn+1

)
=

1

δt

(
φn

Cn

)
, n = 0, . . . , n− 1.(5.2)

Y. Maday, O. Mula, M. K. Riahi 19

The G×G operator matrix

An+1
1,1 =

an+1
1,1 . . . an+1

1,G
...

. . .
...

an+1
G,1 . . . an+1

G,G

accounts for the coupling between multi-group fluxes. The operator matricesAn+1
1,2 (G×

L) and An+1
2,1 (L × G) represent the coupling between the fluxes and the precursors’

concentrations. The L × L operator matrix A2,2 is diagonal with entries of the form
Id
δt

+ λℓ that are independent of time. However, An+1
1,1 , An+1

1,2 , An+1
2,1 are, in fully gen-

erality, time-dependent, hence the super-index n + 1 in the notation. We shall keep
the same notation for the matrices before and after the spacial discretization.

Note that problem (5.2) is not fully discretized yet because a spatial discretization
needs to be specified. In this respect, the solver that we are employing in our nu-
merical computations is based on a P1 spatial discretization (on a tetrahedral mesh).
Therefore in the fully discretized setting, if Nr are the number of degrees of freedom
for the spatial discretization, the dimensions of φn+1 and Cn+1 will be G×Nr and
L×Nr respectively. Thus, the total number of degrees of freedom isN = (G+L)×Nr.
The dimension of, e.g., An+1

1,1 will be GNr × GNr and similarly for the rest of the
matrices.

In order to estimate the accuracy over [0, T] of the sequential fine solver (5.2)
with respect to the exact solution (that we do not know), we choose to determine
it by comparing, for 0 ≤ n ≤ n, the solution given by F0

nδt(u0) (where (5.2) is

directly inverted) with the solution of an “ultra-fine” solver F̂0
nδt that uses a time

step δ̂t = δt/100 = 10−4 s. (and that also directly inverts (5.2)). We have then
estimated εF with

εF ≈ max
0≤n≤n

‖F0
nδt(u0)− F̂0

nδt(u0)‖ℓ2(RN)

‖F̂0
nδt(u0)‖ℓ2(RN)

= 3.510−2.

This reveals the level of accuracy of the time discretization we want to achieve.
Let us say that now we are interesting in solving, the same problem as (5.1),

discretized as in (5.2) but with varying parameters. In this case we assume that instead
of a unique A1,1, we actually have a family of these, e.g. like Ã1,1 = (1 + η)A1,1 and
solving a bunch of them altogether. If φn,j(r) and Cn,j(r) are the approximations of
φn(r) andCn(r) at the j-th iteration, our iterative scheme reads for j = 1, . . . , J∗

n+1,

(
An+1

1,1 0
0 A2,2

)(
φn+1,j

Cn+1,j

)
=

−

(
ηAn+1

1,1 An+1
1,2

An+1
2,1 0

)(
φn+1,j−1

Cn+1,j−1

)
+

1

δt

(
φn,J∗

n

Cn,J∗

n

)
.(5.3)

Note that for different values of η, we can invert the matrix on the left hand side

once and get the different values
(
φn+1,j ,Cn+1,j

)T
=
(
φn+1,j(η),Cn+1,j(η)

)T
as-

sociated to different values of η rapidly. As η ∈ [0, 1] grows, the convergence of this
internal iterative scheme rapidly increases. Note that for η = 0, (5.3) is then the
solver that was used in [3] that only required 3 to 4 iterations to converge at each
time step.

20 Towards a Fully Scalable Balanced Parareal Method: application to Neutronics

Let us now describe how to solve problem (5.2) with the parareal scheme (2.3)
with a reduced number J < J∗

n,k of internal iterations in the fine solver. In our case,

UN
k,J is a pair consisting of the parareal flux and precursors’ concentrations solution

at iteration k and at time TN . With the notations of section 3, F̃TN

J,∆T (U
N
k,J) starts

at time TN = tN0 and reaches TN+1 = tNn by performing n propagations with a time

step of δt. The solution F̃TN

J,∆T (U
N
k,J) can therefore be written in our case as

(5.4) F̃TN

J,∆T (U
N
k,J) =

(
φ
n
k,J

C
n
k,J

)
.

