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Abstract

This work investigates the formulation of finite elements dedicated to the upper bound
kinematic approach of yield design or limit analysis of Reissner-Mindlin thick plates in
shear-bending interaction. The main novelty of this paper is to take full advantage of the
fundamental difference between limit analysis and elasticity problems as regards the class
of admissible virtual velocity fields. In particular, it has been demonstrated for 2D plane
stress, plane strain or 3D limit analysis problems that the use of discontinuous velocity
fields presents a lot of advantages when seeking for accurate upper bound estimates. For
this reason, discontinuous interpolations of the transverse velocity and the rotation fields
for Reissner-Mindlin plates are proposed. The subsequent discrete minimization problem is
formulated as a second-order cone programming (SOCP) problem and is solved using the in-
dustrial software package Mosek. A comprehensive study of the shear-locking phenomenon
is also conducted and it is shown that discontinuous elements avoid such a phenomenon
quite naturally, whereas continuous elements cannot without any specific treatment. This
particular aspect is confirmed through numerical examples on classical benchmark prob-
lems and the so-obtained upper bound estimates are confronted to recently developed lower
bound equilibrium finite elements for thick plates.

Keywords: limit analysis, yield design, upper bound, thick plates, shear locking, finite
element method, second order cone programming

1. Introduction

Computational limit analysis generally involves the discretization of the problem fields
and the use of optimization techniques to obtain sufficiently accurate bounding solutions. In
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the kinematic formulation, velocity fields must be discretized using continuous, discontinu-
ous finite elements or discontinuities only. Owing to their simplicity and the fact that they
produce strict bounds, low-order continuous displacement finite elements are widely used in
numerical limit analysis procedures [1–4]. However, the accuracy of plastic limit analysis
or yield design solutions is highly affected by local singularities arising from localized de-
formations. Therefore, there is a need to perform an adaptive refinement scheme in order
to capture these local yield zones and thus improve such solutions. Moreover, volumetric
locking phenomena may occur when trying to enforce the incompressibility condition in the
kinematic formulations associated for instance with von Mises or Tresca yield criteria for
a plane strain 2D continuum. As an alternative, ”discontinuities-only” methods, such as
discontinuous layout optimization (DLO), have been proposed in [5]. Instead of using finite
elements, DLO problems are formulated entirely in terms of lines of discontinuity intercon-
necting nodes laid out across the body under consideration and defining rigid blocks. The
volume being preserved by construction, the DLO numerical procedure avoids naturally the
volumetric locking and can also overcome stress/velocity singularity limitations of finite el-
ement limit analysis. Yield line analysis [6] for thin plates in bending also falls into this
category since the bending dissipation comes only from rotation discontinuities occurring
along predefined potential yield lines. This method allows for relatively simple upper bound
solutions but suffers from a certain mesh dependency and cannot, in general, produce the
exact collapse load since curvature strains are not taken into account in the analysis.

Considering the advantage of both continuous and discontinuities-only methods, discon-
tinuous elements have also been developed in parallel [7–9]. Such elements allow for velocity
discontinuities across all edges shared by adjacent triangles, and consequently dissipation
may occur not only inside the triangular elements but also along these discontinuities. It
has been shown that discontinuous elements can give good estimates of the true collapse
load with a relatively coarse mesh. Recently, Bleyer et al. [10] have proposed various types
of discontinuous finite elements for plate bending, where the transversal velocity is contin-
uous but its derivative (the rotation field) is not. The method can provide more accurate
upper bound solutions compared with other element-based formulations for kinematic limit
analysis of thin plate problems. Following this line of research, this paper will describe
discontinuous Reissner-Mindlin elements for yield design or limit analysis of thick plates in
shear-bending interaction.

It is well-known that Reissner-Mindlin plate elements exhibit shear locking phenomenon
in the limit of thin plates. As a result, various methods have been proposed to overcome
shear-locking effect for elastic plate problems, including selective reduced integration scheme
[11, 12], mixed formulation/hybrid elements [13, 14], enhanced assumed strain [15], assumed
natural strain [16] and discrete shear gap (DSG) formulation [17]. Shear-locking for limit
analysis of Reissner-Mindlin plate has been recently studied by Le [18], where a stabilized
strain smoothing technique is used in combination with DSG elements. In the present paper,
a comprehensive study of the shear-locking phenomenon for yield design problems of thick
plates is conducted, and it will be shown that discontinuous elements can quite naturally
avoid the shear locking phenomenon. This will allow to overcome a classical drawback of
dedicated procedures to remove shear-locking, in which the strain compatibility equation is
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Figure 1: Virtual motions of a Reissner-Mindlin plate (left) and velocity jumps across a line Γ (right)

often relaxed in some sense, so that the corresponding collapse load estimates can no longer
be considered as true upper bounds.

The layout of the paper is as follows. Next section describes the upper bound kinematic
yield design formulation for Reissner-Mindlin plate problems. Section 3 is devoted to a
discussion concerning the choice of a generalized shear-bending interaction criterion for
thick plates. Finite elements with discontinuous velocity fields will be introduced in Section
4 along with the corresponding second-order cone programming (SOCP) formulation. Shear
locking effect will be studied in Section 5. Numerical examples are provided in Section 6 to
illustrate the performance of the proposed method.

2. Yield design of shear-bending plates

This section recalls the yield design formulation of shear-bending plates. In this context,
the plate is assumed to be infinitely resistant to membrane forces, so that the in-plane
membrane strains must be equal to zero. See [10, 19] for more details.

