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Abstract. We present RIPOSTE, a distributed algorithm for disseminating infor-
mation (ideas, news, opinions, or trends) in a social network. RIPOSTE ensures
that information spreads widely if and only if a large fraction of users find it
interesting, and this is done in a “privacy-conscious” manner, namely without
revealing the opinion of any individual user. Whenever an information item is
received by a user, RIPOSTE decides to either forward the item to all the user’s
neighbors, or not to forward it to anyone. The decision is randomized and is based
on the user’s (private) opinion on the item, as well as on an upper bound s on the
number of user’s neighbors that have not received the item yet. In short, if the
user likes the item, RIPOSTE forwards it with probability slightly larger than 1/s,
and if not, the item is forwarded with probability slightly smaller than 1/s. Using
a comparison to branching processes, we show for a general family of random
directed graphs with arbitrary out-degree sequences, that if the information item
appeals to a sufficiently large (constant) fraction of users, then the item spreads to
a constant fraction of the network; while if fewer users like it, the dissemination
process dies out quickly. In addition, we provide extensive experimental eval-
uation of RIPOSTE on topologies taken from online social networks, including
Twitter and Facebook.

1 Introduction

Social networking websites have become an important medium for communicating and
disseminating news, ideas, political opinions, trends, and behaviors. Such online net-
works typically provide a reposting functionality, e.g., sharing in Facebook or retweet-
ing in Twitter, which allows users to share other’s posts with their own friends and
followers. As information is reposted from user to user, large cascades of reposts can
develop, and an information item can potentially reach a large number of people, much
larger than the number of users exposed to the information initially (e.g., the users who
witness a news event, or learned about it from some local media). Since people tend to
propagate information which they find interesting and worth sharing (rather than ran-
dom content) [20], an information item may spread widely only if sufficiently many
users find it interesting. Ideally, the opposite direction should also hold: content that a
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sufficiently large fraction of users would find interesting and would propagate (if they
knew about it), should be likely to spread widely. This is, however, not always the case.

In countries with authoritarian regimes, users may not propagate anti-government
ideas for the fear of being prosecuted. There are in fact several examples of politi-
cal activists (and others) that have been convicted for posting or just reposting anti-
government opinions on social media [23,25]. But even in democratic regimes, users
may refrain from openly supporting their opinion on certain sensitive issues, from pol-
itics and religion to sexuality and criminal activity. For example, a user may not prop-
agate a post supporting recreational drug use for the fear that it may have a negative
impact on his career—as it is a common practice of employers to use social media for
screening prospective employees [13]. Or more generally, users may refrain from re-
posting a (political or other) opinion when they believe it is not widely shared by their
cycle—a well known principle in sociology known as the “spiral of silence” [22]. In all
these cases, the dissemination of an idea in the social network is impeded by privacy
considerations; even if many users support the idea, they may choose not to contribute
to its propagation because they do not wish to reveal their own opinion (as reposting
the idea would suggest the user is in favor of it).

Our Contribution: Privacy-Conscious Diffusion. We investigate a dissemination al-
gorithm that has, roughly speaking, the following properties: (1) information that a
sufficiently large fraction of the population finds interesting is likely to spread widely;
(2) information that not sufficiently many people find interesting does not spread far be-
yond the set of users exposed to it initially; and (3) by observing the spreading process
(in particular, the users’ reposts), one cannot determine (with sufficient confidence) the
opinion of any single user on the information that is disseminated.

More specifically, we propose the following simple, local dissemination algorithm,
which we call RIPOSTE. LetG denote the (directed) graph modeling the social network,
and n be the total number of users, and suppose that some (small) initial set of users
learn an information item t. For each user u that learns t, RIPOSTE decides to either
repost t, to all u’s outgoing neighbors in G, or to not repost t, to anyone. The decision
is randomized and depends on the user’s (private) opinion on the information, and the
number of the user’s neighbors that have not received the information yet. Precisely,
if u likes t, then t is reposted with probability λ/su, and if u does not like t, then
t is reposted with a (smaller) probability δ/su, where 0 < δ < 1 < λ are global
parameters of the dissemination mechanism, and su is an upper bound on the number
of u’s outgoing neighbors that have not received t yet. If the algorithm cannot have
access to information about whether u’s neighbors already know the information, then
the total number of u’s outgoing neighbors can be used as the upper bound su.3

We argue that RIPOSTE achieves the property of plausible deniability: A user u can
claim that, with reasonable probability, the act of reposting (or not) some information,
does not reflect u’s truthful opinion on the information, and is a result of the random-

3 RIPOSTE can be viewed as a set of distributed pieces of software running at each user’s ma-
chine connected to the social network. It is not the user who has the control of whether the
item will be eventually reposted or not but this piece of software. It solicits the user’s opinion
on the item, and then flips a coin to determine whether the information will be reposted.
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ness in the decision mechanism. Intuitively, the closer the parameters λ and δ are to
each other, the better the privacy. In the extreme case of λ = δ, we have perfect privacy,
but then the dissemination is independent of u’s opinion (and thus of how interesting
the information is). In the other extreme, if λ is the maximum degree and δ = 0 (i.e.,
the user reposts the information iff it likes it), the act of reposting (or not) the infor-
mation reveals with certainty u’s opinion. We formally quantify the privacy properties
of RIPOSTE in terms of ε-differential privacy. In particular, we argue that RIPOSTE is
ln(λ/δ)-differentially private.