The intermediate states that are performed to reach F̃TN

J,∆T are the following: for
n = 0, . . . , n− 1 and j = 1, . . . , J

(
An+1

1,1 0
0 A2,2

)(
φn+1,j

Cn+1,j

)
= −

(
ηAn+1

1,1 An+1
1,2

An+1
2,1 0

)(
φn+1,j−1

Cn+1,j−1

)
+

1

δt

(
φn,J

Cn,J

)
,

with
(
φ0

k,J

C0
k,J

)
= UN

k,J .

The internal iterations are initialized by adapting formulae (3.3) and (3.4) to our case.

5.3. Numerical results. In what follows, we want to illustrate the behavior
of our balanced parallel algorithm, this is why, for the sake of convenience, we shall
identify one value for η that represents a general feature of iterative algorithms, and
we focus on this particular value.

The parameters η and εinner of the internal iterative scheme (5.3) have thus been
fixed to preserve this accuracy εF and with a number of iterations that is similar to
the one observed in industrial solvers. Since we are using an Euler-backward scheme,
the first feature is satisfied by taking εinner = εF/n ≈ 10−2/400 ≈ 10−5. For the
second, we have benefited from our previous experience with an industrial solver
called MINARET (see [9]): we have observed that, by taking η = 0.05, the number
J∗
n of internal iterations is similar to the number of internal iterations involved in

our previous works with MINARET : the convergence being achieved whenever the
residual between two iterations

(5.5)
‖
(
φn,j,Cn,j

)T
−
(
φn,j−1,Cn,j−1

)T
‖ℓ2(RN)

‖
(
φn,j ,Cn,j

)T
‖ℓ2(RN)

goes below a prescribed tolerance εinner. Note that when η < 0.05 (resp. η > 0.05)
too few (many) internal iterations are required

In Table 1 and Figure 2 are summarized the values of the parameters employed
in these computations.

Since internal iterations are the basic step in all the different methods below,
complexity can be evaluated in terms of the total number of internal iterations over
[0, T]. In the case of the sequential fine solver F0

J∗,T (u0), the complexity is

Cseq =

n∑

n=1

J∗
n = 4949.

Y. Maday, O. Mula, M. K. Riahi 21

Time parameters
T = 40 s., ∆T = 5 s., δt = 0.1 s.

N = T/∆T = 8, n = ∆T δt = 50, n = T/δt = 400

Sequential fine solver F0
J∗,T (u0)

Accuracy: εF = 3.5.10−2

Internal iterations:

{
εinner = 10−5

η = 0.05

Behavior of J∗
n

(see Figure 2)

min0≤n≤n J
∗
n = 4

max0≤n≤n J
∗
n = 29

〈J∗
n〉 =

1
n
∑

0≤n≤n J
∗
n ≈ 12.5

Truncated fine solver FTN

J,∆T

Internal iterations:

{
εinner = 10−5

η = 0.05

J is a parameter of our study

Coarse solver GTN

∆T

Time step of size ∆T

No internal iterations: direct inversion of (5.2)
Parareal iterations Stopping criterion εparareal := εF/10 = 10−3

Table 1: Summary of the parameters used in the numerical computations.

0 5 10 15 20 25 30 35 40
0

5

10

15

20

25

30

Time (s)

N
um

be
r

of

in
te

rn
al

 it
er

at
io

ns
 J* n

Figure 2: Number of internal iterations J∗
n of the sequential fine solver F0

J∗,T (u0).

If we neglect the cost of the coarse propagator, an estimation of the complexity Cplain
and Ctrunc of the plain and truncated parareal schemes is given by the total number
of internal iterations over the total number of processors Nproc = N = 8, namely

Cplain =

kstd∑
k=1

n∑
n=1

J∗
n,k

Nproc
and Ctrunc(J,Case) =

ktrunc∑
k=1

n∑
n=1

min
(
J, J∗

n,k

)

Nproc
.

The value of Ctrunc depends on J and also on the type of initialization of the internal
iterations (Case I if we use (3.3) or Case II if we use (3.4)).