2.1. Virtual motions and virtual work of internal forces for a plate

Referring to a Cartesian orthonormal frame Oxyz, the plate occupies a two-dimensional
geometrical domain S in the Oxy-plane as shown in Figure 1. The virtual motions of such
a plate are defined at any point (x, y) of S by:

• an out-of-plane (transversal) velocity ŵez of the particle attached to the point;

• an angular velocity θ̂ representing the rotation of the microstructure attached to the
same point. We note β the associated vector defined by β̂ = ez ∧ θ̂ which will directly
appear in the expression of the shear and the curvature strains. Both vectors are
parallel to S.
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Following the same line of reasoning as that employed for instance for one-dimensional
beams, that is making use of the virtual work method and related principles, the virtual
work of internal forces may be written in the form :

P(i)(ŵ, β̂) = −
∫
S

(
V ·
(
∇ŵ − β̂

)
+M :

(
s∇β̂

))
dS (1)

where s∇(·) denotes the symmetric part of the gradient operator with respect to the (x, y)
coordinates, while V is the vector of shear forces and M the tensor of bending moments.

We see here that the shear strain rate is given by γ̂ = ∇ŵ − β̂ and the curvature strain

rate is given by χ̂ = s∇β̂. In the case when the virtual velocity fields are discontinuous

across a line Γ , the above expression (1) should be completed by the following additional
line integral:

P
[[ ]]
(i)([[ŵ]], [[β̂]]) = −

∫
Γ

(
(V · n) [[ŵ]] +

(
M · n

)
· [[β̂]]

)
dΓ (2)

where [[∗]] represents the jump of a variable ∗ when crossing Γ along its unit normal n.

2.2. Statement of the yield design problem for shear-bending plates

Generally speaking, the strength criterion of a plate (infinitely resistant to membrane
forces) can be formulated as a condition involving all internal forces at any point of the
plate, namely :

f
(
V ,M

)
≤ 0

It is assumed from now on, that the plate loading depends upon several parameters Q, which
means that the virtual work of external forces in any kinematically admissible (K.A.) virtual
velocity field, may be expressed as:

∀(ŵ, β̂) K.A. with q̂, P(e)(ŵ, β̂) = Q · q̂ (3)

where q̂ represents the generalized kinematic parameters defined by duality in the expression
of the work of external forces. In this context, the domain K of potentially safe loads Q as
introduced in the yield design theory [19], is defined as follows:

K =

{
Q ; ∃V ,M Statically Admissible (S.A.) with Q

∀(x, y) ∈ S f
(
V (x, y),M(x, y)

)
≤ 0

}
(4)

2.3. Upper bound kinematic approach

The upper bound kinematic approach to K is then classically obtained from the virtual
work principle : (

V ,M
)

S.A. with Q⇐⇒
∀(ŵ, β̂) K.A. with q̂, P(e)(ŵ, β̂) = Q · q̂ = −P(i)(ŵ, β̂)
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introducing the so-called maximum resisting work (also called maximum plastic dissipa-
tion in the context of limit analysis), defined as :

Prm(ŵ, β̂) =

∫
S

π
(
∇ŵ − β̂,s∇β̂

)
dS +

∫
Γ

Π
(
n; [[ŵ]], [[β̂]]

)
dΓ (5)

where the support functions are defined as :

π
(
γ̂ = ∇ŵ − β̂, χ̂ = s∇β̂

)
= sup

(V ,M)

{
V · γ̂ +M : χ̂ ; f

(
V ,M

)
≤ 0
}

(6)

Π
(
n; [[ŵ]], [[β̂]]

)
= sup

(V ,M)

{
(V · n) [[ŵ]] +

(
M · n

)
· [[β̂]] ; f

(
V ,M

)
≤ 0
}

(7)

Contrary to the thin plate in bending case, we see that, in the case of a limited resistance
with respect to shear forces, the transverse velocity can be discontinuous across a discontinu-
ity line Γ. Besides the vector β̂ associated to the angular velocity can also be discontinuous,
whereas only its normal component can be discontinuous in the thin plate case due to the
Love-Kirchhoff condition β̂ = ∇ŵ and Hadamard’s compatibility condition [20].

As a consequence, the implementation of the yield design upper bound kinematic ap-
proach for Reissner-Mindlin plates is based upon considering distributions of K.A. transverse
velocity fields ŵ and rotation vectors β̂ subject to the property that ŵ and β̂ are everywhere
differentiable, except on a number of discontinuity lines where jumps of angular velocities
and transverse displacement have to be taken into account.

Assuming that the plate is loaded by a transverse loading distribution p(x, y)ez with a
set of boundary conditions denoted by B. The set of kinematically admissible velocity fields
is KA = {(w, βx, βy) ∈ V ∩ B} where V is the functional space consistent with the yield
design of Reissner-Mindlin plates. For this particular loading, the work of external forces
writes :

P(e)(w, βx, βy) =

∫
S

p(x, y)w(x, y)dS (8)

While the maximum resisting work is ∀(w, βx, βy) ∈ KA :

Prm(w, βx, βy) = P strain
rm (w, βx, βy) + P disc

rm (w, βx, βy)

=

∫
S

π(γ(x, y), χ(x, y))dS +

∫
Γ

Π(n; [[w]](s), [[β]](s))ds
(9)

The kinematic formulation for the ultimate load factor λ is then given by the following
optimization problem :

λ+ ≤ λkin = min
{
Prm(w, βx, βy) ; ∀(w, βx, βy) ∈ KA and P(e)(w, βx, βy) = 1

}
(10)

where λ+ is the ultimate value associated with the plate failure.

For the sake of simplicity, the notation̂ recalling the virtual character of the kinematic
fields involved in the analysis will from now on be omitted.
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3. Generalized strength criteria for thick plates in shear and bending

3.1. General comments

Designing an interaction strength criterion between the shear forces and the bending
moments is a particularly difficult question. For example in the case of thick beams, Drucker
[21] highlighted the fact that it is impossible to obtain such a strength criterion depending
only on the plane section of the beam whereas it is possible for membrane forces and bending
moments interaction. Hence, such a criterion will a priori depend on an internal length scale
and/or the external loading. Generalized strength criteria expressed in terms of generalized
forces (or interaction diagrams) can normally be obtained when solving an auxiliary problem
on an elementary volume of the underlying 3D continuum with a properly defined loading
mode. The problem in the shear-bending case comes from the fact that the bending moment
and the shear force are coupled from the plate equilibrium equation and cannot, therefore,
be rigorously considered as two independent loading parameters (contrary to the case of the
membrane force for N -M interaction diagrams).
For all these reasons, it is somewhat illusive to speak of an exact shear-bending strength
criterion. Our approach is then based on considering a simple criterion without paying too
much attention on its exactness.