For the dissemination of information, we prove the following threshold behavior.
Suppose that each user likes a given item t with probability pt, independently of the
other users (pt is the same for all users and depends only on t). Thus pt is a measure
of how interesting item t is, and is equal to the expected fraction of users that like t.
Let S denote the set of users who receive item t initially (e.g., these users receive the
information from a news channel). We show that if pt < p∗, for p∗ = (1− δ)/(λ− δ),
then the expected number of users that learn the information is O(|S|), i.e., at most a
constant factor larger than the users exposed to the information initially. This is true
for any graph G. On the other hand, we show that the following statement holds for a
G from a family of random directed graphs with arbitrary out-degree distribution [6].
(Such a graph could, for example, model the Twitter network). If pt > p∗, then for a
random initial set S, information t spreads to Θ(n) users (i.e., at least some constant
fraction of the network), with probability 1 − eΩ(|S|/d), where d denotes the average
degree of G. In particular, this result says that information spreads to Θ(n) users with
constant probability when |S| is close to the average degree, and with high probability
if |S| is log n times larger than the average degree. The analysis draws from the theory
of branching processes [3], and the intuition is simple: Basic computations yield that
the expected number of users that a given user passes the information to, is less than 1
when pt < p∗, and greater than 1 if pt > p∗. The threshold phenomenon we observe
follows then from a similar phenomenon in branching processes. We note that the result
for pt > p∗ does not hold for arbitrary graphs. However, we expect that it should hold
for many graph families, of sufficiently high expansion.

We complement our analysis with extensive experimental results. We use a com-
plete snapshot of the Twitter graph of roughly 40 million users from 2009, and smaller
samples from other social networks, including Facebook and LiveJournal. The ex-
periments demonstrate clearly the predicted threshold phenomenon, with very limited
spread below the p∗ threshold, and substantial spread above p∗. The latter suggests that
our result for pt > p∗ should qualitatively hold for a larger family of networks than
the stylized model analysed formally. We also experiment with non-uniform distribu-
tions of user opinions, where users closer to the source users are more likely to like
the information, obtaining qualitatively similar results. Experiments suggest that rea-
sonable values for RIPOSTE’s parameters in the networks considered are δ = 0.75 and
λ = 3. For these values, the plausible deniability achieved ensures that, for example,
if the prior probability for a user to like the information is 0.01 or 0.1, and the user
reposts the information, then the probability increases to 0.04 and 0.3 respectively (see
Sect. 2.1 for details).
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We view the results of this paper as potentially useful for addressing some of the
increasing concerns about users’ privacy in social networking services. In particular,
we think that RIPOSTE could be of interest as a tool for spreading information and pe-
titions in Internet-based activism, a topic of considerable current interest [12,10]. More
generally, it is a tool that could be used for widespread dissemination of sensitive infor-
mation, which people would care to be exposed to, but are not willing to disseminate
themselves for the fear of being charged, stigmatized, or isolated. We believe that such a
tool could be incorporated in existing social network services. Also our technique could
find applications to other distributed problems, such as distributed polling algorithms.

Related Work. RIPOSTE uses a technique that is conceptually similar to the random-
ized response technique (RRT). RRT was first introduced in 1965 [26] for survey inter-
views, to increase the validity of responses to sensitive questions. Roughly, the idea is
to tell responder to lie with some fixed, predetermined, probability plie (e.g., roll a die
and lie whenever the die shows one or two, in which case plie = 1/3).4 Since plie is
known to the interviewer, the distribution of responders’ truthful answer can be easily
estimated, and thus, accurate estimations of aggregate results can be extracted—but an
individual’s answer is always plausibly deniable. (See [5] for other variations of RRT,
and [2] for a variant using cryptography to guarantee that the responder follows the
RRT.) In our diffusion mechanism, the same probability of reposting could be achieved
using the following RRT-like approach: User u is asked if she likes the post, but is in-
structed to lie with probability plie = δ/(δ+λ); and if the answer is ‘yes’ then the post
is reposted with probability (δ + λ)/su.

We are not aware of other works that use randomized responses in a way similar
to ours: to achieve dissemination that reflects user’s aggregate opinion, while preserv-
ing the privacy of individual users’ opinion. In a more standard use of RRT, Quercia et
al. [24] proposed a method to aggregate location data of mobile phone users by having
each user report several erroneous locations in addition to the correct one. Recently, Er-
lingsson et al. [11] presented an RRT-based algorithm for crowdsourcing of population
statistics from end-user client software, deployed on Google’s Chrome Web browser.

Another mechanism provided by social networking services, besides reposting,
which has the potential to make interesting posts widely visible is that of liking. This
mechanism has similar privacy issues as reposting. In [1], Alves et al. proposed a
scheme to anonymize user’s likes, which keeps the actual like count of a post without
revealing the names of the users who like it. Unlike our approach, the scheme employs
cryptographic techniques to achieve privacy, and requires a centralized server (but the
server does not know the users’ opinion).