In the results presented below, we study:
1. Convergence of the new parareal scheme for different values of J and with

the two different types of initializations of the internal iterations (formulas

22 Towards a Fully Scalable Balanced Parareal Method: application to Neutronics

(3.3)and (3.4)). Convergence will be examined through the study of the
errors of the degraded fine propagations with respect to the fine sequential
resolution, namely

(5.6) enk =
‖
(
φ

n,J
k ,Cn,J

k

)T
−
(
φn,J∗

n ,Cn,J∗

n

)T
‖ℓ2(RN)

‖
(
φn,J∗

n ,Cn,J∗

n

)T
‖ℓ2(RN)

, n = 0, . . . , n.

Convergence will be achieved when

sup
0≤n≤n

enk < εparareal,

We consider that the choice

εparareal := εF/10 = 3.5.10−3

is tight enough to preserve the accuracy εF of the sequential fine solver in
our parareal solutions.

2. An analysis of the acceleration performances will be given through a compar-
ison of the complexity Ctrunc with respect to Cseq. Thus,

S(J,Case) =
Cseq

Ctrunc(J,Case)
; E(J,Case) =

S(J,Case)

Nproc

will be taken as estimations of the speed-up and the efficiency respectively.
3. We will also present some results concerning the use of a reduced basis to

limit the storage.
Remark 5.1. Note that the errors given in (5.6) cannot be used in practice

during a calculation as a stopping criterion because the sequential fine resolution will
not be carried out. An estimator that could be computed online could involve, e.g.,
some residual error in the parareal solutions like

(5.7) rk = max
1≤N≤N

‖
(
φ

N,J
k ,CN,J

k

)T
−
(
φ

N,J
k−1,C

N,J
k−1

)T
‖ℓ2(RN)

‖
(
φ

N,J
k ,CN,J

k

)T
‖ℓ2(RN)

, k ≥ 2.

However, in this study, we are placing ourselves in an a posteriori validation to carry
out the convergence study as accurately as possible and we will therefore analyze the
convergence in the parareal iterations through the errors enk .

We start by plotting in Figure 3 the convergence of the plain parareal algorithm.
Since we have fixed the convergence criterion of the parareal iterations to εparareal =
3.5.10−3, convergence is achieved in kplain = 2 iterations. We have in this case

Cplain = 16050/8 = 2006.2.

In other words, with N = 8 processors, the plain parareal algorithm provides an
acceleration of a factor of

Splain = Cseq/Cplain ≈ 2,

hence only twice faster when using 8 processors (E = 1/4). Let us now analyze
the convergence of the parareal scheme with truncated internal iterations. The first

Y. Maday, O. Mula, M. K. Riahi 23

type of initialization of the internal iterations (see formula (3.3)) presents a very slow
convergence rate. As an example, convergence is not even achieved after ktrunc = 6
parareal iterations with J = 10 and we are slower than in the plain parareal scheme
since we have

Ctrunc(10, 1) > 20720/8 = 2590 > Cplain.

This behavior can be well understood by analyzing the condition ρJ ≤ Cδtε2 of
theorem 3.2. Indeed, we have evaluated that ρ ≈ 0.94 during the whole transient and,
since we use an implicit Euler scheme, we have εδG ≈ ∆t. As a result, the condition
ρJ ≤ Cδtε2δG is fulfilled in our case for large values of J . Although one could think
that the constant C might be playing an important role here, from the construction
of the proof of theorem 3.2 it follows that C is built from order one terms.

0 10 20 30 40
10

−9
10

−8
10

−7
10

−6
10

−5
10

−4
10

−3
10

−2
10

−1

Time (s)

R
el

at
iv

e
er

ro
r

Plain parareal algorithm

0 10 20 30 40
10

−9
10

−8
10

−7
10

−6
10

−5
10

−4
10

−3
10

−2
10

−1

Time (s)

R
el

at
iv

e
er

ro
r

J=10; Case=2; POD=NO

k=1 k=2 k=3 k=4 k=5 k=6

Figure 3: Left: Plain parareal algorithm. Right: Convergence with the second type
of initialization (J = 10). The legend will also apply for the rest of the plots.

