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Abstract—1In this paper, we evaluate a solution based on
the preemption mechanism so as to improve performances of
distributed Multi-Protocol Label Switching-Traffic Engineering
(MPLS-TE) path computation, where requests are handled one
by one, in an uncoordinated manner without any knowledge
of future and other requests. Our solution is motivated by the
considerable impact of the tunnel setup order on the network
load and blocking probability. If it is not possible to control this
order, in return it is possible, in some cases, to reorder requests
using the pre-emption function. After evaluating the impact of
the tunnel setup order, we study the use of preemption to reorder
LSP setup, with various algorithms, including Shortest Path First
(SPF), Widest Shortest Path (WSP) and Shortest Widest Path
(SWP). We show that the preemption is well suited to shortest
path based algorithms and the performances in terms of blocking
rate are significantly improved.

I. INTRODUCTION

The emergence of MPLS has overcome the limitations of
classical IP routing relying on a destination based routing
paradigm. With MPLS forwarding relies on a fixed length label
inserted before the IP header. MPLS allows for explicit routing
and hence can be used for traffic engineering. This results in
the MPLS-TE approach [1] which allows setting up explicitly
routed Traffic Engineering-Label Switched Paths (TE-LSP)
that satisfy a set of traffic engineering constraints, including
bandwidth and delay. MPLS-TE combines explicit routing
capabilities of MPLS with a Constraint Based Routing (CBR)
mechanism that lies in dynamic resources discovery (ISIS-
TE [2], OSPF-TE [3]), constrained path computation, and
distributed LSP signalling with resource reservation (RSVP-
TE) [4]. MPLS-TE provides network resource optimization,
while ensuring quality of service (QoS). There are various
MPLS-TE routing options, which differ with the location of
path computation elements (distributed on edge routers or
centralized on a server), the path computation time scale
(offline or online) and the level of coordination (paths can
be computed either one by one independently of each other,
or in a coordinated manner). Among those, the option mainly
deployed today by operators is the Online Uncoordinated Dis-
tributed one [5], where the LSP setup requests are handled one
by one by the edge routers in an uncoordinated manner. This
approach offers better scalability, reactivity and robustness
than the Offline Coordinated Centralized mode where a server
is in charge of computing all the LSPs in a coordinated manner
without any time limitation. In return, with the uncoordinated
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approach, an edge router does not have a global knowledge
of all LSPs established by other edge routers, and hence the
performances in terms of optimality are affected. In some
cases this mode even fails to find a path for all requests
while there is a feasible solution. A basic uncoordinated path
computation algorithm implemented today in most of routers
relies on a modified Dijkstra algorithm [6]: links that do
not support the constraints are pruned from the topology and
the Dijkstra SPF algorithm is run on the resulting topology.
This algorithm also referred to as CSPF (Constrained Shortest
Path First) is by nature heavily greedy, and rapidly leads to
blocking issues. In order to overcome these CSPF limitations,
a set of solutions have been proposed in the literature that
reduces the blocking probability and achieves better resources
optimization while keeping agility characteristics (robustness,
scalability and reactivity) of the uncoordinated scheme. These
solutions try to find the best weight or cost function to be used
by the routing algorithm in order to minimize congestion. This
includes, non exhaustively: the Widest Shortest Path Algorithm
(WSP) [7], the Shortest Widest Path Algorithm (SWP) [8],
the Minimum Interference Routing Algorithm (MIRA) [9], the
Dynamic Online Routing Algorithm (DORA) and the Profile
Based Routing (PBR) algorithm. Actually in the uncoordinated
mode, the arrival order of the LSP requests is critical, two
distinct orders are likely to provide distinct blocking results
and this is actually a major characteristic of all uncoordinated
algorithms including those listed above. In this paper, we
focus on the LSP request arrival order. We firstly evaluate in
section II the impact of the LSP arrival order on the blocking
probability and we try to identify relevant orders. In section
I, we describe the MPLS-TE pre-emption mechanism that
allows a new LSP to delete an existing LSP which is rerouted
on an alternate path, and hence can be used as a solution to
reorder the LSP arrivals. Then, we propose two pre-emption
strategies to control the reordering of LSPs and show that
this cannot be applied to all algorithms. Finally, the section
V provides evaluation of these strategies in terms of link
utilization and blocking rate, when applied to CSPF, WSP and
SWP algorithms.