We have said that our diffusion scheme could provide a tool for Internet-based ac-
tivism [12,10]. The use of pseudonyms, combined with methods for hiding the user’s IP,
has also been a common practice used by activists to hide their identity while spreading
sensitive information [28]. Our scheme protects the users who contribute to the dissem-
ination of information, but not the sources of the information. This is not a problem in
some settings, for example, if we assume that anti-government information originates

4 The closer is plie to 1/2 the better the privacy.
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from a news channel (say, WikiLeaks) located in a different country. If this is not the
case, then pseudonyms could be used to protect the privacy of the source.

We measure the privacy properties of our diffusion scheme in terms of differential
privacy [8,9]. Differential privacy was introduced in the context of privacy-preserving
analysis of statistical databases. Roughly speaking, differential privacy ensures that (al-
most, and quantifiably) no risk is incurred by joining a statistical database. More rele-
vant to our setting is the local model of differential privacy [16], also known as fully dis-
tributed model. In this model, there is no central database administrator of private data;
each individual maintains their own data element (a database of size 1), and answers
questions about it only in a differentially private manner. The local privacy model was
first introduced in the context of learning, where it was shown that private learning in the
local model is equivalent to non-private learning in the statistical query model [16,14].

2 The Diffusion Algorithm

In this section, we describe our diffusion mechanism for disseminating information in
an online social network, and provide an analysis of its properties.

We model the social network as a directed graph G = (V,E) with |V | = n nodes.
Each node u ∈ V represents a user (from now on we will use the terms node and
user interchangeably), and a directed edge from node u to v denotes that user u can
send information to v. For example, for the case of the Twitter social network, an edge
(u, v) ∈ E in the underlying graph G denotes that user v is “following” u. Borrowing
Twitter’s parlance, in this paper, we will say that v is a follower of u if (u, v) ∈ E. The
number of u’s followers is thus the same as u’s out-degree.

We assume that initially a set of users S ⊆ V learns an information item (from
a source external to the network). From each user that learns the information, this in-
formation can be reposted to all its followers. (So, information can either be sent to
all followers of the user, or to none.) We propose a randomized distributed algorithm,
running locally at each user (i.e., at the user’s device connected to the social network
service), which decides whether or not to repost the received information; we call this
algorithm RIPOSTE.

RIPOSTE takes as input the opinion of the user on the information item, i.e., if the
user likes or does not like the information, and the algorithm’s effect is to either repost
the information or not. RIPOSTE’ decision depends on: (1) the user’s opinion, (2) an
upper bound on the number of the user’s followers that have not received the informa-
tion yet, and (3) two global parameters of the protocol (the same for all users), denoted
δ and λ; both parameters are non-negative real numbers satisfying δ < 1 and λ > 1.
As explained later, these parameters control the privacy properties of the protocol, and
influence the dissemination.

RIPOSTE Algorithm: For each new information item received by user u, if u has k
followers and s ≤ k is an estimate bounding from above the number of u’s followers
that have not received the item yet, then:
if u likes the item, the algorithm reposts the item with probability

rlike(s) :=

{
λ/s, if s ≥ λ+ δ,

1− δ(s−δ)
λs , if 0 < s < λ+ δ;
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if u does not like the item, it is reposted with probability rdis(s) := δ/s (if s > 0).

It is easy to verify that rdis(s) ≤ rlike(s), for all s, i.e., the probability of reposting
is larger when u likes the item. Also, the closer are δ and λ to each other, the closer are
the two probabilities rdis and rlike.

The definition of rlike(s) for the case of s < λ+δ will be justified when we analyse
the privacy of the protocol. Until then we can assume the following simpler definition
for all s > 0: rlike(s) := min{λ/s, 1}.

RIPOSTE needs to know an upper bound on the number of the user’s followers who
have not yet received the item. This information is readily available in some existing
social network services, including Twitter, where the default setting is that a user can
access the list of items each of its followers has received. If this information is not
available, then the total number of followers k of the user can be used as the upper
bound s. For the analysis and the experimental evaluation, we will make use also of
that special variant of RIPOSTE, where s = k.

DB-RIPOSTE Algorithm (Degree-Based-Riposte): This algorithm is a special in-
stance of RIPOSTE, where the total number of followers k of user u is used as the upper
bound s on the number of u’s followers who have not already received the information.

An attractive analytical property of DB-RIPOSTE is that the outcome of the dis-
semination does not depend on the order in which the algorithm is executed at different
users, unlike in the general RIPOSTE algorithm. For our analysis of RIPOSTE we as-
sume that the order can be arbitrary.

We stress that RIPOSTE does not reveal any information on the value of its input (the
user’s private opinion), other than the statistical information inferred by the outcome
of the algorithm, to repost or not. Also, the user cannot prevent the algorithm from
reposting the information, even if she does not like the information. In particular, if the
user refuses to answer whether she likes an item or not, this is interpreted as a negative
answer by the algorithm (the user has an incentive to answer positively if she likes the
item, as this would potentially result in larger spread).

We now analyze the properties of RIPOSTE, regarding privacy and the spread of
information.

2.1 Privacy

RIPOSTE achieves the property of plausible deniability: A user can claim that, with
reasonable probability, the act of reposting (or not) an information, does not reflect
the user’s truthful opinion on the information, and is a result of the randomness in the
algorithm.