Let us now turn to the second type of initialization proposed in (3.4). The con-
vergence properties of this scheme are significantly improved with respect to the first
type of initialization. Indeed, the case J = 10 is now performing similarly to the
plain parareal algorithm (see Figure 3, right). What is more, by performing only one
internal iteration (J = 1), parareal convergence in the whole time interval is achieved
after ktrunc = 4 parareal iterations (see Figure 4, left). This means that we only need
Jcumul = J × ktrunc = 1 × 4 = 4 internal iterations (one per parareal iteration) to
reach a converged state at every fine time tn, 0 ≤ n ≤ n. If we compare this with
the values of J∗

n displayed in Figure 2, it seems clear that Jcumul = 4 is very small in
comparison with the values of J∗

n. This illustrates to what extend it is interesting to
not only resume the internal iterations from k − 1 as the first initialization does, but
also to take the dynamics of the process into account as this second initialization is
doing. We have in this case

Ctrunc(1, 2) = 1× 6× 400/8 = 200

Etrunc(1, 2) =
4949

200× 8
≈ 3.1

24 Towards a Fully Scalable Balanced Parareal Method: application to Neutronics

This value of the efficiency Etrunc(1, 2) implies that, if we implemented this parareal
scheme in only one processor, the resolution would be 3.1 times faster (and with
the same accuracy εF) than the traditional sequential procedure with the fine solver
F0

J∗,T . We recover here one of the basic features of spatial domain decomposition in
which computations on a single processor can be accelerated with these algorithms.

0 10 20 30 40
10

−4

10
−3

10
−2

10
−1

Time (s)

R
el

at
iv

e
er

ro
r

J=1; Case=2; POD=NO

0 10 20 30 40
10

−4

10
−3

10
−2

10
−1

Time (s)

R
el

at
iv

e
er

ro
r

J=3; Case=2; POD=NO

Figure 4: Convergence with the second type of initialization.

Despite the high efficiency result, the value ktrunc = 4 represents a relatively large
degradation with respect to the number kplain = 2 iterations of the plain parareal
scheme. We can “soften” the degradation by increasing the total number of internal
iterations. In the case J = 3, convergence is achieved in ktrunc = 3 iterations and we
still have competitive efficiency results:

Ctrunc(3, 2) = 3051/8 ≈ 381.4

Etrunc(3, 2) =
4949

381.4× 8
= 1.6

We believe that these efficiency results are very encouraging, since they represent a
dramatic improvement of the performances of the plain parareal algorithm and makes
the parallelization of time be a competitive option to for the exploitation of massively
parallel computers. However, we would like to point out at this stage that the study
of the actual performances of the method should be carried out with computations
of the residual (5.7) rather than with the errors (5.6) as in the present discussion. In
this case, we usually expect one additional parareal iteration to detect convergence
with residuals like (5.7). As a result, we expect the efficiency to be degraded with
respect to the present results, but it seems that there is still room to keep it larger
than one (or, at least, very close to it).

It is now important to analyze whether the convergence properties of the scheme
are degraded if the initial values of the internal iterations are replaced by surrogates
coming from a reduced basis XM of small dimensionM (see (4.1)). We present results
in the case J = 3 and with the second type of initialization (similar conclusions
could be drawn from other configurations). In the left plot of Figure 5 are presented
calculations with a reduced basis of dimensionM = 2 that has been built with a size of
the moving window ofMmax = 8. The accuracy of the compression is εcompr ≈ 5.10−4.
One can observe that convergence is still achieved in ktrunc = 3 parareal iterations,

Y. Maday, O. Mula, M. K. Riahi 25

which proves that the properties of the scheme are not degraded very much if the
compression is “tuned” in a proper way.

0 10 20 30 40
10

−4

10
−3

10
−2

10
−1

Time (s)

R
el

at
iv

e
er

ro
r

J=3; Case=2; POD=Yes (8;2)

0 10 20 30 40
10

−4

10
−3

10
−2

10
−1

Time (s)
R

el
at

iv
e

er
ro

r

J=3; Case=2; POD=Yes (8;1)

Figure 5: Convergence in the second type of initialization with J = 3 and compression
of the starting guesses. On the left, M = 2, Mmax = 8 and εcompr < εparareal. On the
right, M = 1, Mmax = 8 and εcompr > εparareal.

