Controlled Greedy Sleep, a One-hop Neighboring Knowledge Based k-Coverage Algorithm

The Second International Conference on sensor Technologies and Applications SENSORCOMM 2008 August 25-31, 2008 - Cap Esterel, France

Alexandre Pocquet^{*}, Bernard Cousin[†], Miklos Molnar[‡], and Patrice Parraud[§] [§] INSA Rennes, MACCLIA laboratory of Military Special School of Saint-Cyr, France *INSA, MACCLIA laboratory of Military Special School of Saint-Cyr, France [†]IRISA, University of Rennes I, France [‡]IRISA, INSA Rennes, France

Introduction

k-coverage problem in wireless sensors networks
 CGS algorithm presentation

Performance criteria and topology

Performance criteria

□ Ring topology

□ Analytical computation of global performance criteria

Evaluation

- Coverage quality
- Cost coverage

Global performance

Conclusions

CGS best use casesOpen problems

SENSORCOMM 2008 - Controlled Greedy Sleep, a One-hop Neighboring Knowledge Based k-Coverage Algorithm. OCQUET Alexandre - France - IRISA, University of Rennes I - Military Special School of Saint-Cyr, MACCLLA laboratory

k-Coverage problem in wireless sensor networks

Introduction
Performance criteria and topology
Evaluation
Conclusion
4

•Objective : each point of the area under observation must be covered by at least k sensors simultaneously as long as possible

•Applications : target location, localization services with high discrimination and robustness

	Characteristics of a		
	Drawbacks	Advantages	
imited itribution	 Limited in : Computational speed Electrical power (energy) Communication range Measurement range Frequent failures 	 Inexpensive Easy to produce Easy to install 	Possible overdosing

> Solutions :

- •Alternating between active and asleep states
- •Scheduling of sensor subsets (a NP hard problem)

con

CGS algorithm presentation (1/3)

Introduction
 Performance criteria and topology
 Evaluation
 Conclusion

5

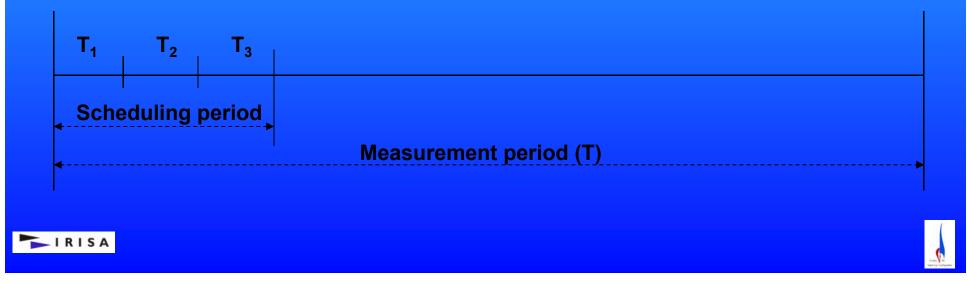
- Distributed scheduling algorithm
- Based on one-hop neighborhood knowledge
- Time is sampled in periods
- Space under observation is divided in regions
- Computation of a priority metric at every period
- Exchange of control messages at the beginning of each period