The standard notion used to quantify plausible deniability is that of differential pri-
vacy [9]. We recall now the definition of an ε-differentially private algorithm. LetA be a
randomized algorithm with input a collection of values, x1, . . . , xm, that returns a value
from some domain R. Since the algorithm is randomized, for a fixed input x1, . . . , xm,
its output A(x1, . . . , xm) is a random variable, with some distribution over R. Suppose
that the input to A is not known to us (is private), and by observing the output of A we
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want to find out the value of some of the inputs. More generally, we may have some
information about the input, i.e., a distribution over the possible combinations of input
values, and we want, by observing A’s output, to improve this information, i.e., obtain
a distribution closer to the true input values. We can quantify the extent to which this
is possible in terms of ε-differential privacy: algorithm A is ε-differentially private if
changing exactly one of it inputs x1, . . . , xm changes the distribution of the output by
at most an eε factor.

Definition 1 (ε-differential privacy). A randomized algorithm A with inputs
x1, . . . , xm from some finite domain and output A(x1, . . . , xm) on some domain R,
is ε-differentially private if for any two sets of inputs x1, . . . , xm and x′1, . . . , x

′
m that

differ in exactly one value, and for any set of outputs Q ⊆ R,

Pr
(
A(x1, . . . , xm) ∈ Q

)
≤ eε · Pr

(
A(x′1, . . . x

′
m) ∈ Q

)
.

In our setting, algorithm A is RIPOSTE, which takes a single binary input: the opin-
ion of the user, and has a binary output: repost or not-repost.

Theorem 2. RIPOSTE is ε-differentially private for ε = ln(λ/δ).

The proof is a straightforward application of the definitions, and is deferred to the
appendix.

Theorem 2 implies that the closer is the ratio λ/δ to 1, the better the achieved
privacy. In particular, if δ = λ we have perfect privacy, as the probability of reposting
does not depend on the user’s opinion—but this is not desirable from a dissemination
point of view.

We discuss now what Theorem 2 implies about the information one can gain for the
opinion of a user on some information item it receives, by observing whether or not the
item was reposted from that user.

Let q be the (prior) probability that the user likes the information, capturing the
knowledge of an observer about the user’s opinion before the observer sees whether or
not this information is reposted from the user. Then from Theorem 2 it follows that the
probability q̂ with which the observer believes that the user likes the information, after
the observer learns whether or not there was a repost, satisfies the inequalities

q

q + (1− q)(λ/δ)
≤ q̂ ≤ q

q + (1− q)(δ/λ)
. (1)

The proof, by Bayes’ Rule, is standard and can be found in the appendix. Fig. 3 (also
in the appendix) illustrates the above relationship between q and q̂. E.g., for the typical
parameter values δ = 3/4 and λ = 3 we use later in the experimental evaluation, we
have that if q = 0.01 then 0.0025 < q̂ < 0.039; if q = 0.1 then 0.027 < q̂ < 0.31; and
if q = 0.9 then 0.69 < q̂ < 0.97.

Above we have considered the amount of information leaked when observing the
cascade of a single information item. However, if one can observe the cascades of a
sufficiently large number of sufficiently similar items, possibly over a long period, then
more information can potentially be leaked about the opinion of a user on this type of
information. We leave as a future work the study of such correlation attacks.
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2.2 Dissemination

In terms of dissemination, the goal of RIPOSTE is that the fraction of users receiving
an information item should reflect the users’ overall opinion on the item. In particu-
lar, information that a large fraction of users like should, typically, be received by a
lot of users, while less interesting information should not be received by many users.
In the following, we quantify the notions of interesting/not-interesting information by
defining a popularity threshold, and we provide bounds on the spread of popular items
(with popularity above this threshold) and unpopular items (with popularity below the
threshold).

For the analysis, we make the assumption that all users are equally likely to like
a given item, independently of their position in the network and the opinion of other
users.

Definition 3 (Uniform opinion model & popularity). Each item t is associated with
a probability pt, called the popularity of t, and for each user u, the probability that u
likes t is equal to pt and independent of the other users’ opinion about t.

We note that popularity pt is also equal to the expected fraction of users that like t.
An item’s popularity is not known in advance by the diffusion protocol.

We define the popularity threshold p∗ as follows. Suppose that user u receives an
item with popularity p. Since u has probability p of liking the item in the uniform model,
the probability that RIPOSTE reposts the item, if s > 0, is p · rlike(s)+ (1− p) · rdis(s).
If s ≥ λ+ δ, this probability is p · (λ/s) + (1− p) · (δ/s). Moreover, if s is the exact
number of u’s followers that have not received the item yet, then the expected number
of new users that learn the item from u is s times that, i.e., pλ+(1−p)δ. The popularity
threshold p∗ is then the probability p for which this expectation is equal to 1.

Definition 4 (Popular/Unpopular items). For given λ and δ, we define the popularity
threshold p∗ := 1−δ

λ−δ , and we call an information item t popular if its popularity is
pt > p∗, and unpopular if pt < p∗.5

Next we establish an upper bound on the spread of unpopular items, and a lower
bound on the spread of popular items.

