
HAL Id: hal-01184267
https://hal.science/hal-01184267

Submitted on 13 Aug 2015

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Efficient Media Asset Transfer in a Unified Framework
Managing Broadcasting Systems

Mathurin Body, Bernard Cousin

To cite this version:
Mathurin Body, Bernard Cousin. Efficient Media Asset Transfer in a Unified Framework Managing
Broadcasting Systems. First IEEE International Conference on Distributed Frameworks for Multime-
dia Applications (DFMA’05), Feb 2005, Besançon, France. pp.121 - 129, �10.1109/DFMA.2005.27�.
�hal-01184267�

https://hal.science/hal-01184267
https://hal.archives-ouvertes.fr

Mathurin BODY, Bernard COUSIN

IRISA– Université de Rennes 1
Campus universitaire de Beaulieu
35042 RENNES Cedex - FRANCE

Bernard.Cousin@irisa.fr

Abstract

File transfer acts an increasing role in digital TV
studios and especially for their interconnections. Using
adequate file formats to exchange data presents several
advantages: low transfer cost and efficient handling of
both essence and metadata. Many new file formats have
been introduced to cope with system and user
requirements. Meanwhile new user requirements for file
transfer have also evolved, requesting enhanced transfers
capabilities, which takes full advantages of the recently
defined exchange formats and architectures.

The goal of this work is to specify an optimised transfer
mechanism, this mechanism is integrated in a unified
framework managing digital TV content. Our transfer
mechanism provides an abstraction level for different
network infrastructures and protocols in a seamless way,
taking advantage of each of these technologies. For
example, multicast and QoS features are supported and
managed, as far as they are provided by the underlying
network interfaces. Moreover, striped and partial Media
Asset transfers are handled independently of the network
infrastructures, at the Application layer.

1 Introduction
The need for an integrated system in the broadcasting

environment is becoming essential to cope with the end
user requirements. Currently, the heterogeneity of
equipment, applications and interfaces requires complex
and costly system integration, maintenance and upgrade.
Moreover, the growing volume of content, programme
material and metadata has led to the introduction of Media
Asset Management systems that is fully operational in an
end-to-end and integrated architecture.

In this context, most of the emerging solutions rely on
service-based architectures. They indeed ensure, through
the modularity of theirs components, seamless
interoperability in heterogeneous environment, scalability
from LAN to WAN as well as simple integration and
maintenance.

Given this particular framework, some usual processes
have to be adapted, rebuilt and also improved. The Media
Asset transfer is one of them. Currently, most of the

broadcasting studios are using FTP [1] as the "de facto"
standard or tailored version of it, according to the specific
needs of constructors or systems integrators. FTP indeed
presents some limitations (restricted to TCP, partial
transfers unsupported, no QoS or multicast features, etc.)
and it becomes especially not adapted in a service-based
architecture. Interconnection capacity of the entities,
localisation and identification of the repositories, filenames
and most of the elements usually manipulated within FTP
are hidden in such integrated framework. Another benefit
of our approach is the possibility to abstract the transfer
process and therefore to support several network interfaces
and protocols simultaneously. The most suited transmission
mechanism can thus be deduced for each transfer request,
depending on its particular context (QoS constraint,
multicast configuration, etc.). This abstraction also
improves the upgradability of the system, since new
interfaces or protocols would be simply integrated, by
developing appropriated adapters.

For all these reasons, it is particularly advantageous to
redesign and improve transfer process for the specific
context of an integrated framework.

This work is based on the ASSET project [2], targeted at
the definition and the development of software architecture
and the corresponding technologies necessary for a unified
management of digital TV content.

Recently, the research community has brought forward
the problem of multimedia transfer in broadcasting
systems. The renewal of interest for this topic has been
motivated by the standardisation of new formats for the
exchange of programme material and the evolution of
software architecture in the broadcasting studios. MPEG-
21 is one of these efforts [10].