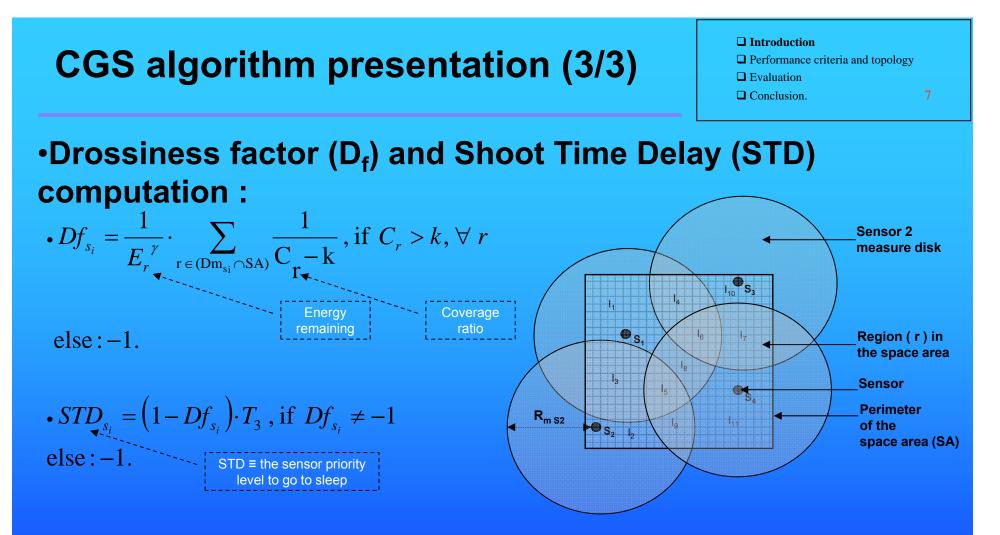
Objectives

Principles

- Ensure the maximal k-covered area ratio of the space under observation
- Extend the network lifetime: Reduce energetic and computational costs

CGS algorithm presentation (2/3)

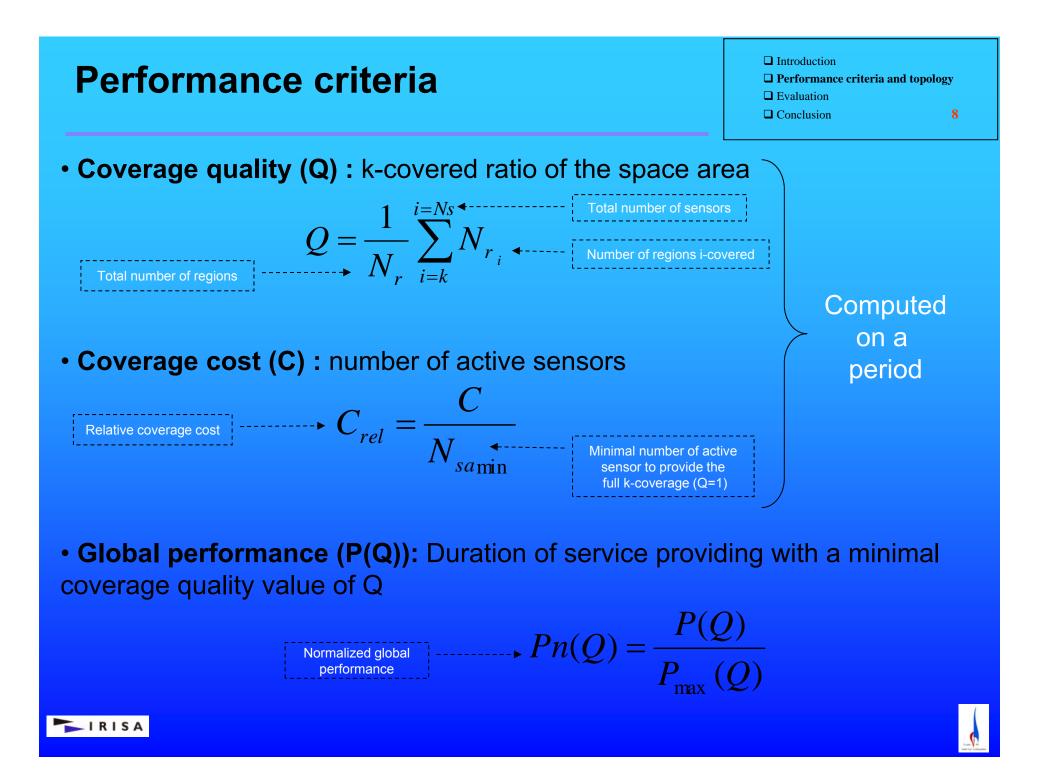

Introduction
Performance criteria and topology
Evaluation
Conclusion.