We first argue that the expected number of users who receive a given unpopular item
is by at most a constant factor larger that the number of user |S| who receive the item
initially (e.g., from a source external to the network). The constant factor depends on
the popularity of the item and parameters δ and λ. This bound holds for any network G,
assuming the uniform opinion model. Recall that an item is unpopular if its popularity
is smaller than p∗ = (1− δ)/(λ− δ).

Theorem 5 (Spread of unpopular items). For any G, and under the uniform opinion
model, RIPOSTE guarantees that an item with popularity p < p∗ starting from any
set S of users is received by an expected total number of at most |S|/β users, where
β = (p∗ − p)(λ− δ).

5 For the asymptotic bounds we show later, we assume for a popular item t that pt > p∗ + ε,
and for an unpopular item t that pt < p∗ − ε, for some arbitrary small constant ε > 0.
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The proof of Theorem 5, which can be found in the appendix, is based on the fact
that the expected number of new users that learn the item from a given user that knows
the item is smaller than one.

Observe that as p approaches the popularity threshold p∗, factor β decreases, and
thus the bound on the expected spread increases. Further, substituting the definition of
p∗ gives β = 1− δ− p(λ− δ), which implies that increasing either λ or δ increases the
expected spread. These observations are consistent with the intuition.

Next we consider the spread of popular items. We focus on a particular family of
random directed graphs which is convenient for our analysis, but is also a reasonable
model of some social network graphs, such as the Twitter graph, characterized by large
variation in the nodes’ out-degree (i.e., the number of followers) and small variation in
the nodes’ in-degree. This model is a simplification of one considered in [6], and has a
single parameter, a distribution φ on the nodes’ out-degree.

Definition 6 (Random graph Gφ). For any probability distribution φ on the set
{0, . . . , n − 1}, Gφ is an n-node random directed graph such that the out-degrees
of nodes are independent random variables with the same distribution φ, and for each
node u, if u has out-degree k, then the set of u’s outgoing neighbors is a uniformly
random set among all k-sets of nodes not containing u.

We establish a lower bound on the probability of a popular item to be received by a
constant fraction of users in Gφ, for an arbitrary distribution φ (under a mild constraint
on the min out-degree). The above probability and the fraction size grow respectively
with the number σ = |S| of source nodes, and the popularity p of the item. In particular,
the probability converges to 1 for σ larger than the average node degree µ.

Theorem 7 (Spread of popular items). Let φ be any probability distribution on the
set {dλ + δe, . . . , n − 1}, let ε, ε′ > 0 be arbitrary small constants, and 1 ≤ σ ≤ n
be an integer. Any information item with popularity p ≥ p∗ + ε, that starts from a
random initial set of σ nodes and spreads in Gφ using RIPOSTE, is received by at least
(1− ε′) · βnβ+1 users, with probability at least 1− e−Ω(σ/µ), where β = (p− p∗)(λ− δ)
and µ is the mean of distribution φ.

Observe that the same constant β = |p− p∗| · (λ− δ) appears in both Theorems 5
and 7. Unlike the bound of Theorem 5, the bound of (1 − ε′) · βn

β+1 in Theorem 7 is
independent of the number σ = |S| of source nodes; substituting the definitions of β
and p∗, yields β

β+1 = 1 − 1
pλ+(1−p)δ , thus the bound above increases when any of λ,

δ, or p increases. The independence from σ is intuitively justified, because as long as
the item reaches a “critical mass” of users, it will almost surely spread to a constant
fraction of the network. However, the probability with which such a critical mass will
be reached does depend on σ. For σ close to the average degree µ, this probability is at
least a constant, and quickly converges to 1 as σ/µ increases above 1.

The proof of Theorem 7 uses a coupling between the dissemination process and an
appropriate branching process, to show that the probability of the event we are interested
in, that at least a certain fraction of users receive the item, is lower-bounded by the
survival probability of the branching process. Then we bound this survival probability
using a basic result for branching processes.
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Proof of Theorem 7. It suffices to prove the claim for DB-RIPOSTE. The reasons
is that the reposting probabilities rlike(s) and rdis(s) are minimized when s equals
the number k of the user’s followers, and thus a standard coupling argument shows
that the number of users that receive the item if DB-RIPOSTE is used is dominated
stochastically by the same quantity when RIPOSTE is used.

We couple the diffusion process in Gφ with an appropriate branching process. Re-
call that a (Galton-Watson) branching process is a random process starting with one or
more individuals, and in each step of the process a single individual produces zero of
more offsprings and then dies. The number of offsprings of an individual follows a fixed
probability distribution, the same for all individuals. The process either finishes after a
finite number of steps, when no individuals are left, or continues forever. The probabil-
ities of these two complementary events are called extinction and survival probability,
respectively.

First we compute the distribution of the number of new users that learn the item
from a user u, at a point in time when fewer than ` users in total have received the
item—we will fix the value of ` later. The probability that u has exactly i followers is
φ(i), for i ∈ {dλ + δe, . . . , n − 1} (and 0 for other i). Given that u has i followers,
the probability that DB-RIPOSTE reposts the item from u is (pλ + (1 − p)δ)/i =
(β+1)/i. Further, by the principle of deferred decision, we can assume that if the item
is reposted from u, only then are u’s i followers chosen. We can also assume that they
are chosen sequentially, one after the other, and the item is sent to a follower before the
next follower is chosen (this does not change the overall outcome of the dissemination).
Then the probability that the j-th follower of u has not already received the item is at
least 1 − `/n, provided that at most ` users already know the item (including the first
j − 1 followers of u).

