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The notion of convexity is central in applied mathematics. It is also used in everyday life
in connection with curvature properties of a surface. For example an optical lens is said
to be convex if it is bulging outwards.

Convexity appears in ancient Greek geometry, for example in the description of the five
regular convex space polyhedra (platonic solids). Archimedes (ca. 250BC) seems to have
been the first to give a rigorous definition of convexity, similar to the geometric definition
we use today: a set is convex if it contains all line segments between each of its points.

In his study of singularities of real algebraic curves, Newton (ca. 1720) introduced a convex
polygon in the plane built from the exponents of the monomials of the polynomial defining
the curve; this is known as the Newton polygon. Cauchy (ca. 1840) studied convex curves
and remarked, for example, that if a closed convex curve is contained in a circle, then its
perimeter is smaller than that of the circle. Convex polyhedra were studied by Fourier
(ca. 1825) in connection with the problem of solvability of linear inequalities.

A central figure in the modern development of convexity is H. Minkowski, who was mo-
tivated by problems from number theory. In 1891, Minkowski proved that, in Euclidean
space Rn, every compact convex set with center at the origin and volume greater than
2n contains at least one point with integer coordinates different from the origin. From
Minkowski’s work follows the classical isoperimetric inequality stating that among all
convex sets with given volume, the ball is the one with minimal surface area. In 1896,
Minkowski considered systems of the form Ax ≥ 0 where A is a real m × n matrix and
x ∈ Rn. Together with the above-mentioned contribution by Fourier, this set the ground
for linear programming, which emerged in the late 1940s, with key contributions by L.

1LAAS-CNRS, University of Toulouse, France.
2Faculty of Electrical Engineering, Czech Technical University in Prague, Czech Republic.

1



x

y

Figure 1: A convex set.
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Figure 2: A nonconvex set.
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Figure 3: A convex function.
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Figure 4: A nonconvex function.

Kantorovich (1912–1986) and G. Dantzig (1914–2005). In the second half of the 20th
century, convexity was developed further under the impetus of W. Fenchel (1905–1988),
J. J. Moreau (1923–) and R. T. Rockafellar (1935–), among many others. Convexity is
now a key notion in many branches of applied mathematics: it is essential in mathemati-
cal programming (to ensure convergence of optimization algorithms), functional analysis
(to ensure existence and uniqueness of solutions of problems of calculus of variations and
optimal control), geometry (to classify sets and their invariants or to relate geometrical
quantities), and probability and statistics (to derive inequalities).

Geometrically speaking, convex objects can be thought of as the opposite in some sense
to fractal objects. Indeed, fractal objects arise in maximization problems (sponges, lungs,
batteries) and they have a rough boundary. In contrast, convex objects arise in mini-
mization problems (isoperimetric problems, smallest energy) and they have a smoother
boundary.

Mathematically, a set X is convex if, for all x, y ∈ X, and for all λ ∈ [0, 1], λx+(1−λ)y ∈
X; see figures 1 and 2. Geometrically, this means that the line segment between any two
points of the set belongs to the set. A real-valued function f : X → R is convex if, for
all x, y ∈ X, and for all λ ∈ [0, 1], it holds f(λx + (1 − λ)y) ≤ λf(x) + (1 − λ)f(y).
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Geometrically, this means that the line segment between any two points on the graph of
the function lies above the graph; see figures 3 and 4. This is the same as saying that the
epigraph {(x, y) : x ∈ X, y ≥ f(x)} is a convex set. If a function is twice continuously
differentiable, convexity of the function is equivalent to nonnegativity of the quadratic
form of the matrix of second-order partial derivatives (the Hessian).

If the function f is convex then f(λ1x1 + · · · + λmxm) ≤ λ1f(x1) + · · · + λmf(xm) for
all x1, . . . , xm in X and λ in the m-dimensional unit simplex {λ ∈ Rm : λ1 + · · · + λm =
1, λ1 ≥ 0, . . . , λm ≥ 0}. This is called Jensen’s inequality, and more generally it can be
expressed as f(

∫
xµ(dx)) ≤

∫
f(x)µ(dx) for every probability measure µ supported on

X, or equivalently, as f(E[x]) ≤ E[f(x)] where E denotes the expectation of a random
variable.

A function f is concave whenever the function −f is convex. If a function f is both
convex and concave, it is affine. For this reason, convexity can be sometimes interpreted
as a one-sided linearity, and in some instances (for example, in problems of calculus of
variations and partial differential equations), nonlinear convex functions behave similarly
to linear functions.

A set X is a cone if x ∈ X implies λx ∈ X for all λ ≥ 0. A convex cone is therefore
a set that is closed under addition and under multiplication by positive scalars. Convex
cones are central in optimization, and conic programming is the minimization of a linear
function over an affine section of a convex cone. Important examples of convex cones
include the linear cone (also called the positive orthant), the quadratic cone (also called
the Lorentz cone), and the semidefinite cone (which is the set of non-negative quadratic
forms, or equivalently, the set of positive semidefinite matrices).

The convex hull of a set X is the smallest closed convex set containing X, sometimes
denoted conv X. If X is the union of a finite number of points then conv X is the
polytope with vertices among these points. A theorem by Carathéodory states that given
a set X ⊂ Rn−1, every point of conv X can be expressed as λ1x1 + · · · + λnxn for some
choice of x1, . . . , xn in X and λ in the n-dimensional unit simplex.

A theorem of Minkowski (generalized to infinite-dimensional spaces in 1940 by Krein and
Milman) states that every compact convex set is the closure of the convex hull of its
extreme points (a point x ∈ X is extreme if x = x1+x2

2
for some x1, x2 ∈ X implies

x1 = x2). Finally, we mention the Brunn–Minkowski theorem which relates the volume
of the sum of two compact convex sets (all points that can be obtained by adding a point
of the first set to a point of the second set) to the respective volumes of the sets.
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