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Abstract—Controlled Greedy Sleep (CGS) is a recent k-
coverage algorithm based on one-hop neighboring knowledge.
This paper presents the Controlled Greedy Sleep algorithm and
highlights its best use cases thanks to performance analysis.
Studies have been performed within a ring topology. This specific
topology enables CGS validation and the design of an energetic
model. They are used to compare CGS performance results
with the maximal performances that could be expected. The
ring topology allows us to determine analytically the minimum,
maximum and relative values of our performances criteria which
are: the quality, the cost and the duration of the k-coverage.
According to the previous criteria we show in this paper that
CGS is before anything designed to guarantee the maximum
quality of coverage. We prove the CGS robustness when there
are message losses. We show that CGS relative performances
are improved when the overdosing and the communication cost
increase. This is mostly because sensors just need to send at
most three CGS messages per period and only need to know
their one-hop neighbors.

I. INTRODUCTION

Many new applications will use wireless sensors to
provide target detection, remote environmental monitoring
and localization services [1] [2]. High discrimination and
robustness require the coverage of each points of the area
under observation by at least k sensors simultaneously. This
requirement is called k-coverage.

Wireless sensors which are used for this kind of applications
could be unreliable and are limited in computational
speed, electrical power (energy) and, communication and
measurement ranges. But they are inexpensive, easy to
produce and to install. That permits to overdose the space
area with sensors, i.e. to deploy a higher number of sensors
than strictly required to provide the k-coverage. Thus some
sensors can be put in an asleep state to save energy. In this
context, the challenge is to select a sequence of sensor subsets
which will be minimal and provide an efficient k-coverage of
the area for the maximum duration. One problem is that the
selection of such minimal active sensor subsets is NP-hard
to compute [4]. Thus approximate algorithms are proposed.
Moreover that requires some knowledge of the network
topology: sensors have to exchange some additional control
messages. The forwarding of control messages adds to the

burden of the sensors, it is why we propose an algorithm
which is based only on neighboring exchanges. As messages
can be delayed or lost, this paper studies the impact of these
phenomena on the k-coverage quality.

Controlled Greedy Sleep (CGS) [6] is a Distributed Pri-
ority Algorithm [5] [3] which periodically computes a k-
coverage provided by a subset of active sensors. CGS requires
few computations and the CGS messages are not forwarded
(CGS control message are only exchanged between direct
neighbors). The purpose of this paper is to analyze CGS
performances according to our criteria which are the quality,
the cost, and the duration of the k-coverage. After a general
presentation of CGS and a description of the performance
criteria of the problem, we introduce a simple ring topology.
This specific topology enables an analytical study of the
problem. All minimal and disjoint active sensor subsets of this
topology can be easily computed. We also introduce an ener-
getic model which takes into account the communication cost.
This topology and this model is used to ascertain the maximal
CGS global performances which is taken as references to
normalize our simulation results. Finally, the simulation results
exhibit the best CGS use cases and the adequacy of CGS to
ensure a full k-coverage when possible.

II. CGS ALGORITHM

A. Algorithm objectives

CGS has two main objectives:

• Provide full k-coverage over a certain set of space points.
• Maximize the duration of the full k-coverage.

For these two objectives, CGS is based on the periodic
selection of an active sensor subset. Sensors by themselves
decide if they must be active by taking into account their own
energy level, the coverage ratio of the space points that they
can cover, and the decisions already taken by their neighbor
sensors.

So each sensor has just to know data from its one-hop
neighbors. This makes CGS easily to distribute and reduce
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the number of messages and the computation costs.

Sensors have limited communication and measurement
ranges. So usually, one considers that communication or
measurement range of sensors is limited by a respective radius.
Generally, in coverage computation, it is supposed that these
radius are constant in all directions for each sensor. Therefore
the coverage capability of the space points could be exactly
computed from the geometrical intersections of the disks
produced by the radius and centered on each sensor. But this
kind of computations could be expensive, consequently the
authors of CGS has made the choice that sensors sample their
measurement disk by elementary regions.

The following presents definitions of the terms that are used
in this paper.

B. Vocabulary used

The specific terms used in this paper are the following:

• Rm: the sensor measurement radius is the maximum
distance between a sensor and a point which is reachable
for measurement by the sensor.

