Average profiles, from tries to suffix-trees - Archive ouverte HAL
Communication Dans Un Congrès Discrete Mathematics and Theoretical Computer Science Année : 2005

Average profiles, from tries to suffix-trees

Résumé

We build upon previous work of Fayolle (2004) and Park and Szpankowski (2005) to study asymptotically the average internal profile of tries and of suffix-trees. The binary keys and the strings are built from a Bernoulli source $(p,q)$. We consider the average number $p_{k,\mathcal{P}}(\nu)$ of internal nodes at depth $k$ of a trie whose number of input keys follows a Poisson law of parameter $\nu$. The Mellin transform of the corresponding bivariate generating function has a major singularity at the origin, which implies a phase reversal for the saturation rate $p_{k,\mathcal{P}}(\nu)/2^k$ as $k$ reaches the value $2\log(\nu)/(\log(1/p)+\log(1/q))$. We prove that the asymptotic average profiles of random tries and suffix-trees are mostly similar, up to second order terms, a fact that has been experimentally observed in Nicodème (2003); the proof follows from comparisons to the profile of tries in the Poisson model.
Fichier principal
Vignette du fichier
dmAD0123.pdf (207.75 Ko) Télécharger le fichier
Origine Fichiers éditeurs autorisés sur une archive ouverte
Loading...

Dates et versions

hal-01184225 , version 1 (13-08-2015)

Identifiants

Citer

Pierre Nicodème. Average profiles, from tries to suffix-trees. 2005 International Conference on Analysis of Algorithms, 2005, Barcelona, Spain. pp.257-266, ⟨10.46298/dmtcs.3390⟩. ⟨hal-01184225⟩
130 Consultations
617 Téléchargements

Altmetric

Partager

More