The specification of FTP+ [3] by the EBU/SMPTE task
force was another more focused step in this field. After
identifying the existing protocols and their limitations, they
added new commands to enhance FTP capabilities. They
first introduce a lot of concepts that we have adopted in our
architecture. The support for different network and
transport protocols is one of the most important

Efficient Media Asset Transfer in a Unified Framework Managing
Broadcasting Systems

requirements, renewing the traditional TCP/IP basis of
FTP.

Nonetheless, if FTP+ overcomes the current limitations
of the file exchange and also the future ones by allowing
the integration of new protocol profiles, it is adapted to a
service-based architecture. It is indeed based on the FTP
mechanisms and software infrastructure, which is not
suited for a middleware approach. Furthermore, the
integrated architecture that we consider relies on a Media
Asset Manager (MAM) that induces some constraints on
the transfer process (e.g. the asset naming).

FTP+ sets up strong basis for new approaches in the
content transfer process. Our work can be seen as an
adaptation or an enhancement of it for a service-based
architecture.

Some works are still under progress in the main
standardisation bodies of this field. The SMPTE
organisation is directing a committee on "File Management
and Networking Technology" which is working especially
on the definition of transfer protocols, structures for
storage, transmission and physical networks to carry them.
Some related works are also performed in the EBU
committee NMC (Network Technology Management
Committee). Within this committee, the N/FT-AVC project
indeed investigates the method of transmission on networks
of files conforming to new formats (mainly MXF [4, 5],
AAF [6] and GXF [7]), the file transfer protocols on
different infrastructures and also distributed storage.

The remaining of this paper is organised as follows. In
section 2, we present the overall ASSET architecture and
its main components. Section 3 is dedicated to the Media
Asset Transfer architecture, components and relationships.
Section 4 discusses the solutions addressed by this proposal
and gives some implementation aspects. Finally, section 5
draws conclusions based on our experimentations.

2 Service-based ASSET architecture
This section presents the global architecture of the

unified framework managing heterogeneous broadcasting
systems which has been defined in the ASSET project. The
Media Asset Management of this framework is then
presented in more details, since it is closely linked with the
Media Asset Transfer process introduced in this paper.
2.1 The Asset Architecture

The following diagram (Fig. 1) presents the overall
ASSET architecture and its main components. The ASSET
Architecture defines numbers of concepts, components and
functions that enable the implementation of an ASSET
Compliant Framework. The core of the ASSET Framework
consists of three main components:
 The ASSET Public Services expose the mandatory

services of the ASSET framework to the Application
& Business Logic Layer through the ASSET Public
API. These services provide a minimum set of
multimedia functionalities, sufficiently rich and
extensible to not limit the system efficiency. They
ensure the consistency and integrity of the system by

handling the internal logic (e.g. access right, resource
allocation, etc.) required for each operation.

Fig. 1 – The ASSET Architecture

 The ASSET Common Services provide implementation
of key infrastructure requirements such as security,
logging, notification, resource management, etc. This
allows a uniform and single implementation of these
services throughout the solution.

 The ASSET Function Services provide an abstraction
of functionalities (encoder, recorder, player, etc.) to the
ASSET Public services. They hide the specificities of
the different interconnected products (e.g. a VTR
output and a Video Server output are considered as
two system-wide logical output ports). These services
are generally implemented on the products. Sometime,
they can be considered as adapters of legacy products.

At the Application and Business Logic layer, three
components are introduced:
 The ASSET Compliant Applications are the top level

ASSET software components. They use the ASSET
Public API to access services provided by the ASSET
Framework and, optionally, by ASSET aggregated
services.

 The ASSET Services Library is a software component
included in (or linked with) an application, which
makes it compliant to the ASSET framework and gives
it access to the ASSET services.

 The ASSET Aggregated Services implement additional
business logic on top of Public services (or even on top
of other aggregated services). They register in the
framework as new services available for ASSET
compliant applications (e.g. complex automated
workflows may be specified as aggregated services

ASSET Public API

Media ASSET Bus API

ASSET Services Library

ASSET
Aggregated

Service

ASSET
Aggregated

Service

Application & Business Logic Layer

ASSET Framework

ASSET Public Services
Common Services
• Service Repository
• Security
• Notification
• ...