Consider now the branching process in which σ individuals exist initially, and the
number X of offsprings of an individual is determined as follows. First an integer i is
drawn from distribution φ; then with probability 1−(β+1)/iwe haveX = 0 offspring,
and with the remaining probability, (β + 1)/i, we draw X’s value from the binomial
distributionB(i, q), for q := 1−`/n (this is the distribution of the number of successes
among i independent identical trials with success probability q).

We use a simple coupling of the diffusion process with the branching process above,
until the point when ` users have received the item or the dissemination has finished
(whichever occurs first). We assume that the diffusion process evolves in steps, and each
step involves the execution of the DB-RIPOSTE algorithm at a single node. Similarly a
step in the branching process is that a single individual reproduces and then dies. Let
Nt denote the number of new users that learn the item in step t of the diffusion process,
and letXt be the number of offsprings born in step t of the branching process. From our
discussion above on the distribution of Nt and from the definition of the distribution of
Xt ∼ X , it follows that we can couple Nt and Xt such that Nt ≥ Xt if no more than `
users in total have received the item in the first t steps.

From this coupling, it is immediate that the probability at least ` users receive the
item in total, is lower-bounded by the probability that the total progeny of the branching
process (i.e., the total number of individuals that ever existed) is at least `. Further, the
latter probability is lower bounded by the survival probability of the branching process;
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we denote this survival probability by ζσ . Thus to prove the theorem it suffices to show

ζσ = 1− e−Ω(σ/µ),

for ` := (1− ε′) · βn/(β + 1). The remainder of the proof is devoted to that.
By the definition of the branching process, the expected number of offsprings of an

individual is

E[X] =
∑
i

φ(i) · β + 1

i
·E[B(i, q)]

=
∑
i

φ(i) · β + 1

i
· iq =

∑
i

φ(i) · (β + 1) · q = (β + 1) · q.

We observe that E[X] > 1, as

(β + 1) · q = (β + 1) ·
(
1− (1− ε′)β

β + 1

)
= 1 + ε′β. (2)

Further,

E[X2] =
∑
i

φ(i) · β + 1

i
·E[(B(i, q))2] =

∑
i

φ(i) · β + 1

i
· (i2q2 + iq(1− q))

=
∑
i

φ(i) · (β + 1) · (iq2 + q(1− q)) = (β + 1) · (µq2 + q(1− q)),

where µ =
∑
i φ(i) · i is the mean of φ. We will use the following standard lower bound

on the survival probability ζ1, when there is just one individual initially (see, e.g., [15,
Sect. 5.6.1]),

ζ1 ≥
2(E[X]− 1)

E[X2]−E[X]
.

Substituting the values for E[X] and E[X2] computed above yields

ζ1 ≥
2(q(β + 1)− 1)

(β + 1)(µq2 + q(1− q))− q(β + 1)
=

2(q(β + 1)− 1)

q2(β + 1)(µ− 1)

=
2(q(β + 1)− 1)(β + 1)

q2(β + 1)2(µ− 1)

(2)
=

2ε′β(β + 1)

(1 + ε′β)2(µ− 1)
= Ω(1/µ),

where the final equation holds because β = (p− p∗)(λ− δ) ≥ ε(λ− δ) = Ω(1).
We can now express ζσ in terms of ζ1, by observing that a branching process starting

with σ individuals can be viewed as σ independent copies of the branching process
starting with a single individual each.6 The former branching process survives if and
only if at least one of the latter ones survives, thus,

ζσ = 1− (1− ζ1)σ ≥ 1− e−ζ1σ = 1− e−Ω(σ/µ).

This completes the proof of Theorem 7. ut
6 This is true for any branching process, and does not relate to the original diffusion process.
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Fig. 1: Dissemination for RIPOSTE as a
function of the item popularity.

Table 1: Network topologies used in the
experiments. By avg-deg we denote the
average degree of the network.

Network Nodes Edges Avg-deg Source

Twitter 41.65M 1468M 35.2 [17]
LiveJournal 4.847M 68.99M 14.2 [4,18]
Facebook 3.097M 23.66M 15.3 [27]
Renren 965.3K 57.56M 59.6 [7]
Google+ 107.6K 13.67M 127 [19]

3 Experiments

In this section we provide experimental evaluation of the dissemination achieved by
RIPOSTE on some real topologies of online social networks. The results are surprisingly
consistent with our analysis, even though some of the analytical results were proven
only for an ideal random graph model.

Datasets. We use the network topologies listed in Table 1. The Twitter dataset is a
complete snapshot of the network from 2009 [17], while the other datasets are partial
network samples. Twitter is a micro-blogging network service, LiveJournal is a blog-
ging network site, while Facebook, Renren, and Google+ are online social networking
sites. In each of these networks, every user maintains a list of friends, and/or a list of
users she follows. The friendship relation is typically reciprocal, whereas the follower
relation is not; the former is represented as an undirected edge, and the latter as a di-
rected. In Twitter, LiveJournal and Google+ edges are directed, while in Renren and
Facebook undirected.