II. IMPACT OF LSP SETUP ARRIVAL ORDER ON ROUTING
PERFORMANCES

As previously discussed, in the uncoordinated MPLS-TE
mode the LSP requests are computed one-by-one without any



knowledge of other requests. This can lead to a sub-optimal
solution, where some LSP requests can be rejected even if
there is a feasible placement.

We illustrate this with a simple example. Consider the network
in Fig. 1. Each link is characterized by its metric (1 unit for
all links) and its capacity (in Mbps). Six LSP setup requests
with bandwidth size BW (in Mbps), as shown in table I, arrive
at node 1 one-by-one with node 6 as destination. The Fig.

LSP L1 L2 L3 L4 L5 L6
Bandwidth BW) 30 25 35 16 17 20
TABLE I

ILLUSTRATION: THE BANDWIDTH OF LSP REQUESTS

2 shows the number of rejected LSPs on the network for
all possible permutations of these 6 requests, according to
their bandwidth size. LSPs path computation is done using
the CSPF, the SWP and the WSP algorithms. With the three
algorithms we observe a maximum of 2 rejections (ie 33%),
and an average of 1 rejection (ie 17%). The increasing order
(according to LSPs bandwidth) achieves 0 rejection with CSPF
while there is 1 rejection with SWP and WSP. The decreasing
order rejects 1 request with CSPF and SWP and 2 requests
with WSP. It can be seen that the increasing order performs
equal or better than the decreasing order. This result can be
explained as follows; since in the decreasing case, the large
LSPs are established first, they may block the resources on
shortest and non shortest paths. So, some of the small LSPs
which arrive after may be rejected. However, in the increasing
case, small LSPs are established first and more LSPs can
be accepted before reaching congestion case. This example
illustrates the limitation of the distributed uncoordinated rout-
ing scheme in terms of optimization performances. It also
shows the impact of the LSP request setup order on the
routing performances; we notice that with the same topology,
the same requests and the same routing algorithm (CSPF,
SWP or WSP), the routing performance varies with the LSP
arrival order. In this specific example, there are 6 requests,
so there are 720 (6!) possible orders. The computation of an
optimal order, that is an order which minimizes the number
of rejected requests, requires the knowledge of all orders, this
has an exponential complexity; and cannot be performed. In
return we can identify relevant orders, such as for instance
the increasing order with CSPF. Hence controlling the LSP
setup order would allow improving the performances of the
distributed uncoordinated scheme. Of course it is not possible
to control the LSP arrival order. In return it is possible in some
situations, to reorder LSP setup with the MPLS-TE preemption
mechanism described in more details latter.

III. DYNAMIC REORDERING OF LSPS USING PREEMPTION

Once an efficient order is found, the question which arise is
how to dynamically control this order, while retaining agility
characteristics (reactivity, robustness, scalability) of an Online
Distributed Uncoordinated system ? Our approach consists
in investigating the use of MPLS-TE preemption so as to
dynamically reorder LSPs setup.

Fig. 1. Tllustrative Example
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Fig. 2. TIllustrative Example: Number of rejected LSPs for all permutations
requests (o : Increasing - * : Decreasing, —— : Average of all the permutations)

Preemption mechanism in MPLS system
The RSVP-TE protocol [4] includes a preemption mechanism
that allows an LSP with a given priority to preempt an LSP
with a lower priority. The lower priority LSP is rerouted on an
alternate path and it all happens as if the lower priority LSP
had been setup after the higher priority LSP. The RSVP-TE
protocol allows specifying two priority attributes: the setup
priority that specifies the capability of an LSP to pre-empt
another LSP and the holding priority that specifies the capa-
bility of an LSP to resist to preemption. Both priorities have
a range of 0 (highest priority) to 7 (lowest priority). An LSP
with higher (numerically lower) setup priority can preempt
an LSP with lower (numerically higher) holding priority. To
avoid continuous preemptions and oscillations, the holding
priority should never be lower (numerically higher) than the
setup priority. The IGP-TE advertises different “unreserved
bandwidth” information for each priority level. So, to compute
the route for an LSP with priority p, only the unreserved
bandwidth for priority p has to be checked. Thus, available
bandwidth is checked by considering only the LSPs with same
or higher priority and as if LSPs with lower priority did not
exist. The preemption mechanism can be used to ensure that
mission critical traffic trunks (e.g. VoIP) can always be routed
through relatively favorable paths (e.g. shortest path) and can
preempt best effort services (e.g Internet data) upon congestion
or failure event. In [10], the authors propose a flexible policy to
achieve various objectives when selecting the set of LSPs to be