ASSET Agent

ASSET Compliant
Product

ASSET Compliant
Application

ASSET Agent

ASSET Compliant
Product

ASSET Proxy

Legacy
Protocol

Legacy Product
Product Layer

 ASSET Function
Services

 ASSET Function
Services

 ASSET Function
Services

and then, be available for other connected applications
or aggregated services).

At the Product layer, we call product a manageable
hardware or software component that implements one or
several ASSET Function services. Two ways exist to make
a product compatible with the ASSET framework:
 An ASSET Compliant Product is a product that is

managed by the framework through a built-in ASSET
Agent.

 A Legacy Product is a product that has not (or cannot
have) a built-in ASSET agent. The ASSET framework
can nonetheless managed such a product through an
external software module called an ASSET Proxy (e.g.
a VTR cannot include a built-in ASSET agent and has
to be connected through an ASSET Proxy).

Products, Public and Common services communicate
within the framework using the API provided by the Media
ASSET Bus, which is the backbone infrastructure for
message interchanging and interconnection of ASSET
components.
2.2 Media Asset Management
2.2.1 What is a Media Asset?

In the ASSET framework, we distinguished several
entities: the Media Asset or Material instance is basically a
file that contains some media or essence and optionally
metadata embedded. It is identified by a UMID. A Material
is the first level of abstraction. It corresponds to a class of
file. Materials can have several Material instances. A
Material Group gathers several materials into a coherent
unit (for example linking sound tracks materials with their
corresponding video). A material group is actually a way of
representing a particular content, which is the higher level
of abstraction of a Media asset. The content is completely
format independent. It only describes the content itself
(title, actors, commentaries, etc.). The different entities
considered inside the ASSET framework can finally be
summarised by the following diagram (Fig. 2):

Fig. 2 – Media Asset Structure in the ASSET Framework

2.2.2 Repositories
In the ASSET framework, every product presenting the

capability of storing or archiving data exposes a repository
functionality (repository Function service). The different
types of repository (on-line, near-line, off-line) are then
abstracted from the user point of view. They are actually
only distinguishable by their capabilities (storage capacity,
time access, etc.).

A unique identifier (UUID) identifies each repository in
the framework. They handle Media Asset deletion, update,
notification, etc. They also manage the internal
representation of the Media Assets in the local file system:
storage techniques and filenames are completely hidden for
the system.

The Media Asset Transfer Function service that is
introduced in this paper is strongly linked with the
repository Function service. Both Function services have to
be developed in a common software package in order to
ensure their full interoperability.

2.2.3 Media Asset Management Common Service
The Media Asset Management Common service is a

central service in the ASSET framework. It handles all the
information related to the media assets and the entities
previously presented. The interface of this service has been
specified according to the ASSET framework requirements
but several types of Media Asset Manager (MAM) can be
implemented behind this interface (e.g. through a proxy).

This Common service mainly maintains the listing of the
Media Assets, their status and their associated links (e.g.
same materials, descriptive metadata associated, etc.).

3 Media Asset Transfer
This section first presents the overall transfer

mechanism and the main components that we introduce in
the Media Asset Transfer process.
3.1 Architecture overview

The two main components in this Media Asset Transfer
(MAT) architecture are:
A- The MAT Function Services, provided by the

products presenting repository functionality. They
handle endpoints to establish data channels and may
optionally support several network interfaces (TCP,
FC, XTP [8], etc.).

B- The MAT Public service, integrated to the
framework. It ensures three principal tasks: exposing
the transfer capabilities to the Application & Business
Logic layer, ensuring consistency of each transfer
requests and controlling the entities involved in the
transfer.

Content

- Content ID
- Descriptive MD

Material Group

- MaterialGrp ID
- Technical MD

Material

- Material ID
- Technical MD

Media Asset

- UMID
- Technical MD
- status

1 n

n
1

n 1

Figure 3 represents the overall Media Asset Transfer
Architecture. The relationships between the core
components are highlighted through a typical workflow of
a transfer request.