3.2. A simple strength criterion

The strength criterion is designed such that its pure bending part reduces to a von Mises
criterion for plates in bending of uniaxial bending strength M0. Similiarly, the pure shear
part is given by an isotropic criterion limiting the norm of the shear force by a value V0 :√
V 2
x + V 2

y ≤ V0. It is then possible to consider an interaction between those two limit cases
or not [22]. In the following, we consider only a nonlinear interaction given by :

G =

(M,V ) s.t.

√
M2

xx +M2
yy −MxxMyy + 3M2

xy

M2
0

+
V 2
x + V 2

y

V 2
0

≤ 1

 (11)

It can be observed that if V0L�M0 where L is a characteristic in-plane length of the plate,
then the previous criterion reduces to the von Mises bending criterion whereas the shear
force becomes unlimited. Therefore, the situation where V0L � M0 corresponds to a thin
plate model in which the shear strength is infinite.
As mentioned in [22], the material parameters M0 and V0 describing the plate strength to
pure bending and pure shear respectively can be estimated by refering to a three-dimensional
modelling of the plate of thickness t, associated with a von Mises strength criterion of
ultimate tensile/compressive strength σ0. In this case, M0 and V0 are given by the following
relations :

M0 =
σ0t

2

4
; V0 =

σ0t√
3

(12)

It is to be noted that the interaction criterion (11), associated with expressions (12), has
already been proposed in previous works [23, 24] and can be seen as an extension to plates
of the strength criterion for idealized I-beams under combined bending and shear.
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3.3. Expression of the support functions

Remarking that (11) corresponds to an ellipsod in the 5-dimensional (M,V ) space, the
expression of its support function can be readily obtained as :

π(γ, χ) =

√
4M2

0

3

(
χ2
xx + χ2

yy + χxxχyy + χ2
xy

)
+ V 2

0

(
γ2
x + γ2

y

)
(13)

Inspecting equation (7), it can be seen that the following relation holds true :

Π
(
n; [[w]], [[β]]

)
= π([[w]]n, [[β]]

s
⊗ n)

where a
s
⊗ b = 1

2
(a⊗ b+ b⊗ a). Hence, using (13):

Π
(
n; [[w]], [[β]]

)
=

√
M2

0

3
(4[[βn]]2 + [[βt]]2) + V 2

0 [[w]]2 (14)

3.4. Relation to the 3D continuum

In the case of a local von Mises criterion, some authors proposed to obtain a shear-
bending interaction criterion by integrating through the thickness the expression of the
local support function (or plastic dissipation in the context of limit analysis) in a Reissner-
Mindlin kinematics, that is a 3D virtual velocity field the virtual strain rate of which is of
the form :

d(z) =

[
−zχ γ/2

γT/2 dzz(z)

]
(15)

where dzz(z) can be chosen freely as ztr χ to satisfy the divergence-free (tr d = 0) condition.

This approach yields the following expression1 [25] :

π3D

(
γ, χ

)
= σ0

∫ t/2

−t/2

√
z2χTQbχ + γTQsγdz (16)

where χ = (χxx, χyy, 2χxy)
T , γ = (γx, γy)

T and

Qb =
1

3

4 2 0
2 4 0
0 0 1

 Qs =
1

3

[
1 0
0 1

]

As stated in [26] (with a missing factor 1
2
), expression (16) is often approximated using a

ng-points Gauss quadrature over the half thickness, so that :

π3D

(
γ, χ

)
= 2σ0

∫ t/2

0

√
z2χTQbχ + γTQsγdz ≈

1

2

ng∑
g=1

M0ωg

√
(1 + ξg)2χTQbχ +

16

t2
γTQsγ

(17)

1The notation π3D is adopted to keep in mind that it is obtained as the result of an upscaling procedure
from a 3D continuum.
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where ξ = 4z/t − 1 and ωg is the weighting factor of the Gauss point ξg. It is now quite
easy to see that, in the case of a one-point integration rule (ξ1 = 0, ω1 = 2), equation (17)
reduces to (13) along with (12).
Choosing different values of ng will then lead to different choices of the working strength
criterion, which will tend to the one obtained with (16) when ng increases. It can be observed
that, even with ng = 1 (i.e. (13)), a very good approximation is obtained, differing by a few
percents only from (16). In the following, we will continue working with expression (17) for
its generality, although the numerical example will be performed with ng = 1 so that now :

π
(
γ, χ

)
=

1

2

ng∑
g=1

M0ωg

√
(1 + ξg)2χTQbχ +

16

t2
γTQsγ (18)

In our point of view, upper bounds will be obtained with respect to a criterion described
by a fixed value of ng. In particular, computations with a given ng will not produce up-
per bounds with respect to the criterion obtained with (16). However, post-processing the
optimal collapse mechanism to compute the maximal resisting work with expression (16)
would still be possible. This has not been done so that upper bounds with ng = 1 can be
compared with the static lower bounds obtained in [22] with criterion (11).