preempted. Preemption can also be used so as to dynamically
reorder the LSP setup, indeed a higher priority LSP is routed
as if the lower LSP did not exist. A solution to enforce a
specific LSP setup order consists of assigning priorities to
LSPs based on their bandwidth. For instance, if we want to
apply an increasing bandwidth LSP setup order, low bandwidth
LSPs should have a higher priority than high bandwidth LSPs.
Let’s take the example in section II and assume that the
increasing order has to be applied. For that purpose we assign
to each LSP a priority P, as shown in table II.

LSP L1 L2 L3 L4 LS L6

Bandwidth BW) 30 25 35 16 17 20

Priority (P) 6 5 7 0 2 3
TABLE I

ILLUSTRATION: THE BANDWIDTH AND PRIORITY OF LSP REQUESTS

Table III gives the details about the path computation of
each LSP. For each LSP, it indicates its route or its rejection
and the LSPs preempted by this LSP. For example, with WSP
algorithm, the setup of LSP4 which takes the route 1 —3 — 6
induces the preemption of LSP2 that itself preempts LSP1
(preemption cascade). The table shows also that to setup 6
LSPs, 8 LSPs have been preempted using the SWP, 7 LSPs
using the WSP and only 3 LSPs using the CSPFE. In fact,
in CSPF case and more generally in shortest path based
algorithms, the preemption mechanism can be easily applied
and is not very heavy in terms of number of preemptions
because the preemption should be done only when there is
no available resource on a link of the shortest path. However,
when using widest path based algorithms (eg. WSP and SWP),
the preemption mechanism cannot be applied because it does
not scale with the number of LSP requests. In fact, the
preemption should be done even if there is available resource
on a link of the selected path because the optimization metrics
in this case include the available bandwidth. So when an LSP
with high priority is routed through a link, and even if there
are still sufficient resources to maintain lower priority LSPs
that are already routed through this link, these LSPs have to
be re-routed because the available bandwidth is changed when
the higher LSP is established and the path may no longer be a
widest path. Consequently, we cannot apply pre-emption based
reordering with widest path based algorithms (WSP, SWP).

There are N LSP setup requests and only 8 priorities (8 <<
N), we cannot assign a different priority to each LSP, and
hence we cannot apply an exact order (this would require [NV
priorities). So, the problem which arises now is how to allocate
the 8 priorities to the N LSPs. We need to find an efficient
way to allocate a priority to each LSP.

We propose here two methods: the Linear Repartition (LR)
and the Non-Linear Repartition (NLR).

A. Linear Repartition (LR)
This technique consists of the following steps:

CSPF SWP WSP
LSPI 1-2-6 1-4—-5—-6 1-3-6
LSP2 1-2-6 1-4-5-6 1-3-6
LSP1: 1 —-3—-6 LSP1: 1 -3—-6 LSP1: 1 —-2—-6
LSP3 1—-4-5-6 1-4—-5-6 1-4—-5-6
LSP4 1—-2-6 1-4—-5-6 1-3-6
LSP2:1-3—-6 LSP2:1—-4—5—6 LSP2:1—-2—-6
LSP1:1-4—-5—-6 LSP3:1—-2-6 LSP1: 1-4—5—6
LSPS 1—-2-6 1-4—-5-6 1-2-6
LSP2: 1 -3—-6 LSP2:1-3—-6
LSP1: 1 —-2—-6
LSP3: Rejected
LSP6 1—-3-6 1-3-6 1-3-6
LSP2: 1 —-2—-6 LSP2:1—-4—5—6
LSP1: 1-4—-5—6 LSP1:1-4—-5—6
LSP3 : Rejected
TABLE III
ILLUSTRATIVE EXAMPLE: PREEMPTION MECHANISM USING CSPF, WSP
AND SWP

o Sort the LSP requests (e.g. in increasing order)

« Equally divide the scale of the requests’s bandwidth in
8 intervals, the width of each interval is B; = (Baz —
B,in)/8 where:

Binae: The bandwidth of the largest LSP demand.
Binin: The bandwidth of the smallest LSP demand.
and 0 <=1 <=7T7.

o Assign a priority Prio to each interval: Assign the same
priority to all LSPs whose size belongs to the same
interval. If an increasing order is required then:
Buw(lsp) € [B;, Biy+1] => Prio(lsp) =i
If a decreasing order is required then:

Bw(lsp) € [B;, Biy+1] => Prio(lsp) =7 —1
Note that LSPs within the same bandwidth interval have
the same priority and cannot be ordered.