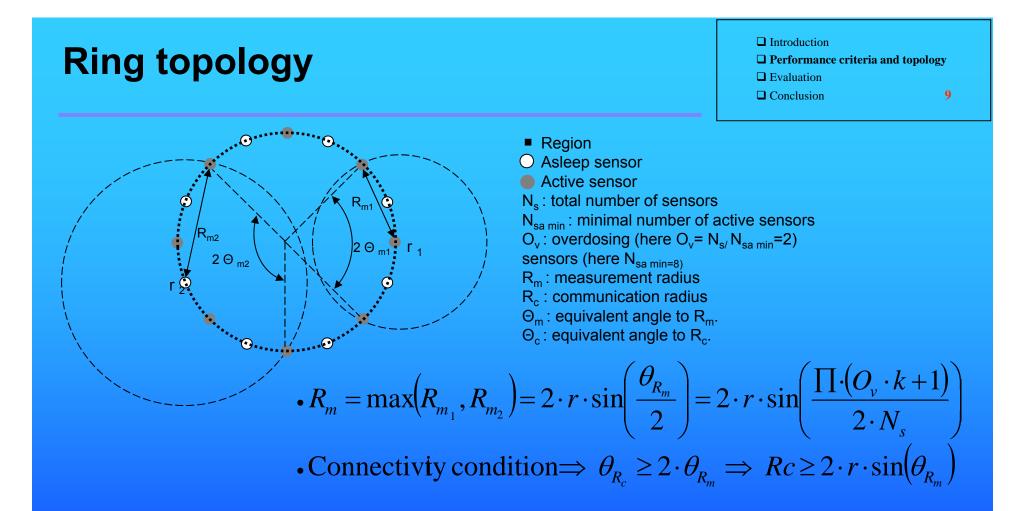

Each scheduling period is divided in 3 phases with their own message :

1. Hello phase: one-hop neighborhood discovering

2. **STD Phase** : priority metric (Shoot Time Delay) computation and diffusion to one-hop neighbors

3. Awake phase: decision computation and diffusion to one-hop neighbors




Sensor conditions to go to sleep :

- STD ≠ -1 and has expired
- all of its regions can be k-covered by its neighbor sensors which :
 - declared that they stay active (STD = -1, or have sent an Awake message)
 - have a higher STD value

> If N is the maximum number of active periods for each sensor, the network can provide a maximum of $N.O_v$ periods with full k-coverage (Q=1) and with a minimal coverage cost (C_{rel} =1)

> In the ring topology all the performance criteria can be obtained analytically

Analytical computation of global performance criteria (1/2)

Maximum Global performance with the full k-coverage :

 $P_{\text{max}}(1) = \text{N.O}_{\text{v}}.\text{T}_{\text{N}}$, with T_{N} the duration of each period

Global energy balance for a sensor :

- E_o: initial energy level
- E_C : energy spent in communications and computations
- E_M : energy spent in measurement
- E_r : energy remaining, $E_r = E_{o}$ (E_c + E_M)

•Periodic energy balance for a sensor :

- $\Delta E_M \approx (dE_M/dt)$.T_N : energy consumed in measurement during an active period
- e_{ca}/e_{cs} : energy consumed in communications and computations during an active/sleeping period \rightarrow does not depend on T_N

Introduction
Performance criteria and topology
Evaluation
Conclusion 10

Find the realistic T_N value according to E_c/E_M and N

Analytical computation of global performance criteria (2/2)

Introduction
Performance criteria and topology
Evaluation
Conclusion 11

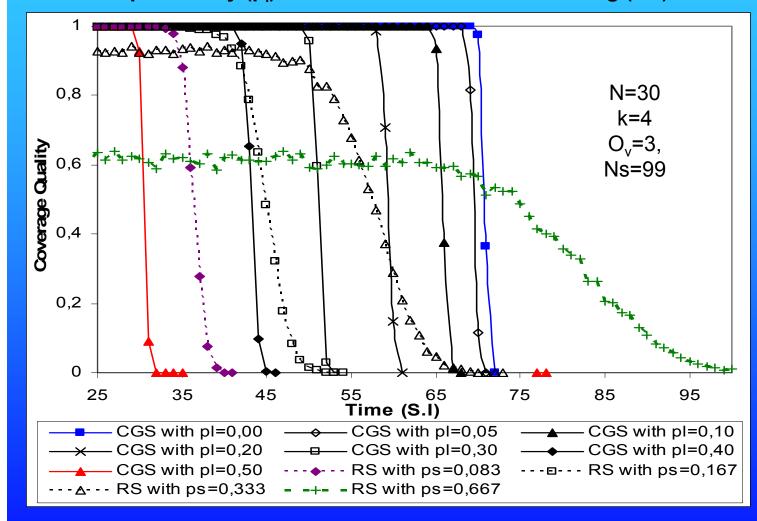
•Let's us assume that $\alpha_N = E_{C(N)}/E_{M(N)}$