From (18), one has :

Π
(
n; [[w]], [[β]]

)
=

1

2

ng∑
g=1

M0ωg

√
(1 + ξg)2[[β]]TQn[[β]] +

16

3t2
[[w]]2 (19)

Finally, since Qb,Qs and Qn are positive definite matrices, both expressions (18) and
(19) can be rewritten in the form of a sum of norms, namely :

π
(
γ, χ

)
=

1

2

ng∑
g=1

M0ωg

√
‖CT

bgχ‖2 + ‖CT
s γ‖2 (20)

Π
(
n; [[w]], [[β]]

)
=

1

2

ng∑
g=1

M0ωg

√
‖CT

ng[[β]]‖2 +
16

3t2
[[w]]2 (21)

where the so-called Cholesky matrices Cbg, Cs and Cng are defined as :

Cbg =
1 + ξg√

3

2 0 0

1
√

3 0
0 0 1

 ; Cs =
4√
3t

[
1 0
0 1

]
; Cng =

1 + ξg√
3

[
2 0
0 1

]

It is worth noting from the examination of equations (20) and (21) that, in the thin plate
limit, that is as the plate thickness t tends to zero, the terms associated either with the shear
strain γ or the transversal velocity jump [[w]] are going to infinity. Therefore, this asymptotic
case can only be treated by means of virtual kinematic fields satisfying the Love-Kirchhoff
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conditions : γ = ∇w − β = 0 and [[w]] = 0 which imply χ = ∇s∇w and [[β]] =

[[
∂w

∂n

]]
n.

Thus, computing for instance the support function (21), it comes out

Π

(
n; 0,

[[
∂w

∂n

]]
n

)
=

∣∣∣∣[[∂w∂n
]]∣∣∣∣σ0

2√
3

∫ t/2

−t/2

|z|dz =
2√
3
M0

∣∣∣∣[[∂w∂n
]]∣∣∣∣

recovering the classical expression of the support function associated with a yield line for a
von Mises plate in pure bending.

4. Finite element discretization

In this section, the domain S of the plate is supposed to be discretized by NE three-
noded triangular finite elements. The important feature of the considered elements is that
the degrees of freedom are attached to the element and not to a geometrical node shared
by several adjacent elements as is usually the case. Two different interpolations will be
investigated : the first one (w3) assumes a linear interpolation of both w and β whereas
the second one (w6) assumes a quadratic interpolation for w and a linear interpolation for
β. In both cases, the degrees of freedom attached to an element e will be noted ue and are
arranged as follows :

• for w3 :
ue = 〈w1 w2 w3 β1

x β1
y . . . β3

y〉T

• for w6 :
ue = 〈w1 . . . w6 β1

x β1
y . . . β3

y〉T

where xi denotes the value of quantity x at the node i inside the element. Here, the total
number of degrees of freedom will thus be 9NE for w3 and 12NE for w6 and it is important
to keep in mind that, at a given geometrical node, there will be as many different values of
u as the number of elements sharing this node.

4.1. Contribution of the first term associated with curvature and shear strains

The curvatures and shear strains are expressed at the three corners of the element by :

χi
e = Bb

iue ; γi
e = Bs

iue ∀i = 1, . . . , 3

It is to be noted that χ is in fact constant within the element whereas γ is linear for both
interpolations. Therefore, the strain variables vary at most linearly inside the element.
The integrand in P strain

rm being a convex function of the strain variables which vary like a
simplex in a triangle with straight edges, the elementary integral in P strain

rm can therefore be
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approximated by excess using the values at the three vertices following the same method as
the one employed in [27] for a different criterion :

P strain
rm (w, βx, βy) .

NE∑
e=1

3∑
i=1

ng∑
g=1

M0
Ae

3

ωg

2

√
‖CT

bgB
b
iue‖2 + ‖CT

s Bs
iue‖2 (22)

where Ae is the area of element e.
Introducing, for p = 1, . . . , 3NE, the auxiliary variable ρgp defined as :

ρgp
1→3 =

ρgp
1

ρgp
2

ρgp
3

 = CT
bgB

b
iue ; ρgp

4→5 =

[
ρgp

4

ρgp
5

]
= CT

s Bs
iup (23)

equation (22) now reads as :

P strain
rm (w, βx, βy) .M0

3NE∑
p=1

Ae

3

ng∑
g=1

ωg

2
‖ρgp‖ (24)

4.2. Contribution of the second discontinuity term

Let us consider a given edge j in the finite element mesh. If j is not on a boundary, then
there exists two elements e and e′ sharing the edge j. The discontinuities are computed at
both nodes of the edge (denoted respectively by i1 (resp. i2) in element e and i′1 (resp. i′2) in
element e′) plus the mid-side node for the discontinuity of w for the w6 interpolation. The
discontinuities are collected in the following vector :

• for w3 :
[[u]]j = 〈[[w]]1 [[w]]2 [[βn]]1 [[βt]]

1 [[βn]]2 [[βt]]
2〉T

• for w6 :
[[u]]j = 〈[[w]]1 [[w]]2 [[w]]3 [[βn]]1 [[βt]]

1 [[βn]]2 [[βt]]
2〉T

where [[x]]1 = xi1e − x
i′1
e′ , [[x]]2 = xi2e − x

i′2
e′ and [[x]]3 = xi3e − x

i′3
e′ if i3, i′3 represent the mid-side

nodes of the edge. The discontinuities of the rotation are expressed in terms of normal and
tangential components along the edge. The linear relation between [[u]]j and the nodal values
uj along the edge is written as [[u]]j = Djuj.
We also introduce the following auxiliary variables defined as :

• for w3 : µjg1

µjg2

 =


4√
3t

0 0 0

0 0 CT
ng 0

0 4√
3t

0 0

0 0 0 CT
ng

Dju
j (25)
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• for w6 : 
µjg1

µjg2

µjg3

 =



4√
3t

0 0 0 0

0 0 0 CT
ng 0

0 4√
3t

0 0 0

0 0 0 0 CT
ng

0 0 8√
3t

0 0

0 0 0 CT
ng CT

ng


Dju

j (26)

For w3, the jumps vary linearly along an edge, the second term of the maximum resisting
work can therefore be approximated by excess by evaluating the support function at each
end node and summing over all active edges :

P disc
rm (w, βx, βy) .