From what has been observed in our computations, the key of this “tuning” relies
in the relation between the compression εcompr and the accuracy of the fine solver εF .
The compression should preserve the accuracy of the fine solver over time intervals of
size ∆T . Since, at each fine time step we add an error of order εcompr, it means that
we should have

εcompr <
εF

∆T/δt
=
εF
n

= 7.10−4,

which is a condition that is satisfied in the previous example. Let us now consider
an example in which εcompr ≥ εF/n. For that, we consider a moving-window POD
with M = 1 and Mmax = 8, whose compression accuracy is εcompr = 10−2. As the
right plot of Figure 5 shows, convergence properties are severely degraded. Indeed,
although most of the errors are below εparareal = 3.5.10−3 after 3 parareal iterations,
convergence stagnates at a level of around 2.10−3, which is too close to the limit
εparareal to confirm convergence without any reservations.

6. Conclusions and future work. We have introduced the main foundations of
the SBPM : a version of parareal scheme that involves a degraded fine solver with non
converged internal iterations at every time step combined with a reduced storage of the
time history of the incremental approximated solution. We have provided theoretical
evidence of the convergence of the scheme and have studied its behavior in a numerical
application related to the field of neutronics. The numerical results show a significant
improvement of the parallel performances with respect to the plain parareal algorithm
and we believe that it is an important step towards making the parallelization of time
be a fully competitive option for the exploitation of massively parallel computers.
In particular, our example show that, even implemented in on a serial platform, the
SBPM is faster than the plain implementation of the fine solver. The results of this
article will be complemented in a future work by an implementation of the method
in a solver of the nuclear industry like MINARET. This will prove feasibility in an

26 Towards a Fully Scalable Balanced Parareal Method: application to Neutronics

involved non-academic setting and a study of the efficiency of the method through
residuals of the type of (5.7) could exactly quantify the performances of the method.

REFERENCES

[1] E. Aubanel, Scheduling of tasks in the parareal algorithm, Parallel Computing, 37 (2011),
pp. 172–182.

[2] Bal, G., Parallelization in time of (stochastic) ordinary differential equations, 2003. Preprint,
http://www.columbia.edu/ gb2030/PAPERS/paralleltime.pdf.

[3] A.-M. Baudron, J.-J. Lautard, Y. Maday, M. K. Riahi, and J. Salomon, Parareal in time
3D numerical solver for the LWR Benchmark neutron diffusion transient model, Journal
of Computational Physics, 279 (2014), pp. 67 – 79.

[4] R. Dautray and J.-L. Lions, Analyse mathématique et calcul numérique, Masson, 1984.
[5] Martin J Gander, 50 years of time parallel time integration, in Householder Symposium XIX

June 8-13, Spa Belgium, 2015, p. 81.
[6] R. Guetat, Méthode de parallélisation en temps: Application aux méthodes de décomposition

de domaine, PhD thesis, Paris VI, 2012.
[7] A. Hebert, Applied reactor physics, Presses inter Polytechnique, 2009.
[8] S. Langenbuch, W. Maurer, and W. Werner, Coarse-mesh flux expansion method for the

analysis of space-time effects in large light water reactor cores, Nucl. Sci. Eng., 63 (1977),
pp. 437–456.

[9] J.-J. Lautard, Y. Maday, and O. Mula, MINARET: Towards a parallel 3D time-dependent
neutron transport solver, Submitted.

[10] J.L. Lions, Y. Maday, and G. Turinici, Résolution d’EDP par un schéma en temps pararéel,
C. R. Acad. Sci. Paris, (2001). t. 332, Série I, p. 661-668.

[11] Y. Maday, The ’Parareal in Time’ Algorithm, in Substructuring Techniques and Domain
Decomposition Methods, F. Magoulès, ed., Saxe-Coburg Publications, 2010, ch. 2, pp. 19–
44.

[12] Y. Maday and G. Turinici, The Parareal in Time Iterative Solver: a Further Direction to
Parallel Implementation, in Domain Decomposition Methods in Science and Engineering,
Springer Berlin Heidelberg, 2005, pp. 441–448.

[13] M. Minion, A hybrid parareal spectral deferred corrections method, Comm. App. Math. and
Comp. Sci., 5 (2010).

[14] O. Mula, Some contributions towards the parallel simulation of time dependent neutron trans-
port and the integration of observed data in real time, PhD thesis, Paris VI, 2014.

[15] A. Toselli and O. Widlund, Domain decomposition methods: algorithms and theory, vol. 3,
Springer, 2005.