• Dm: the sensor measurement disk is a set of points
reachable by a sensor for measurement.

• r: region, that is the surface unit used to sample the area
surface.

• Op-sensor: operational sensor. Sensor that has enough
energy to provide, during a period, the 1-coverage of its
regions.

• NS : the initial number of Op-sensors.
• NSamin

: the minimal number of active Op-sensors to
provide the full k-coverage. This number could be a mean
over an optimal sequence of minimal subsets.

• Cr: for a particular region r, it is the number of Op-
sensors that can measure it.

• Ov: overdosing (Ov > 1)

– Global definition: NS/NSamin
.

– Local definition (relative to a space point): Cr/k.

• Rc: the communication radius is the maximum distance
between two sensors which enables them to communicate
directly.

• Neighbor sensors: Op-sensors which can communicate
directly.

• Common Region Sensors (CRS): Op-sensors whose mea-
surement disk (Dm) intersects together.

• Neighbor and Common Region Sensors (NCRS): CRS
which are also neighbor.

Generally it is required that, the measures taken by active
sensors are forwarded by the other active sensors of the
network toward some data sinks. To achieve this measurement
data transmission, communication graph provided by the active
sensors must be connected. As it has been shown in [8],
this connectivity is automatically provided if Rc ≥ 2 · Rm.
Furthermore when this inequality is verified, we can deduce
that CRS = NCRS. Thus, as many other works, with no
lack of generality and to not mix k-coverage problems with

connectivity problems, to simplify our discussion we assume
this radius inequality is verified.

C. The three phases of CGS

CGS works in a distributed and periodic manner. CGS
updates its active Op-sensor subset at the beginning of each
period. This update period is chronologically divided into three
phases which have their own tasks and messages (see Figure
1):

1) Hello phase: Each Op-sensors sends an Hello message
which indicates the sensor location and power state to
their neighbors (potentials CRS).

2) STD phase : Each Op-sensor computes its Drowsiness
Factor (Df) [6] and Shoot Time Delay (STD). Then, they
transmit their STD by sending a STD message.

3) Awake phase: Each Op-sensor takes its sleeping
decision and if necessary sends an Awake message.

More precisely the three CGS phases are described in the
following.

Fig. 1. The tree CGS phases running on Op-sensor i.

1) Hello phase: During the Hello phase, Op-sensors re-
ceives Hello messages and updates their NCRS list. The sender
sensor location found into each Hello message enables the
receiving sensor to ascertain whether the sender is one of
its NCRS or not. The Hello messages (as all other CGS
control messages) are not forwarded by any receiving sensor,
because, thanks to CGS, sensors just need to know their one-
hop neighbors.
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2) STD phase: After the time-out of the Hello phase, each
Op-sensor computes its Df and STD values.

An Op-sensor with an Es remaining energy level computes its
Df as the following:

Df =

⎧⎨
⎩

1
Eα

s

∑
∀r∈Dm

φr if φr > 0, ∀r

−1 else.
(1)

α is a positive constant (α = 2 typically), and φr is defined
as the following :

φr =

{
1

Cr−k if Cr > k

−1 else.
(2)

For a region r, Cr is determined by simple geometric and
distance computation thanks to the sensor knowledge of its
neighbor locations and its own location.

Once the Df value has been computed, each Op-sensor
computes its STD and sends it to its neighbor sensors using
an STD message. STD is the activity priority metrics used
by CGS. If a sensor has a lower STD value than its neighbor
sensors then this sensor has a lower probability to be active
during this period.

Typically STD value is computed as the following:

STD =

{
(1 − Df) · T2 if Df �= −1
−1 else.

(3)

with T2 the known duration of the STD phase.

Remark: if a sensor has one of its regions with Cr ≤ k then
the Df and STD values are equal to −1. Theses negative values
compel the sensor to be active during the current period. The
reception of a STD message which contains a negative value
is sufficient for the receiving sensors to know that the sending
sensor will stay active. This early knowledge sharing enables
these sensors to reduce their communication cost: the sender
of the STD message (with negative STD value) stops here is
decision process (it stays active) and does not send any other
message (Awake message). Moreover that knowledge makes
the decision of the Awake phase easier for all the receiving
sensors.