ND∑
j=1

2∑
i=1

ng∑
g=1

M0
lj
2

ωg

2
‖µjgi‖ (27)

where lj is the length of edge j and ND is the number of all active edges.
As regards w6, the jump of w varies quadratically, hence it is not possible to obtain an
upper bound approximation. It has been decided to use the same formula as before but on
both half of the edge, such that we obtain :

P disc
rm (w, βx, βy) ≈

ND∑
j=1

3∑
i=1

ng∑
g=1

M0
lj
4

ωg

2
‖µjgi‖ (28)

4.3. Boundary conditions

Active edges correspond to all edges which actually contribute to the maximum resisting
work. This includes all internal edges and all boundary edges except those on the free part
of the boundary. For other parts of the boundary (e.g. simple supports), we need to modify
relations (25) and (26).
Indeed, for fully clamped parts, the relation holds true (since all components of [[u]] con-
tribute to the dissipation, but when some components of u are free (e.g. βn for simple
supports) the corresponding contribution should be zero. In this case, the corresponding
line (denoted by I) in the definition of µ should be replaced by µI = 0. For computational
simplicity, the components of the angular velocity field β are given in terms of normal and
tangential components for the boundary conditions. Therefore, the boundary conditions can
be enforced directly on the components of µ as follows :

w = 0 ⇒ µ2 = µ3 = 0
βn = 0 ⇒ µ1 = µ3 = 0
βt = 0 ⇒ µ1 = µ2 = 0
w = βn = 0 ⇒ µ3 = 0
w = βt = 0 ⇒ µ2 = 0
βn = βt = 0 ⇒ µ1 = 0

11



4.4. Mathematical programming

Denoting by f the loading vector such that P(e)(w, βx, βy) = fTu, we can formulate the
global optimization problem as follows :

λkin = min

3NE∑
p=1

ng∑
g=1

cgptgp +

qND∑
p′=1

ng∑
g=1

c′gp′sgp′ (29a)

s.t. fTu = 1 (29b)

CρBu− ρ = 0 (29c)

CµDu− µ = 0 (29d)

‖ρgp‖ ≤ tgp ∀p = 1, . . . , 3NE (29e)

‖µgp′‖ ≤ sgp′ ∀p′ = 1, . . . , qND (29f)

µI = 0 ∀I ∈ BC (29g)

where cgp = AeM0ωg/6, cgp′ = ljM0ωg/4, constraints (29c) and (29d) correspond to the
assembled form of the definitions (23) and (25)-(26), q = 2 for w3 and q = 3 for w6 and BC
indicates the set of indexes of the global vector µ corresponding to the boundary conditions
as discussed before.
This problem is, therefore, cast as a SOCP problem with linear equality constraints and
quadratic cones. There are 3NE · ng cones of dimension 6 (constraints (29e)) and qND · ng
cones of dimension 4 (constraints (29f)).

Finally, it should be noted that, since P strain
rm and P disc

rm are approximated by excess for
w3, problem (29) consists in an exact upper bound kinematic approach and, therefore, will
yield a strict upper bound to the ultimate load.
As regards w6, a post-processing procedure is needed to compute exactly P disc

rm using the
optimal velocity field obtained from the resolution of (29). The so-obtained load factor
being then a true upper bound estimate, although the difference is almost always negligible
in practice.

4.5. Comments on the considered finite elements

Until now, fully discontinuous finite elements have been considered. Obviously, the case
of fully continuous elements is obtained as a particular case if all discontinuity variables (µ
for instance) are forced to be zero by adding a supplementary constraint in (29).
Since fully continuous elements are available without any supplementary difficulties, it will be
interesting to compare their performances with respect to fully discontinuous ones (especially
in the thin plate limit). Hence, from now on, 4 different types of finite elements will be
considered2 :

• w3-c : continuous elements with linear interpolation of the transverse velocity w

2Note that in each case, the rotation vector is linearly interpolated within an element but is continuous
for the first two element types and discontinuous for the last two types

12



• w6-c : continuous elements with quadratic interpolation of the transverse velocity w

• w3-d : discontinuous elements with linear interpolation of the transverse velocity w

• w6-d : discontinuous elements with quadratic interpolation of the transverse velocity
w

5. Shear-locking effect in thin plate limit

5.1. Shear-locking effect

Shear-locking for thick plate finite elements can be defined, from an engineering point of
view, as the lack of robustness of the considered interpolation in the thin plate limit. From
a numerical point of view, this lack of robustness corresponds to a convergence rate with
respect to the mesh size h which is not uniform with respect to the plate thickness t. For
example, let uh,t correspond to the discrete solution of a problem with a mesh size h and a
plate thickness t and u0 be the exact solution of the corresponding thin plate problem with
a vanishing thickness. If the following estimate holds true :

‖uh,t − u0‖ ≤ C
h

t

where C is a constant which is independent on h and t, then shear-locking will occur. Indeed,
in order to attain a fixed error ε, the mesh size h must behave like εt. Another consequence
is that for a fixed mesh size, the quality of the discrete solution will strongly deteriorates
(in 1/t) with smaller thicknesses. An interpretation of the source of the shear-locking phe-
nomenon is that the functional space corresponding to the continuous solution with a non-
zero thickness Wt and the functional space of the thin plate solution (zero thickness) W0

are different3. If Wh,t is the discrete approximation of Wt, then we may have Wh,t → Wt

when h→ 0 for a fixed t but it is possible that Wh,t ∩W0 = ∅ so that Wh,t ∩W0 6→ W0.

This so-called ”shear-locking effect” has been widely discussed for elastic plate problems
[28, 29]. Various numerical strategies have been proposed to circumvent it like, for instance,
reduced integration, mixed approaches, assumed strains, etc... However, shear-locking for
limit analysis plate problems has been less studied. Of the few available papers on this
subject [18, 26, 30], a natural idea was to apply the same stabilizing techniques which
proved to be efficient for elastic problems. One major drawback with respect to the kinematic
approach is that strain-displacement compatibility equations are often relaxed in some sense
and the upper bound status of the solution is lost. Besides, functional spaces involved in
upper bound kinematic approaches are larger than those involved in elasticity problems,
notably authorizing an admissible class of discontinuities of the virtual velocity fields. For
this reason, it seems reasonable to investigate this problem while keeping this difference in
mind.