With this approach, LSPs are not equally spread among all

priorities; there may be a lot of LSPs with same priority, which
can not be ordered.

B. Non-Linear Repartition (NLR)

The first approach may lead to an unequal repartition of
LSPs between the 8 intervals. Thus, we investigate a second
approach which takes into account the number of LSPs per
priority level. It assigns to each set of N/8 LSPs the same
priority (/V is the number of requests). It proceeds as follow:

o Sort the LSP requests (e.g. in increasing order)

« Divide the scale of requests in 8 intervals, each interval

B, includes n = N/8 LSPs.

o Assign a priority Prio to each interval: Allocate the

priority Prio to all n LSPs within this interval.

Priority configuration

In order to apply the preemption mechanism, LSP priorities
should be known on the ingress LSRs. There are two options:
Priorities may be determined on a TE server and then
configured on the Ingress routers, or they may be dynamically
computed on the Ingress routers. In the LR case, the network
administrator can determine a lower bound for Bmin and
an upper bound for Bmax, which are then configured on



Fig. 3.

The network topology

all Ingress routers. Ingress routers can dynamically apply
a priority to an LSP according to its bandwidth, following
the LR formula. This allows for dynamic LSP bandwidth
modification on Ingress LSRs that adapt LSP priorities
accordingly. In the NLR case, priority allocation requires
knowledge of all LSPs and their bandwidth and hence
cannot be performed on Ingress routers (see section III).
In this case priorities must be allocated by the TE server
that then configures LSPs with theirs priorities on Ingress
LSRs. This approach does not allow dynamic LSP bandwidth
modification on the Ingress LSR, as the Ingress LSR has not
enough information to modify the LSP priority accordingly.
In a nutshell, the LR approach is well suited to an online
distributed mode while the NLR approach better fits in with
an offline centralized approach.

IV. EVALUATION

In this section, we numerically evaluate our approach. All
the simulations shown in the remainder of the paper are carried
out using the network topology that was proposed in [9], see
Fig. 3. This topology includes 15 nodes and 28 bidirectional
links. The capacity of the thin links is 12100 units and that of
the fat links is 48+ 100 units (taken to model the capacity ratio
of OC-12 and OC-48 links and scaled by 100). We show the
performances of our approach using the Constrained Shortest
Path First algorithm (CSPF). All experiments are made under
the following assumptions:

o We assume that all LSPs are long lived (“static” case).

o We construct a full mesh of LSPs between edge routers,
by loading the network with 840 LSPs = 15 % 14 x4 =
Nep % (Nep — 1) % Ny, with N, is the number of edges
routers and /V; is the number of established LSPs between
each edge routers pairs.

o We multiply the LSP’s bandwidth by an increasing Traffic
Scale factor k to vary the network load conditions.

o For each value of k, we conduct 100 trials by gener-
ating randomly 840 requests with bandwidth demands
uniformly distributed between 1 and 50 Mbps.

The following metrics are used to evaluate our approach:

o Maximum link load: max; BW;/C;, where C; is the
capacity of a link ¢ and BW; is the amount of traffic

carried on this link.

e Rejected LSP ratio: The percentage of requests which are
rejected due to insufficient resources.

o Rejected Bandwidth Quantity: The total amount of band-
width which is rejected due to insufficient resources.