Fig. 3 – The Media Asset Transfer Architecture

The arrows on the diagram represent a typical workflow
in this architecture:
1- The application emits a transfer order through the

Public API. The consumer of the MAT Public Service
could actually be any component of the Application &
Business logic layer: either an application (e.g. a
journalist wishing to archive an asset) or an aggregated
service, handling a business workflow for example.

2- In order to ensure consistency and security (resolving
rights, session, job and abstraction issues) messages
are exchanged with the Common services of the
framework.

3- Once the consistency and optional abstractions
resolved, the Media Asset Transfer Public service
enters in the phase of establishing and controlling the
data channel between the repositories. During this
phase, which contains several steps, the MAT Public
service uses the commands provided by the MAT
Function service of each repository involved in the
transfer. This exchanging of messages is quite similar
to the control channel in the case of a server-to-server
transfer in the FTP.

4- The data channel is established and the media asset is
transferred on this channel. Depending on the
interconnected repositories and the transfer order
requested by the initiator, different types of data
channel can be established (multicast, QoS, security,
etc.).

3.2 Media Asset Transfer Public Service
The following diagram (Fig. 4) presents the internal

structure of the Media Asset Transfer (MAT) Public
service.

Fig. 4 – The Media Asset Transfer Public service

The MAT Public service is made of three main
components described in the next sections.

3.2.1 Public Service Façade
First, the MAT Public service presents and provides

services through the Public Service Façade, which exposes
the public interfaces. It is in charge of receiving,
responding and eventually queuing messages from
consumer entities.

3.2.2 Transfer Manager
When the Façade receives a transfer order, it simply

forwards the request to the Transfer Manager. This
component takes care of the "high-level" tasks, preparing
and ensuring the consistency of transfer requests. For
example, rights of the request initiator have to be checked
or asset may have to be located or even identified since
abstraction of material is providing in this framework.
Repositories can be located and also selected according
their capabilities (type of storage, capacity, access time,
etc.). Transfer order can eventually be scheduled via the
dedicated Common service. Since new instances of existing
asset (or even new assets in case of partial transfer) are
created during the transfer, new UMIDs identifying them
have to be generated. This is also one of the tasks of this
Business Component. All these tasks are mainly performed
by Common services, which are accessed through Service
Agent.

3.2.3 Transfer controller
Once the Transfer Manager has performed these "high-

level" tasks, it delegates the actual processing of the
transfer to the Transfer controller. The business component
responsible for the transfer control ensures the
establishment of the data channel between the repositories.
It also supervises the progression and ending of the
transfer. This business component interacts with the MAT
Function services provided by the repositories through
service agents.

The establishment of a data channel consists of five
subtasks:

a. Negotiate the protocols, mode of transfer and QoS.

Public Service Façade

Transfer Manager

Common Service
Agent Transfer Controller

MAT
Service Agent

ASSET Public API

Media ASSET Bus API

ASSET Services Library

ASSET
Aggregated

Service

ASSET
Aggregated

Service

Application & Business Logic Layer

ASSET Framework

Common Services
• Service Repository
• Security
• Notification
• ...

ASSET Compliant
Application

Product Layer

1

2

3

Archive Server Agent

ASSET Compliant
Video Server

MAT Function
Service

Video Server Agent

ASSET Compliant
Archive Server

MAT Function
Service

4A A

Media Asset Transfer
 Public ServiceB

b. Create and put the passive endpoint(s) in listening
state.

c. Create the active endpoint(s).
d. Notify the passive endpoint(s) that the connection

has been established.
e. Initiate the transfer on each endpoint.

3.3 Media Asset Transfer Function services
The following diagram (Fig. 5) presents the internal

structure of a Media Asset Transfer (MAT) Function
service.

Fig. 5 – The Media Asset Transfer Function service

This Function service presents three types of

components, described in the next sections.

3.3.1 Function Service Façade
Similarly to the MAT Public service, the MAT Function

service presents its functions through the Function Service
Façade. It is in charge of the interactions with its service
consumer (the MAT Public service).