Setup. We consider the following protocols: (1) RIPOSTE, with exact information on
the number of non-informed followers, i.e., s is the actual number of the user’s follow-
ers that do not know the item yet—not just an upper bound; (2) DB-RIPOSTE, where no
information about the followers status is available, and thus s is the total number of fol-
lowers; (3) the basic non privacy-conscious protocol where a user reposts an item if she
likes it and does not repost it if she does not like it; we refer to this as the STANDARD
protocol.

While datasets on social network topologies are publicly available, access to user’s
activity, including the list of items they post, receive, like or repost, is severely restricted.
Therefore, for our evaluation we rely on two synthetic models to generate users’ opin-
ions: (i) the uniform opinion model, where every item is assigned a popularity p ∈ [0, 1],
and each user likes the item independently with probability p—this is the same model
used in the analysis (see Definition 3); and (ii) the distance-threshold opinion model,
where a user likes the item precisely if the (shortest-path) distance from a source to the
user is at most some threshold h. The latter model is motivated by the principle that
users close to each other tend to have similar opinions [21].
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Fig. 2: Dissemination in Twitter (top) and LiveJournal (bottom). (a) Comparison with
STANDARD and the β/(β + 1) lower bound of Theorem 7. (b) Comparison with the
1/β upper bound of Theorem 5 for unpopular items. (c) Distance-threshold model (all
users within distance h from the source, and only them, like the item).

In all experiments, we choose the set S of users who know the item initially to be
the followers of a random user, among all users with at least µ followers, where µ is the
average degree. We think that this is more realistic than choosing an arbitrary or random
set S: It is often the case that the source of the information (e.g., a news channel) is itself
a node in the online social network; then the followers of that node constitute the set S
of nodes exposed to the information initially. For each point in the plots we present, we
average the results over 10,000 random independent experiments, with a new random
set S each time. For the RIPOSTE algorithm, where the dissemination may depend on
the order in which the protocol is executed at different users, we experimented with
both breadth-first and depth-first orders, obtaining very similar results.

Results. Fig. 1 shows the average number of users that receive the item when using
RIPOSTE, as a function of the item popularity, for all networks (for parameters λ = 3
and δ = 0.75). In all cases, unpopular items (with popularity p below the threshold p∗

identified by our analysis) have very limited spread, while popular items (with p > p∗)
spread to a fraction of the networks that grows quickly with p. Due to space limitations,
in the following we present results only for Twitter and LiveJournal; the results for the
other three datasets are qualitatively similar and are deferred to the appendix.

Fig. 2a compares the dissemination using RIPOSTE to that of DB-RIPOSTE and
STANDARD, and also to the lower bound for the spread of popular items predicted
by Theorem 7. As expected, DB-RIPOSTE informs fewer users than RIPOSTE but has
overall qualitatively similar behaviour. STANDARD achieves significantly wider dis-
semination, even for items with very low popularity, which may be undesirable. The
β/(1 − β) bound of Theorem 7 is relatively close to the curve for RIPOSTE (slightly
above it in the case of Twitter and intersecting it in the case of LiveJournal). This lower
bound was derived for an idealized random graph model, so it is reasonable that it does
not apply exactly to the real topologies considered. On the other hand, the 1/β upper
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bound for unpopular items of Theorem 5 holds for any graph, and Fig. 2b shows that
it indeed bounds the dissemination with RIPOSTE in both Twitter and LiveJournal. Fi-
nally, Fig. 2c presents the same results as Fig. 2a but for the distance-threshold opinion
model. We observe that RIPOSTE achieves spread to a fraction of users that is relatively
close to the fraction of users that like the item. As before, STANDARD may spread the
item to a fraction significantly larger than the fraction that likes the item, in particular,
for items that not many users like. Moreover, Fig. 5 (in the appendix) shows that a large
fraction of the nodes that receive the item are indeed ones that like it in case of RI-
POSTE, and even more for DB-RIPOSTE. Fig. 6 (in the appendix) illustrates the effect
on dissemination of varying parameters λ and δ.

4 Conclusion

We have presented a simple and local diffusion mechanism for social networks, which
guarantees widespread dissemination of interesting but possibly sensitive information,
in a privacy-conscious manner. The mechanism randomizes the user’s action of repost-
ing (or not) the information, in a way reminiscent of the randomized response technique,
and chooses the probabilities so that a branching-process-like phenomenon takes place:
if more than a certain fraction of people like the information then a large cascade of
reposts is formed, and if fewer people like it then the diffusion process dies quickly.
We believe this mechanism to be relevant as a tool for internet-based activism, and
more generally for promoting free speech. We also think that our techniques could find
applications to other distributed problems, such as distributed polling.
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APPENDIX

A Omitted Proofs

A.1 Proof of Theorem 2

We must show that (i) the probability of reposting when the user likes the item is no
larger than eε = λ/δ times the probability of reposting when the user does not like the
item, i.e.,

rlike(s) ≤ (λ/δ) · rdis(s); (3)

and (ii) the probability of not reposting when the user does not like the item is no larger
than λ/δ times the probability of not reposting when the user likes the item, i.e.,

1− rdis(s) ≤ (λ/δ) · (1− rlike(s)). (4)

For Ineq. (3), we have that rlike(s) = λ/s if s ≥ λ+ δ, and rlike(s) = 1− δ(s−δ)
λs <

λ/s if 0 < s < λ+ δ; thus for any s, rlike(s) ≤ λ/s. And since rdis(s) = δ/s, Ineq. (3)
follows.