A. Order Impact

The following notations are used in the remainder of the
paper:

e CSPF: CSPF without LSPs reordering

e CSPF-IB-EO: CSPF with increasing bandwidth exact
order

o CSPF-DB-EO: CSPF with decreasing bandwidth exact
order

e CSPF-IB-LR-PO-CSPF: CSPF with increasing band-
width linear repartition preemption based order

o CSPF-IB-NLR-PO: CSPF with increasing bandwidth non
linear repartition preemption based order

Fig. 4 shows the average maximum link load in the network
after establishing 840 LSPs in random, increasing and decreas-
ing bandwidth orders with CSPF, and using WSP and SWP
algorithms. We see that IB-EO-CSPF outperforms the CSPF
and the DB-EO-CSPF. This result can be explained as follows;
In the decreasing case, the large LSPs are setup on shortest
paths, the small LSPs requests arrive after and they fill the
remaining bandwidth on shortest paths, thus increasing the
maximum link load. However, in the increasing case, small
LSPs are established at first and are routed through shortest
paths and there is no longer enough bandwidth on shortest
paths to route larger LSPs which are routed on non shortest
paths. These non shortest paths are usually larger than the
shortest paths after routing small LSPs. Thus, the residual
bandwidth on shortest paths is larger in the increasing case
(bandwidth which cannot fit large LSPs) than in the decreasing
case (bandwidth which cannot fit small LSPs). In return, the
gain remains negligible compared to the performances of the
WSP and the SWP; the IB-EO-CSPF reaches an average better
performance of about only 0.6% over the CSPF (while WSP
and SWP are about respectively 8% and 20% better than the
CSPF). We see also with the CSPF that, from & = 0.7 the
rising scheme of the maximum link load slows down. This is
due to the fact that the non shortest paths start to be used
to route some LSP requests. SWP and WSP try to avoid
overloading some links, this explains the significantly better
performances in terms of maximum load.

Fig. 5 depicts the average LSP rejection ratio. It can be
observed that the increasing order performs better than the
decreasing and the random cases. The figure shows also that
the IB-EO-CSPF performs significantly better than CSPEF,
WSP and SWP algorithms. Indeed, in the random case large
LSPs may arrive before small LSPs and block resources for
subsequent LSPs requests. For instance, for £ = 1.8, the IB-
EO-CSPF rejects about 45% less than SWP, 35% less than
WSP and CSPF, and 63% less than DB-EO-CSPF. We can
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Fig. 4. Average Maximum Link Load vs. k

also observe that the SWP is the first at rejecting LSPs (from
k = 1.1). In return, the WSP starts to reject LSP from k = 1.2
and the CSPF rejects LSPs from k£ = 1.25.

Fig. 6 shows the average amount of bandwidth rejected.
Firstly we see that the decreasing order outperforms the
increasing order. Actually in the increasing case, large LSPs
are rejected in blocking cases, so the quantity of bandwidth
rejected can be more important than in decreasing case where
small LSPs are rejected. We can see that the gain offered by
the DB-EO-CSPF is actually not significant. The IB-EO-CSPF
rejects only 5% more bandwidth while it allows 63% less
LSP rejection than the DB-EO-CSPF. Hence we can conclude
that in this example the IB-EO-CSPF allows achieving good
performances.
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Average Rejected LSP Ratio vs. k

So, we observe that the CSPF increasing order offers
significantly better performances in terms of rejected LSP
ratio, than the CSPF decreasing order, but rejects slightly more
bandwidth. An operator can choose the criteria (rejected LSPs
number or rejected bandwidth) which seems more important
and consequently decide to apply either the increasing or the
decreasing order.

B. Preemption based reordering

Fig. 7 presents the performances in terms of maximum
link load of the CSPF when we introduce the preemption

WSP
DB-EO-CSPF
CSPF

o | —

IB-EO-CSPF
Swp

Quantity of bandwidth Rejected

Fig. 6. Average Quantity of Bandwidth rejected Ratio vs. k

mechanism to apply the increasing order. Firstly, we can see
that the performances of IB-LR-PO-CSPF and IB-NLR-PO-
CSPF are close to those of IB-EO-CSPF. So, our proposed
repartitions appear to be really efficient to dynamically re-
order LSP requests. It can be seen also that the IB-NLR-
PO-CSPF is slightly better than the IB-LR-PO-CSPF and
sometimes even better than the IB-EO-CSPF (for & = 0.95).
In fact, this depends on the LSP bandwidth distribution. The
optimal order is not necessary the IB order, such as for
k = 0.95 where the LR preemption order is closer to the
optimal order than the exact increasing order.
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Repartition

The results in Fig. 8 show firstly that the LR and NLR
methods provide similar results in term of rejected LSP ratio.
Secondly, it can be seen that IB-LR-PO-CSPF and IB-NLR-
PO-CSPF are less efficient than the IB-EO-CSPF but improve
significantly, the performances of the CSPF placement. Ac-
tually, IB-LR-PO-CSPF and IB-NLR-PO-CSPF reject about
30% less than the CSPF but 13% more than IB-EO-CSPF.
Clearly, the preemption reordering applied to CSPF leads to a
significant reduction of LSP rejections.