Since
$$E_C(N) = N \cdot E_C(1)$$
, and $E_C(1) = \frac{E_o}{1/\alpha_1 + 1}$, then :

Case where each sensor can stay active during one period only

$$\boldsymbol{\alpha}_{N} = \frac{\boldsymbol{\alpha}_{1} \cdot \boldsymbol{N}}{\boldsymbol{1} - \boldsymbol{\alpha}_{1} \cdot (\boldsymbol{N} - \boldsymbol{1})}, \text{ for } 1 \le N \le \frac{E_{o}}{E_{c}(1)}$$

If $\alpha_1=0$ then $\alpha_N=0$ and so N.T_N is constant (T_{ref}) whatever N, because E_C(N)=0. If we assume that T_{ref} = 1, then dE_M/dt = E₀ and consequently :


$$T_{N} = \frac{1}{N \cdot (1 + \alpha_{N})} \implies P_{max}(1) = \frac{O_{v}}{1 + \alpha_{N}}$$

Coverage quality

Introduction
Performance criteria and topology
Evaluation
Conclusion
12

Coverage quality as a function of time and message loss probability (p_l) for CGS and Random Scheduling (RS).

CGS has been first designed to ensure a full k-coverage

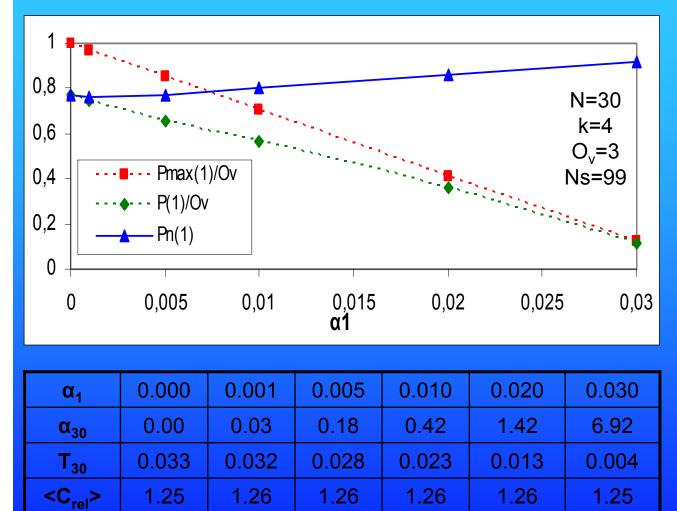
CGS is
 robust against
 message
 losses

Coverage cost

1,45 1,40 1,35 C rel 1,30 1,25 1,20 Ov=2 ---A---Ov=3 ---Ov=4 ---∎---Ov=5 1,15 2 3 5 6 4 7 k

Relative coverage cost (< C_{rel} >) as a function of O_v and k, for N = 30

Introduction
Performance criterias and topology
Evaluation
Conclusion 13


CGS relative cost coverage decreases when the number of one-hop neighbors increases (≈2.0_v.k)

Global performance

Introduction
Performance criteria and topology
Evaluation
Conclusion
14

>Analytical computation of global performance criteria is good

Normalized global performance increases when communication costs increases

Coverage cost influence on global performance decreases when communication costs increases

