Analysis of biclusters with applications to gene expression data - Archive ouverte HAL
Communication Dans Un Congrès Discrete Mathematics and Theoretical Computer Science Année : 2005

Analysis of biclusters with applications to gene expression data

Résumé

For a given matrix of size $n \times m$ over a finite alphabet $\mathcal{A}$, a bicluster is a submatrix composed of selected columns and rows satisfying a certain property. In microarrays analysis one searches for largest biclusters in which selected rows constitute the same string (pattern); in another formulation of the problem one tries to find a maximally dense submatrix. In a conceptually similar problem, namely the bipartite clique problem on graphs, one looks for the largest binary submatrix with all '1'. In this paper, we assume that the original matrix is generated by a memoryless source over a finite alphabet $\mathcal{A}$. We first consider the case where the selected biclusters are square submatrices and prove that with high probability (whp) the largest (square) bicluster having the same row-pattern is of size $\log_Q^2 n m$ where $Q^{-1}$ is the (largest) probability of a symbol. We observe, however, that when we consider $\textit{any}$ submatrices (not just $\textit{square}$ submatrices), then the largest area of a bicluster jumps to $A_n$ (whp) where $A$ is an explicitly computable constant. These findings complete some recent results concerning maximal biclusters and maximum balanced bicliques for random bipartite graphs.
Fichier principal
Vignette du fichier
dmAD0124.pdf (153.7 Ko) Télécharger le fichier
Origine Fichiers éditeurs autorisés sur une archive ouverte
Loading...

Dates et versions

hal-01184220 , version 1 (13-08-2015)

Identifiants

Citer

Gahyun Park, Wojciech Szpankowski. Analysis of biclusters with applications to gene expression data. 2005 International Conference on Analysis of Algorithms, 2005, Barcelona, Spain. pp.267-274, ⟨10.46298/dmtcs.3385⟩. ⟨hal-01184220⟩

Collections

TDS-MACS
156 Consultations
561 Téléchargements

Altmetric

Partager

More