C. Network Failure Case

Now we evaluate the performances of CSPF with our
approach when a link failure happens. For a given Traffic
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Scale Factor k, we load the network with 840 LSPs routed
using the CSPF, IB-LR-PO-CSPF and IB-NLR-PO-CSPF. The
network load is sufficiently low, so all LSPs are established
without any rejection case. We then cut randomly a link (edge
or core link) and re-route all the LSPs traversing this link. We
proceed as follows 100 times, and each time, 840 LSP requests
are randomly generated. Note that the LSPs rejected when
using the CSPF are a subset or all the LSPs impacted by the
failure (the LSPs routed through the failing link). In return, the
LSPs rejected when using IB-LR-PO-CSPF and IB-NLR-PO-
CSPF may include LSPs which have not been impacted by the
failure. Actually, when a failure occurs, the LSPs impacted by
the failure will be rerouted by Ingress routers. These impacted
LSPs may preempt, on their new paths, lower priority LSPs
which have not actually been directly impacted by the failure.
Hence, after a network failure, such lower priority LSPs will
be rerouted and potentially rejected if there are no sufficient
resources. Table IV shows the average number of rejected
LSPs with CSPF, IB-LR-PO-CSPF and IB-NLR-PO-CSPF for
some failure cases. It also shows the average number of LSPs
impacted by the failure (Imp) as well as the average number of
LSPs not impacted by the failure (Nolmp), among the rejected
LSPs.

Failed Link  CSPF  IB-EO IB-LR-PO IB-NLR-PO
Imp Nolmp Imp Nolmp
14 -15 28.42 1217 12.26 12.27
7.62 4.64 7.66 4.61
12 -13 5.78 0.0 0.0 0.0
0.0 0.0 0.0 0.0
8—9 12.02 7.32 7.38 7.40
2.54 4.84 2.54 4.86
2-5 25.78 13.0 13.29 13.23
6.01 7.28 5.62 7.31
TABLE IV

AVERAGE NUMBER OF REJECTED REQUESTS UNDER LINK FAILURE USING
CSPF ALGORITHM

In this experiment, requests are generated with k = 1.05.
It can be seen that the re-ordering approach (LR or NLR)
allows significant reduction in the number of rejections upon

network failures. For instance, when the link 14 — 15 is cut,
there are 2.3 times less rejections with preemption based
reordering, than in the random case (without reordering).
2/3 of rejected LSP requests include LSPs impacted by the
failure and 1/3 of rejected LSP requests include LSPs non
impacted by the failure. Also in some cases the reordering
allows avoiding rejection (e.g. link 12-13 failure), which is a
significant improvement.

V. CONCLUSION

In this paper we have analyzed the impact of the LSP setup
order on the optimization performances of an uncoordinated
distributed MPLS-TE routing system. We have observed that
if the LSPs are setup in increasing bandwidth order then the
LSP rejection is significantly reduced . We have discussed the
use of preemption so as to dynamically reorder LSPs setup and
we have proposed two approaches to allocate one of the eight
preemption priorities to an LSP, according to its bandwidth.
We have evaluated these approaches and observed that the
use of preemption to enforce an increasing LSP setup order
allows achieving a really significant reduction of the number
of LSP rejections compared to CSPF, WSP and SWP, with
a very small increase in the amount of bandwidth rejected.
Moreover, as regards maximum link load, the improvement
is negligible. These preemption approaches cannot be applied
to WSP and WSP algorithms, because this always triggers
cascaded preemption. As future work, we plan to evaluate the
impact of the preemption on the network control plane and
propose solutions to reduce this impact (in particular reduce
the number of preemptions globally and per LSP). Also, we
plan to evaluate the impact of the LSP bandwidth distribution
(e.g. linear, gaussian) on the performances of the LR and NLR
approaches.
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