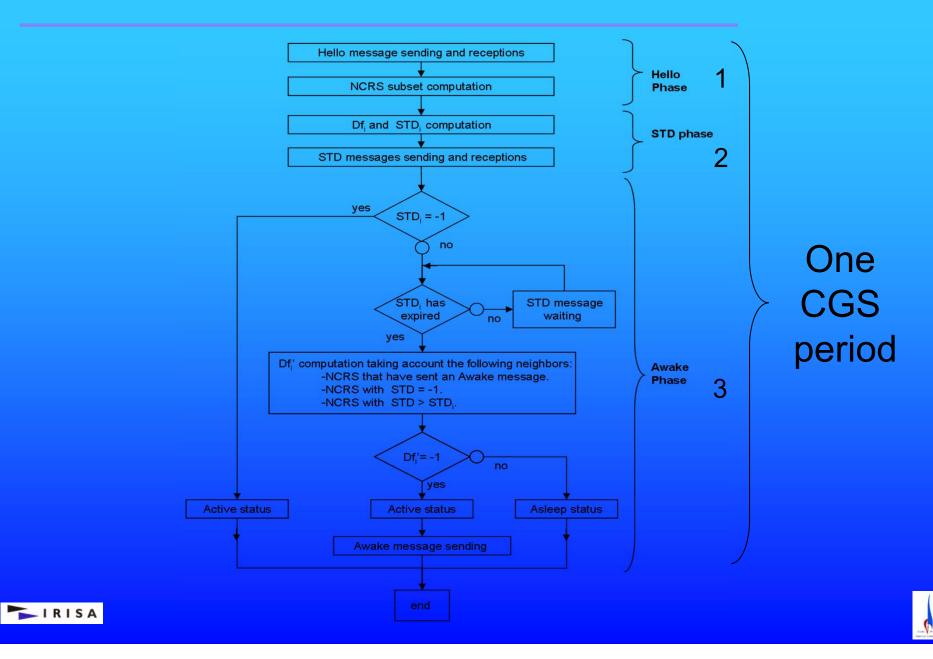
Conclusions

Introduction
Performance criteria and topology
Evaluation
Conclusion 15

•CGS best use cases:

Full k-coverage must be ensured
High k and overdosing values (high number of one hop neighbors)
Significant communication costs

Significant communication costs


Open problems

- Sensor location inaccuracy
- Overdosing / Measurement and communication radius
- Security

Annex 1: CGS algorithm

Annex 2 : maximum global performance computation.

- The initial energy level of each sensors.
- The wished number of active periods of each sensor (N).
- The maximal total number of periods $(N \cdot O_v)$ with the full k-coverage (Q = 1). This number value is equal to $N \cdot O_v$ because there are O_v disjoint minimal subsets of active sensors.
- · The energy spent in communications and measurements for each sensor.
- Each period duration (T_N).

Basically, we can say that $P_{max}(1) = N \cdot O_v \cdot T(N)$, so the main task is to determine T(N).

Energy balance of an Op-sensor for a period:

- <u>dEM</u>: energy consumed in measurements per time unit.
- eca: energy consumed in communications and computations during an active period.
- ecs: energy consumed in communications and computations during a sleeping period.
- · em: energy consumed to send a message to a maximum distance of R_c .

With our previous hypothesis we can say that:

- $e_{ca} \approx 3.e_m$ because an awake sensor has sent at most 3 messages (Hello, STD messages plus an Awake message when $Df \neq -1$).
- + $e_{cs} \approx 2.e_m$ because an asleep sensor has sent 2 messages (Hello and STD messages).

After $N \cdot O_v$ periods, we have for each sensor the following energy balance:

- $E_M = \frac{dE_M}{dt_a} \cdot N \cdot T_N$ $E_C = ((N-1) \cdot O_v + i) \cdot e_{cs} + N \cdot e_{ca}$, where i is the rank of the subset during the last O_v periods $(1 \le i \le O_v)$.

Global energy balance:

- E₀: initial energy level.
- E_R: remaining energy level.

We can now compute the period duration T_N . An interesting α_1 value is 0. That means all energy is consumed in measurements and that $N \cdot T_N$ will be constant ($\forall N \in \mathbb{N}^*$). We name this constant the reference time (T_{ref}) .

Also, if $\alpha_1 = 0$ then $\alpha_N = 0 \forall N \in \mathbb{N}^*$ (see equation 8). In this case we can say that: $P_{max}(1) = O_v \cdot T_{ref}$.

