The distribution of ascents of size $d$ or more in samples of geometric random variables - Archive ouverte HAL
Communication Dans Un Congrès Discrete Mathematics and Theoretical Computer Science Année : 2005

The distribution of ascents of size $d$ or more in samples of geometric random variables

Résumé

We consider words or strings of characters $a_1a_2a_3 \ldots a_n$ of length $n$, where the letters $a_i \in \mathbb{Z}$ are independently generated with a geometric probability $\mathbb{P} \{ X=k \} = pq^{k-1}$ where $p+q=1$. Let $d$ be a fixed nonnegative integer. We say that we have an ascent of size $d$ or more if $a_{i+1} \geq a_i+d$. We determine the mean, variance and limiting distribution of the number of ascents of size $d$ or more in a random geometrically distributed word.
Fichier principal
Vignette du fichier
dmAD0131.pdf (115.35 Ko) Télécharger le fichier
Origine Fichiers éditeurs autorisés sur une archive ouverte
Loading...

Dates et versions

hal-01184217 , version 1 (13-08-2015)

Identifiants

Citer

Charlotte Brennan, Arnold Knopfmacher. The distribution of ascents of size $d$ or more in samples of geometric random variables. 2005 International Conference on Analysis of Algorithms, 2005, Barcelona, Spain. pp.343-352, ⟨10.46298/dmtcs.3382⟩. ⟨hal-01184217⟩

Collections

TDS-MACS
65 Consultations
573 Téléchargements

Altmetric

Partager

More