For Ineq. (4), if 0 < s < λ+ δ, the right-hand side is

(λ/δ) · (1− rlike(s)) = (λ/δ) · δ(s−δ)λs = s−δ
s = 1− rdis(s);

while if s ≥ λ+ δ,

(4) ⇔ 1− δ/s ≤ (λ/δ)(1− λ/s)
⇔ δ(1− δ/s) ≤ λ(1− λ/s)
⇔ (λ2 − δ2)/s ≤ λ− δ
⇔ (λ+ δ)/s ≤ 1

⇔ λ+ δ ≤ s,

and the last inequality holds. ut

A.2 Proof of Ineq. (1)

Let L be the event that the user likes the information, and let R be the binary random
variable that is 1 if the information is reposted and 0 if it is not. Then, q and q̂ can be
expressed as q = Pr(L) and q̂ = Pr(L | R). From Bayes’ Rule,

q = Pr(L | R) = Pr(R | L) · Pr(L)
Pr(R | L) Pr(L) + Pr(R | L) Pr(L)

=
Pr(L)

Pr(L) + Pr(R|L)
Pr(R|L) Pr(L)

=
q

q + Pr(R|L)
Pr(R|L) (1− q)

.

From Theorem 2, we have δ/λ ≤ Pr(R|L)
Pr(R|L) ≤ λ/δ, and applying this to the equation

above yields (1). ut

17



A.3 Proof of Theorem 5

Recall that, in general, the dissemination achieved by RIPOSTE depends on the order
in which users execute the algorithm. We consider the following representation of the
random process underlying the dissemination of an item. At each point in time users are
divided into three sets: (1) the set D of users who have received the item and RIPOSTE
has been executed at those users (resulting in reposting or not reposting the item); (2) the
set N of users who have received the item but RIPOSTE has not been executed yet at
those user; and (3) the set U of the remaining users, who have not received the item
yet. We assume that dissemination proceeds in steps: At each step, a single user u from
set N is considered, and RIPOSTE is executed at that user. As a result, u is moved from
set N to set D, and if RIPOSTE does repost the item then all u’s followers from set U
are moved to N . The dissemination is completed when set N becomes empty. For our
analysis, the order in which users from N are considered can be arbitrary.

We denote by Ni the value of the set N defined above after the first i steps; thus
N0 = S. We also let ni = |Ni|. The total number T of users that receive the item
(including the source nodes from S) is then

T = min{i : ni = 0}.

Suppose that i ≤ T (and thus ni−1 > 0), and consider the expected change on ni in
round i: If the user u considered in step i has at most s > 0 followers that have not
received the item yet, then the probability that the item is reposted from u is

p · rlike(s) + (1− p) · rdis(s) ≤ p · (λ/s) + (1− p) · (δ/s) = 1− β
s

,

where for the inequality we used that rlike(s) ≤ λ/s, for all s > 0. Thus, the expected
number of new users that learn the item at step i is at most 1 − β, and the expected
change in ni is

E[ni − ni−1 | i ≤ T ] ≤ (1− β)− 1 = −β, (5)

where the ‘−1’ in accounts for the removal of u from Ni−1.
It is now easy to understand the intuition behind the bound we must show: At each

step, ni drops in expectation by at least β. If, instead, the actual drop were at least β,
then it would follow that the number of steps until ni becomes zero would be at most
n0/β = |S|/β, which is equal to the bound we must show.

The formal proof is by applying Wald’s theorem to the sequence of random variables
Ti = ni−1 − ni, for i = 1, 2, . . . From (5), it follows that E[Ti | i ≤ T ] ≥ β, and thus
from Wald’s theorem it follows that E[

∑
i Ti] ≥ β ·E[T ]. And since

∑
i Ti = n0 = |S|,

we obtain E[T ] ≤ |S|/β. ut

B Omitted Figures
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Fig. 4: Dissemination in Facebook (top), Renren (middle), and Google+ (bottom).
(a) Comparison with STANDARD and the β/(β + 1) lower bound of Theorem 7.
(b) Comparison with the 1/β upper bound of Theorem 5 for unpopular items.
(c) Distance-threshold model (all users within distance h from the source, and only
them, like the item).
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Fig. 5: Fraction of users that like the item among all uses that receive the item (a mea-
sure known as precision), in the distance-threshold opinion model. RIPOSTE and DB-
RIPOSTE achieve significantly better precision that STANDARD for smaller values of h.
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Fig. 6: Effect of variation in parameters λ and δ on the dissemination achieved with RI-
POSTE in LiveJournal. (a) Variation in λ for fixed δ = 0.75. (b) Variation in δ for fixed
λ = 3. Increasing either parameter decreases the popularity threshold and increases the
spread.
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