Since:

$$E_0 = E_M \cdot (\alpha_N + 1) = \frac{dE_M}{dt_a} \cdot N \cdot T_N \cdot (\alpha_N + 1)$$
(9)

If N = 1 and $\alpha_1 = 0$ then $E_0 = E_M = \frac{dE_M}{dt_a} \cdot T_{ref}$. If we assume that $T_{ref} = 1$ (for normalization) we can say that:

$$\frac{dE_M}{dt_a} = E_0 \tag{10}$$

Thus:
$$E_M = \frac{dE_M}{dt_a} \cdot N \cdot T_N = \frac{E_0}{1 + \alpha_N}$$

Then:

$$T_N = \frac{1}{N.(1+\alpha_N)} \tag{11}$$

Consequently:

$$P_{max}(1) = O_v \cdot N \cdot T_N = \frac{O_v}{1 + \alpha_N} \tag{12}$$

Because $0 \leq \alpha_1 \leq \alpha_N$ and according to our references,

Annex 3 : more simulation results about CGS and Random Scheduling coverage quality

p_l	0.00	0.05	0.1	0.2	0.30	0.40	0.50
P(Q = 1)	70	69	65	58	50	41	30
P(Q > 0)	73	72	69	62	54	47	33
P(0 < Q < 1)	3	3	4	4	4	6	3
\overline{Q}	0.99	0.98	0.97	0.98	0.97	0.95	0.97
σ_Q	0.07	0.11	0.14	0.11	0.14	0.20	0.16

TABLE I

CGS coverage quality Q and global performances as a function of messages loss probability with $N=30,\,O\upsilon=3,$ and k=4.

p_s	0.083	0.167	0.333	0.667
P(Q = 1)	27	0	0	0
P(Q > 0)	42	55	72	109
$P(0 < Q_s < 1)$	15	55	72	109
\overline{Q}	0.90	0.99	0.74	0.47
σ_Q	0.28	0.005	0.33	0.23

TABLE II

Random Scheduling global performances (P(Q)) as a function of sleeping probability p_s values with N = 30, Ov = 3, and k = 4.

Bibliography (1/2)

[1] **C.F. HUANG and Y.C. TSENG**, *The Coverage Problem in a Wireless Sensor Network*, ACM Int. Conf. on Wireless Sensor Networks and applications, September 19, 2003, San Diego, California, USA.

[2] **S. KUMAR, T.H. LAI and J. BALOGH**, *On K-Coverage in a Mostly Sleeping Sensor Network*, Annual Int. Conf. on Mobile Computing and Networking (MobiCom'04), Sept. 26-Oct. 1,2004, Philadelphia, Pennsylvania, USA.

[3] **H. GUPTA, Z. ZHOU, S.R. DAS and Q. GU**, *Connected Sensor Cover : Self-Organisation of Sensor Networks for Efficient Query Execution*, ACM Symposium on Mobile Ad Hoc Networking and Computing (MobiHoc), Annapolis, MD, 2003.

[4] **X.Y. LI, P.J. WAN O. FRIEDER**, *Coverage in Wireless Ad-hoc Sensor Networks*, Department. of Computer Sciences, Illinois Institute of Technology. IEEE Communications Magazine, 2002.

[5] **Z. ZHOU and S. DAS and H. GUPTA**, *Connected K-Coverage Problem in Sensor Networks*, Proceedings 13th International Conference on Computer Communications and Networks (ICCCN 2004), 2004.

[6] **G. SIMON and M. MOLNAR and L. GONCZY and B.COUSIN**, *Dependable k-Coverage Algorithms for Sensor Networks*, Instrumentation and Measurement Technology Conference (IMTC'07), 2007.

[7] **G. SIMON and M. MOLNAR and L. GONCZY and B. COUSIN**, *Robust k-coverage algorithms for sensor networks*, IEEE Transactions on Instrumentation and Measurement, August 2008.

[8] X. WANG and G. XING and Y. ZHANG and C. LU and R. PLESS and C. GILL, Integrated Coverage and Connectivity Configuration in Wireless Sensor Networks, ACM SenSys conference, November 5-7, 2003, Los Angeles, California, USA.

[9] I.F. AKYILDIZ and W. SU and Y. SANKARASUBRAMANIAM and E. CAYIRCI, A Survey on Sensor Networks, IEEE Communications Magazine, August, 2002.