3The normalization of the power of external loads is assumed to be included in the definition of all
functional spaces
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5.2. Discontinuous elements are locking-free

The purpose of this subsection is not aimed at giving a formal mathematical demon-
stration but only at providing simple arguments which will then be illustrated by numerical
examples in the next section.

Continuous elements with linear interpolation (w3-c) for thick plate yield design have
already been considered by some authors [26, 30] and have proved to exhibit shear-locking
in the thin plate limit. This is attributed to the fact that, since Love-Kirchhoff kinematics
are obtained in the thin plate limit, the kinematic constraint β = ∇w must hold true inside
the element. Since w is linear, the rotation vector must be constant inside an element.
Since it is also continuous, it must be constant over the whole domain. Hence, it is easy to
understand that, except for trivial cases, the only admissible solution with constant rotation
is the null field which cannot satisfy the normalization constraint, so thatWh,t∩W0 = ∅ here.

Concerning w6-c, it reduces, in the thin plate limit, to an element with a quadratic trans-
verse velocity interpolation which must be continuous in the whole plate and the gradient of
which (the rotation vector β due to the Love-Kirchhoff condition) must also be continuous
in the whole plate (since β is continuous for w6-c). However, as is well known, it is impos-
sible to achieve a continuity of both a scalar field and its gradient (C1-continuity) with a
quadratic interpolation only. The degree of this interpolation is indeed too weak and leads
to trivial fields to be exactly satisfied (e.g. an affine field for the transverse displacement
and a uniform gradient). Hence, except in trivial cases where these fields correspond to the
solution, the fields obtained by w6-c in the limit will not be able to satisfy the boundary
conditions and the normalization of the external load work so that Wh,t ∩W0 = ∅.

As regards discontinuous elements, the transverse velocity must be continuous in the thin
plate limit. Due to the Love-Kirchhoff relation β = ∇w, the tangential component of the ro-
tation vector must also be continuous by virtue of Hadamard’s compatibility condition [20].
Therefore, w3-d reduces to a finite element with piecewise constant rotation element (cur-
vature strains are null) with possible discontinuities of the normal rotation through element
edges. This corresponds exactly to a pure yield line (YL) element, so thatWh,t∩W0 =Wh,Y L

here. It is known that yield line elements provide upper bound estimates but cannot, in
general, converge to the true limit load even with finer meshes [31]. Hence, it is expected
that w3-d will not lock in the thin plate limit but will converge to the corresponding yield
line upper bound estimate.

Similarly, w6-d reduces to a piecewise linear rotation element with possible discontinu-
ities of the normal rotation and with constant curvature strains. Contrary to what was
obtained in [10], this element actually converges to the exact thin plate limit load when
refining the mesh, confirming the results of [32]. The results presented in [10] have indeed
been improved by fixing an error present in the initial numerical code which yielded a very
poor convergence rate. Moreover, theoretical Γ−convergence results for this quadratic thin
plate element are currently investigated. Therefore, since the functional space spanned by
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the w6-d element contains the functional space spanned by the thin plate (T6) element
(Wh,t ∩ W0 = Wh,T6), it is also expected that w6-d will not lock in the thin plate limit
and will converge to the corresponding upper bound estimate obtained with a T6 thin plate
element.

Finally, let us point out that, in the following, an element will be said to lock if and only if
Wh,t∩W0 = ∅. The case when Vh =Wh,t∩W0 6= ∅ will correspond to a locking-free element.
However, it is not ensured that Vh → W0 when h → 0 e.g. we have Vh = Wh,T6 → W0 for
w6-d but Vh =Wh,Y L 6→ W0 for w3-d. But, in each case a finite upper bound estimate will
be obtained in the thin plate limit.

5.3. A simple test to detect shear-locking

In this subsection, a simple test is proposed to detect a potential shear-locking phe-
nomenon. The idea is to solve a mathematical programming inspired from (29) to check if
Wh,t ∩W0 = ∅ or not. To this purpose, the following problem is defined :

λ0 = min

3NE∑
p=1

ng∑
g=1

cgptgp +

qND∑
p′=1

ng∑
g=1

c′gp′sgp′

s.t. fTu = 1

CρBu− ρ = 0

CµDu− µ = 0

‖ρgp
1→3‖ ≤ tgp ∀p = 1, . . . , 3NE

ρgp
4→5 = 0

‖µgp′

2→3‖ ≤ sgp′ ∀p′ = 1, . . . , qND

µgp′

1 = 0

µI = 0 ∀I ∈ BC

(30)

The structure of this problem is exactly the same as (29) but all auxiliary variables associated
to shear strains and discontinuities have been enforced to zero, which implicitly corresponds
to the enforcement of the Love-Kirchhoff kinematics since ρgp

4→5 = 0 is equivalent to γi
e = 0

and µgp′

1 = 0 is equivalent to [[w]]ji = 0. Obviously, the formulation could be simplified but
it has been kept as such to illustrate the fact that it corresponds to the limit when t→ 0 of
problem (29). In particular, it is to be noted that the solution does not depend on t anymore.

The resolution of (30) is then a direct information about the shear-locking behavior of
the considered finite element interpolation. Indeed, two cases may arise :

• (30) is feasible, then λ0 <∞ and corresponds to the limit when t→ 0 of the solution
of (29)

• (30) is infeasible, then Wh,t ∩W0 = ∅ and the element will lock
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symmetry
conditions

simple or clamped supports

symmetry
conditions

simple or clamped supports

Figure 2: Geometry and meshes (left: unstructured, right: structured) of the square plate problem

Mesh w3-c w6-c w3-d w6-d YL
structured INFEAS. INFEAS. 27.71 25.46 27.71

unstructured INFEAS. INFEAS. 33.03 25.64 33.03

Table 1: Shear-locking test results for the simply supported square plate. INFEAS. means that Mosek
returned a primal infeasibility status, otherwise non-dimensional limit load values λ = pL2/M0 are given.

