The master ring problem - Archive ouverte HAL
Communication Dans Un Congrès Discrete Mathematics and Theoretical Computer Science Année : 2005

The master ring problem

Résumé

We consider the $\textit{master ring problem (MRP)}$ which often arises in optical network design. Given a network which consists of a collection of interconnected rings $R_1, \ldots, R_K$, with $n_1, \ldots, n_K$ distinct nodes, respectively, we need to find an ordering of the nodes in the network that respects the ordering of every individual ring, if one exists. Our main result is an exact algorithm for MRP whose running time approaches $Q \cdot \prod_{k=1}^K (n_k/ \sqrt{2})$ for some polynomial $Q$, as the $n_k$ values become large. For the $\textit{ring clearance problem}$, a special case of practical interest, our algorithm achieves this running time for rings of $\textit{any}$ size $n_k \geq 2$. This yields the first nontrivial improvement, by factor of $(2 \sqrt{2})^K \approx (2.82)^K$, over the running time of the naive algorithm, which exhaustively enumerates all $\prod_{k=1}^K (2n_k)$ possible solutions.
Fichier principal
Vignette du fichier
dmAD0126.pdf (154.68 Ko) Télécharger le fichier
Origine Fichiers éditeurs autorisés sur une archive ouverte
Loading...

Dates et versions

hal-01184218 , version 1 (13-08-2015)

Identifiants

Citer

Hadas Shachnai, Lisa Zhang. The master ring problem. 2005 International Conference on Analysis of Algorithms, 2005, Barcelona, Spain. pp.287-296, ⟨10.46298/dmtcs.3383⟩. ⟨hal-01184218⟩

Collections

TDS-MACS
51 Consultations
630 Téléchargements

Altmetric

Partager

More