3.3.2 Protocol Manager
The Protocol Manager is the business component

responsible for controlling the different network interfaces
or profiles supported by the repository, and consequently
by this service. It knows its capabilities and interacts with
the MAT Public service during the protocol negotiation
phases. Once the protocol has been chosen (by the MAT
Public service), the protocol manager instantiates a
business component of the corresponding Protocol
Interpreter and forwards every messages related to the
creation and management of the data connection to it.

3.3.3 Protocol Interpreter
Each Protocol Interpreter presents a common interface

(abstracting the establishment of a data connection) but
implements each abstracted function for one particular
protocol or network interface. In that way, MAT Function
services are able to handle several network profiles and to
choose the most suited one for each transfer.

4 The Media Asset Transfer solution
In this section, we first introduce the interface of the

Media Asset Transfer Public service through the definition
of Transfer orders. Based on this definition, we present the
enhancement provided by our approach.
4.1 The Transfer Order scheme

The MAT Public service receives Transfer Order (or
Groups of Transfer Order) in XML [9] messages respecting
the following scheme:

<?XML version="1.0"?>
<!ELEMENT TransferOrder

 (TransferType?, StartTime?,
 QoSFeature*,Source?,Asset,Destination)>

<!ELEMENT TransferType ("COPY"|"MOVE"|"STRIPED"...)>
<!ELEMENT StartTime (#PCDATA)>
<!ELEMENT QoSFeature (QoSType,(QoSValue|QoSRange))>
<!ELEMENT QoSType ("RATE"|"BURST"|...)>
<!ELEMENT QoSRange (QoSValue, To, QoSValue)>
<!ELEMENT QoSValue (#PCDATA)>
<!ELEMENT Source (RepositoryType|RepositoryID+)>
<!ELEMENT RepositoryType
 ("NEARLINE"|"ONLINE"|"OFFLINE"|...)>
<!ELEMENT RepositoryID (#PCDATA)>
<!ELEMENT Asset
 (AssetID, MaterialType?,
 Partition*,ByteOffset?, ByteLength?)>
<!ELEMENT AssetID (UMID|MaterialID)>
<!ELEMENT UMID (#PCDATA)>
<!ELEMENT MaterialID (#PCDATA)>
<!ELEMENT MaterialType ("DATA"|"VIDEO"|"AUDIO")>
<!ELEMENT Partition
 (PartitionType,(PartitionValue|PartitionRange)+)>
<!ELEMENT PartitionType
 ("CLIP"|"FRAME"|"SCENE"|"SEQUENCE"|"TIME"|...)>
<!ELEMENT PartitionValue (#PCDATA)>
<!ELEMENT PartitionRange
 (PartitionValue, To, PartitionValue)>
<!ELEMENT To (empty)>
<!ELEMENT ByteOffset (#PCDATA)>
<!ELEMENT ByteLength (#PCDATA)>
<!ELEMENT Destination
 (RepositoryType|RepositoryID+)>

This XML scheme illustrates how we implement some
of the Media Asset Transfer issues in our approach. We
will not exhaustively explain all the elements introduced in
this scheme. We indeed prefer to focus on the key issues
that limit traditional FTP and that are addressed in our
proposal.
4.2 Issues addressed by the MAT architecture
4.2.1 Adaptations to the integrated framework

The XML scheme demonstrates the abstractions that are
made possible in such an approach. In a unified and
integrated framework, one of the most important
advantages is indeed the virtualisation of all interconnected
components, storage locations and content materials.

For example, the initiator of a Transfer Order may only
specify a material (and not specific files any longer)
through the MaterialID element and/or a type of repository.
The RepositoryType element set to "OFFLINE" triggers the
transfer of the material to an Archive server, automatically
chosen by the framework.

In the same way, source repository will be involved
most of the time, since storage location is transparent for
the consumer's point of view. The MAT Public service
resolves all these abstractions by interacting with Common
Services, which are responsible for the system integrity.