The interest of this simple test is that a single feasibility check is necessary to detect shear-
locking, in particular there is no need to perform computations with increasingly smaller
values of the thickness. Obviously, it also provides the corresponding thin plate upper bound
estimates for locking-free elements.

6. Numerical results

In this section, illustrative applications are considered to investigate the performance of
the proposed elements. The finite element meshes have been generated using Gmsh [33]
and the second-order cone programs have been solved using the Mosek conic solver [34].
In all examples, only one integration point has been used in the half-thickness.

6.1. Shear-locking tests on the square plate problem

The classical benchmark problem of a square plate of size L× L under uniform loading
with simple and clamped supports is considered. To illustrate the conclusions of section 5,
the test (30) is solved for the 4 finite elements considered in this work. A structured and an
unstructured mesh of the upper-left quarter of the plate with 15 elements per half-side have
been used for the computations (Figure 2). As a comparison, upper bound estimates using
pure yield line (YL) elements have also been computed on the same meshes.

Shear-locking test results for the square plate example have been reported in Table 1
for simple supports and in Table 2 for clamped supports. For all computations, it can
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Mesh w3-c w6-c w3-d w6-d YL
structured INFEAS. INFEAS. 55.43 45.19 55.43

unstructured INFEAS. INFEAS. 56.28 45.23 56.28

Table 2: Shear-locking test results for the clamped square plate. INFEAS. means that Mosek returned a
primal infeasibility status, otherwise non-dimensional limit load values λ = pL2/M0 are given.

be observed that the previous remarks concerning the locking phenomenon for continuous
elements w3-c and w6-c are verified, since all problems are infeasible, meaning that both
continuous elements lock in the thin plate limit. On the contrary, as expected both discon-
tinuous elements w3-d and w6-d pass the shear-locking tests for all problems. It can also
be observed that the thin plate limit load obtained with the w3-d element are the same as
those obtained using a pure yield line thin plate element as expected.

6.2. Square plates: influence of the slenderness ratio

Next, the influence of the slenderness ratio defined as L/t on the collapse multiplier has
been studied. The square plate problem has been solved using three unstructured uniform
meshes with N = 3 (coarse mesh) or N = 15 (fine mesh) elements per half-side. Collapse
multipliers against slenderness ratios are shown in Figures 3 for the different elements and
both meshes. The black curve corresponds to the lower bound estimates obtained from a
static approach using newly developed equilibrium elements for thick plates [22].
First, it can be observed that all elements produce roughly the same values for small values
of the slenderness ratio (shear-dominated failure). Collapse multipliers obtained here for
clamped and simply supported plates indicate that perfect shear solution is independent of
the edge boundary conditions, as concluded in [18].
It can be seen that as the slenderness ratio increases, the solutions obtained using w3-d and
w6-d converge to a constant value which correspond, at the limit, to the Kirchhoff (thin
plates) values obtained previously i.e. the corresponding yield line estimate for w3-d and
a value close to the exact thin plate collapse load for w6-d. In particular, it can be noted
that, for the whole range of slenderness ratios, the upper bound estimates obtained with
w6-d are extremely close to the static lower bound estimates, so that the exact collapse load
is bracketed with an extremely good accuracy.
However, as regards continuous elements w3-c and w6-c, the shear locking effect is clearly
observed as the upper bound estimates diverge from the exact value with increasing slen-
derness ratios. The effect is less pronounced for w6-c than for w3-c and it is also delayed
with finer meshes as expected. One can also notice that the shear locking effect is stronger
for clamped boundary conditions.

Figures 4 compares the present collapse load multipliers with those obtained in [18]
using a stabilized Discrete Shear Gap (DSG) method. It can be observed that the method
presented here provides slightly better solutions than the DSG method for clamped plates,
while results obtained for simply supported plates results by both w6-d and DSG elements
are in good agreement.
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static lower bound

(a) Clamped

static lower bound

(b) Simply supported

Figure 3: Square plates: collapse load multiplier vs slenderness ratio
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(a) Clamped

(b) Simply supported

Figure 4: Collapse load multiplier comparison
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6.3. Circular plates

The next example treats the classical problem of simply supported and built-in circular
plates subjected to a uniformly distributed pressure p. Here numerical solutions have been
obtained by solving a quarter of the plate, Figure 5 where R = 1m. Non-dimensional col-
lapse multipliers λ = pR2/M0 for various slenderness ratios are given in Table 3. It can be
observed that the solutions obtained using w6-d elements are close to those reported in [30]
as well as to the lower bound estimates of [22].
In particular, the perfect shear solution pR2/M0 = 4/

√
3(2R/t) ≈ 2.31(2R/t) is almost

exactly computed, the exact failure mechanism corresponding to a uniform transversal ve-
locity and zero rotations, which can be reproduced using discontinuous elements whereas
the elements used in [30] cannot. Similarly, the thin plate solution for the clamped problems
involves rotation discontinuities along the curved edge so that the performance of w6-d is
better than the solution of [30]. Finally, in the simply supported case, the upper bound es-
timates with w6-d are slightly higher (by 1%) than [30] but the exact upper bound status of
the latter results cannot be rigorously assured since a relaxation of the strain compatibility
equations has been used.