4.2.2 Support for different network interfaces
Several types of network interfaces, transport and

network protocols are currently available on the market,
each of them presenting some specificities, some
advantages but also some drawbacks. Actually, none of
them can be considered as the "one-fit-all" technology. In
our proposal, we abstract the underlying transport protocols
and network interfaces, it allows to select the best of each

Function Service Façade

Protocol Manager

Protocol
Interpreter

Protocol
Interpreter

world: TCP is probably the most suited protocol for
exchanging data ("unicastly") over the Internet, but does
neither allow any multicast transfer nor guarantee any QoS.

Moreover, besides supporting any protocol or network
interface, the proposed architecture provides adaptable
heuristics to select among the available transfer
mechanisms, the one that will be the most suited one,
according to the context of a transfer request.

For example, in a Transfer Order, an initiator may
request a certain type of transfer and/or QoS features that
will entail one or more transport mechanisms. If several
mechanisms fit to this Transfer Order context, the MAT
Public service chooses the most suited one, with respect to
the rules defined by heuristics.

4.2.3 Partial transfer
The issue of transferring parts of files must be

distinguished from partial Asset transfer. The first one is
only of use for recovery procedures after failure on the data
channel. In this case, parts of file are described with offset
and a number of bytes. On the other hand, the partial Asset
transfer is related to the transfer of a specific content or
portion of a Media asset. Assets may indeed contain several
different materials: metadata, one or more essence(s)
organised in several segments, etc. It may also append that
the user only needs one of these parts (e.g. ten minutes
from a video of several hours). It has become a key issue,
especially with the growing size of the media asset in the
broadcasting environment.

Both issues are address in our scheme. In an Asset
element, partitions can indeed be specified to select
specific portions of a Media Asset (Sequence, Scene,
Frame, etc.). Parts of file can also be explicitly requested
by the ByteOffset and ByteLength elements. Parts or
portions of assets are only extracted at the source
repositories by the MAT Function services before (or
during) the transfer.

4.2.4 Multicast transfer
The multicast transfers allow the transmission of assets

from one repository to many without replications of the
data, shortening delays and freeing bandwidth on the
network. These types of transfer are still underused in the
broadcasting studio, probably because its benefits are still
less important than its costs of implementation.
Nonetheless, the exponential growing of data transfers in a
studio will make the multicast transfer much more
advantageous than they are for the moment.

Our architecture fully supports multicast protocols (such
as XTP or any reliable multicast protocols based on UDP)
and therefore does not restrict its scope to unicast transfers.
In the Transfer Order, several destination repositories can
be specified. In this case, all the repositories supporting a
common reliable multicast protocol are requested to
establish a multicast transfer. For others, unicast or a
different type of multicast protocol can be chosen by the
MAT Public service.

4.2.5 Striped transfer
Recently, a new mechanism for optimising file transfer

has been proposed: the striped transfer. First, it supposes
that the file to transmit is replicated among several
repositories and that the bottleneck in the transfer process
is not the sink endpoint. Actually, the striped data transfer
optimises the transmission by parallelising it among several
sources. Several data connections are established, making a
many-to-one channel. Continuous parts of the file (forming
a partition) can then be simultaneously transmitted on these
connections.

The Media Asset Transfer architecture takes this transfer
mode into account and handles it at the application level.
Therefore, it allows the combination of this transfer mode
with other features already supported. For example,
different types of data connections can be established, since
they are independent. We also support striped multicast
transfer: N multicast connections can be established from N
sources to M destinations, forming a N-to-M data transfer.

A striped transfer can be requested by specifying either
several source repositories or a "STRIPED" TransferType
element. In both cases, only a MaterialID (and not a
UMID) can be specified. Several instances of the same
material are indeed used in a striped transfer. A destination
repository in a striped transfer should be able to receive
simultaneously the different parts of the file and to restore
it at the end of the transfer.

4.2.6 Quality of Service
The so-called Quality of Service (QoS) denotes the

implementation of policies to offer better and guaranteed
service in the transport mechanisms and the underling
network interfaces. Using traffic and performance
management parameters (e.g. priorities, resources
allocation, dedicated bandwidth, controlled jitter and
latency, etc.), QoS technologies enable the user (or
automated system) to qualitatively and quantitatively
express and measure the service being provided.

QoS is highly dependent of the underlying network
infrastructures and transport mechanisms. Since we choose
to abstract these concepts in our architecture, QoS
parameters could only be represented in flexible structures.
The QoSFeature element of the Transfer Order addresses
this need. This XML scheme indeed allows the description
of QoS parameters, either by key/value or key/range. For
example, users wishing to restrain the transfer rate may
specify a maximum rate value and a maximum burst value.
Our QoS implementation consists of three steps:
 QoS features supported are identified and retrieved to

the users requesting them.
 User-defined QoS parameters are then co-ordinated

between the different network components.
 QoS policy is followed up during the transfer and

controlled to guarantee the requested service.
4.3 Security in the MAT architecture

Security has become a critical issue with the
digitalisation of the broadcasting systems and their

extension on wider area network. Security requirements are
indeed much more important in a WAN (wide area
network) than in a LAN (local area network).

In case of a LAN, the main security needs focus on data
flowing protection, against ill intentioned acts or more
usually against mistakes. For WAN interconnections,
security must considerably be increased. Exchanging data
through Internet may be cost effective but important
security issues have to be addressed in consequence
(protection against intruders, data integrity, confidentiality,
etc.).

We do not specifically address the security issue in our
proposal. We indeed prefer to rely on both the underlying
network connections (private network, VPN, etc.) and the
framework security (access rights, account checking,
secured interconnections in the framework).

5 Conclusion
This paper gives an overview of a Media Asset Transfer

service integrated in a unified framework managing
broadcasting systems. The leading advantage of this
solution is the abstraction of the underlying network
infrastructure, which allows the support of complementary
transport interfaces. It takes also advantage of the
integrated framework, providing services for scheduling
transfer, managing Media Assets and repositories. Finally,
it provides new functionalities to cope with the user
requirements in the broadcasting environment (e.g. partial
asset transfer).

Our architectural solution has been implemented using
simple heuristic. For instance, XTP is used when several
destinations have been selected in the Transfer Order and
XTP is available on all transfer endpoints. Similary partial
transfer requires the availability in the framework of a
cutting agent adapted to the format of the material to be
exchanged. Nevertheless, based on the parameters of the
Transfer Order (parameters which are automatically
deduced from the metadata of the asset to be exchanged)
the above enhanced services have demonstrated their
accuracy and great efficiency. For instance, stripped and
partial transfer of large MPEG videos has demonstrated a
decreasing in the overall transfer delay up to 90 %.

6 References
[1] J. Postel, J. Reynold, File Transfer Protocol (FTP), IETF

RFC 959, October 1985.
[2] ASSET project web site – http://www.ist-asset.com
[3] SMPTE/EBU, "Joint EBU / SMPTE Task Force on User

Requirements for the Exchange of Television Programme
Material as Bit Streams", http://www.smpte.org

[4] Pro-MPEG Forum, "Material eXchange Format (MXF)",
http://www.pro-mpeg.org/mxf.htm, October 16, 2002.

[5] Bruce Devlin, "MXF – The Material eXchange Format",
EBU Technical Review, July 2002.

[6] Brad Gilmer, "AAF – the Advanced Authoring Format",
EBU Technical Review No. 291, July 2002.

[7] Bob Edge, "GXF – the General eXchange Format", EBU
Technical Review No. 291, July 2002.

[8] XTP Forum, "Xpress Transport Protocol",
ftp://dancer.ca.sandia.gov

[9] Extensible Markup Language (XML) 1.0 (Second Edition.
W3C Recommendation. World Wide Web Consortium,
http://www.w3c.org/TR/REC-xml, October 6, 2000.

[10] Multimedia Framework (MPEG 21), ISO/IEC 21000-1 to
3, March 2003.

[11] P. van Beek et al., "Metadata Driven Multimedia Access",
IEEE Signal Processing, vol 20, no 2, March 2003.

Acknowledgement
This work has been partially supported by the European
Commission through the contract (IST-2001-37379
Architectural Solutions for Services Enhancing digital
Television).