Figure 5: Circular plate: geometry and finite element mesh

6.4. L-shape plate

Further illustration of the presented method can be made by examining an L-shaped
plate subjected to a uniform load and with geometry and kinematic boundary conditions
indicated in Figure 6. An upper bound of λ+ = p+L2/M0 = 32

3
√

3
≈ 6.16 can be obtained

using the yield line theory with the particular mechanism of a yield line crossing the middle
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Table 3: Results for clamped & simply supported circular plates subjected to uniform load

simply supported clamped
2R
t

Static [22] w3-d w6-d Result in [30] Static [22] w3-d w6-d Result in [30]
1 2.309 2.310 2.310 2.370 2.309 2.310 2.310 2.370
2 4.619 4.620 4.620 4.747 4.619 4.620 4.620 4.740
4 6.002 6.070 6.031 6.164 8.283 8.297 8.291 8.778
8 6.382 6.518 6.416 6.449 11.018 11.125 11.035 11.893
10 6.431 6.615 6.463 6.479 11.516 11.694 11.531 12.378
20 6.498 6.921 6.531 6.518 12.270 12.920 12.287 12.990
40 6.515 7.198 6.556 6.527 12.478 13.859 12.496 13.126
100 6.521 7.362 6.585 6.530 12.538 14.499 12.559 13.165

of the plate. The problem has been solved using three different structured meshes of 150,
600 and 2400 w6-d elements. Upper bound estimates of the collapse multipliers for various
slenderness ratios are reported in Table 4 and Figure 7 and compared against lower bound
estimates using a static approach [22]. The exact collapse load can be estimated within a
relative accuracy of less than 4% using the coarsest mesh and by less than 1% using the
finest mesh. It can also be seen that the present results for perfect bending plates are in
excellent agreement with the yield line based solution. It is interesting to point out that
the solutions obtained using only 600 w6-d elements are in very good agreement with those
achieved in [18] using adaptive DSG elements.

Figure 6: L-shape plate: geometry and finite element mesh

Finally, the differences between the 4 types of elements considered in this work are
illustrated by considering the same geometry as before except that a uniformly distributed
loading has been applied only to the left half of the plate i.e. : 0 ≤ x ≤ L/2, 0 ≤ y ≤ L and
that the plate is now clamped on both sides. Figures 8-11 represent the optimal transversal
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Table 4: Results for L-shape plates obtained using w6-d

nel L
t
= 1 2 4 8 10 20 40 80 100

150 3.70 5.90 6.07 6.15 6.15 6.16 6.16 6.16 6.16
600 3.70 5.79 5.98 6.09 6.11 6.15 6.16 6.16 6.16
2400 3.70 5.74 5.93 6.05 6.07 6.13 6.15 6.16 6.16

Le [18]-adaptive 3.73 5.80 5.98 6.08 6.10 6.14 6.16 6.18 6.18
Static [22] 3.70 5.69 5.89 6.00 6.03 6.08 6.10 6.11 6.11

nel = number of elements

velocity fields obtained with the different elements and for different slenderness ratios. One
can clearly observe that the solutions exhibit strong discontinuities in the transverse velocity
field which are reproduced by the discontinuous elements. The same comment can be made
concerning the rotation field.

7. Conclusions

A numerical procedure for performing upper bound yield design of Reissner-Mindlin
plates using discontinuous finite elements and second-order cone programming has been
presented. The formulation permits discontinuous interpolations of the transverse velocity
and rotation fields across all edges shared by adjacent triangles, in addition to shear and
bending strains inside the elements. As a result, contrary to continuous elements, shear
locking phenomenon can be removed without any additional treatment, and accurate upper
bounds on the collapse load factor of Reissner-Mindlin plates can be obtained using a rela-
tively small number of elements. More precisely, as regards the four types of finite elements
considered in this paper, the following conclusions can be drawn :

• the linear continuous element (w3-c) yields a strict upper bound but locks very strongly
in the thin plate limit, the computed upper bounds diverge from the thin plate solution
for high values of the slenderness ratio.

• the quadratic continuous element (w6-c) also yields a strict upper bound and locks in
the thin plate limit, although less strongly than (w3-c).

• the linear discontinuous element (w3-d) yields a strict upper bound and does not lock in
the thin plate limit. Indeed, although not strictly converging to the thin plate solution
for high values of the slenderness ratio, the produced upper bounds stay bounded and
the element converges to a pure yield line element which produces sometimes good
upper bound estimates of the true thin plate solution.

• the quadratic discontinuous element (w6-d) provides a strict upper bound after apply-
ing a post-process computation and does not lock in the thin plate limit. Numerical
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Figure 7: L-shape plate: collapse load multiplier vs slenderness ratio

(a) L/t = 1 (b) L/t = 4 (c) L/t = 10

Figure 8: w3-c element

(a) L/t = 1 (b) L/t = 4 (c) L/t = 10

Figure 9: w3-d element
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(a) L/t = 1 (b) L/t = 4 (c) L/t = 10

Figure 10: w6-c element

(a) L/t = 1 (b) L/t = 4 (c) L/t = 10

Figure 11: w6-d element
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examples show that it converges to the thin plate solution for high slenderness ra-
tios and gives very good estimates in both shear-dominated and bending-dominated
situations when compared to static lower bound estimates.

Obviously, such discontinuous elements will give excellent results in the case when the mesh
edges are oriented along the solution discontinuity lines. In general, these directions are not
known beforehand but some comments can be made :

• Pure shear solutions will often exhibit transverse velocity discontinuities along the
plate boundary or where the loading or material properties change abruptly. Similarly,
thin plate solution often exhibit rotation discontinuities on the clamped boundaries.
Therefore, one can highly benefit from discontinuous elements at least on these regions,
as illustrated by the improvement of bending plate solutions for clamped problems.

• Even if the mesh edges are not oriented along the solution discontinuities, it is com-
pensated by shear or bending strains inside the elements as for traditional continuous
elements, reducing at the same time mesh dependency. Therefore, including disconti-
nuities offers an additional optimization variable which can be activated or not in the
optimization process.

• As for conforming elements, an adaptive remeshing procedure can still be used to
refine the solution in specific regions. One can imagine that such a procedure, using
a suitable criterion on the edge direction of the new elements, would be even more
efficient for discontinuous elements than for continuous ones.

Finally, the proposed upper bound kinematic approach has been compared to a recently
developed lower bound static approach, showing that both bounds are very close, so that
the exact collapse load can be bracketed with a very good accuracy. However, both works
considered only a constitutive material obeying the von Mises criterion. Further work will
therefore investigate other types of strength criterion, more suited to the case of reinforced
concrete thick plates for example.
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