3) Awake phase: Sensors must decide if they stay active
or not when their STD timer have expired.

A sensor will be allowed to go to sleep only if the full k-
coverage of its regions may be provided by the activation of
some of its neighbor sensors. That is sensors which have sent
to the local sensor:

• a STD message with a STD value equal to −1, or
• an Awake Message, or
• a STD message with a higher STD value than the STD

value.

One way to determine the sensor future state is to recompute
the Df ′ value (see Figure 1) by only taking into account

the previous sensors. If Df ′ value is different from −1 then
the sensor can go to sleep, otherwise it must stay active for
this period and send an Awake message just after its STD
expiration.

D. About CGS complexity

We evaluate the complexity of the CGS algorithm in
number of messages and in number of operations. According
to our definitions and our general assumptions (in particular
if Rc ≈ 2 · Rm and, if all sensors are operational and,
if the sensors are evenly spread) each sensor may have
π·R2

c

π·R2
m

· Cr = 4 · Cr neighbors.

As we have seen previously, each Op-sensor may send
2 or 3 messages every period. This overload is pretty low
if the CGS period (typically several seconds) is rather long
versus the duration of a local transmission (typically some
microseconds or less). It is not useful to evaluate the overall
number of CGS messages exchanged over all the network
every period because CGS doesn’t require sensors to forward
CGS messages. However wireless network is a multiple access
network. Thus the network load around (but local to) one
sensor is of interest. Obvioulsy there is between 2 · 4 · Cr

and 3 ·4 ·Cr messages sent per period because there are 4 ·Cr

neighboring sensors around each local sensor.
To evaluate the operation complexity of CGS algorithm, we

assume that test or addition costs are negligible compared to
multiplication or division costs, and that the most demanding
part of the algorithm is the Df computation because it
requires a sensor to compute the distance between each of its
region and all of its neighbors.

To compute its Df a sensor must compute the Cr of each
region around itself. Thus if each sensor shares its Dm disk
into NR regions, then the Df computation would require
O(NR) operations. Each Cr computation requires a computa-
tion for each neighbor (some geometric distance calculations
between the neighbors and the region). As a sensor has Cr

neighbors, consequently, every period, the Df computation
would require O(Cr ·NR) operations. We can notice that this
complexity decreases with the communication radius (whose
Cr depends) and the measurement radius and accuracy level
(whose region size and NR depends). This behavior is in favor
of CGS algorithm.

E. Performances Criteria

We use three metrics, they are in accordance with the two
algorithm objectives.

1) Coverage quality for a period: The coverage quality Q is
an approximation of the ratio of k-covered surface, it supposes
regions of equal size and weight:

Q = 1
NR

·
NS∑
i=k

NRi
(4)

NR is the total number of regions and NRi
is the number of

i-covered regions. As NR =
∑NS

i=0 NRi
, we have 0 ≤ Q ≤ 1.
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2) Global performance: Global performance P (Q) is the
duration during which a minimal quality of Q is provided
by the k-coverage algorithm. Typically for CGS, we want to
evaluate P (1), i.e. the duration during which the k-coverage
is assured over all the regions of the area under observation.

Normalization: Pn(Q) = P (Q)
Pmax(Q)

We know that P (1) will be limited by the selection of non
optimal subsets of active Op-sensors. So a good performance
criteria on each period is the coverage cost.

3) Coverage cost: The coverage cost C is simply the
number of active Op-sensors during a period for a certain
k-coverage quality. The coverage cost must be compared with
the minimal mean cost coverage Nsamin of sensor subsets
that provide a maximal global performance Pmax(Q). We
can compute the relative coverage cost Crel = C

Nsamin
.

Nsamin and Pmax(Q) computation can be very complex,
because they are optimal values. Exhaustive searching methods
are too long for large network. That’s why we choose an
original and very simple topology which assures the existence
of an analytical expression for Nsamin and Pmax(Q).

III. SIMPLE RING TOPOLOGY TO EVALUATE CGS

A. Basics

We choose to place uniformly the sensors and the regions
on a ring (see Figure 2). This topology is very interesting
because its symmetry enables us to find easily the minimal
disjoint subsets of sensors (with Q = 1). Each subset can be
deduced from the initial one by the rotation which permits
to go from a sensor on the ring to one of its consecutive
sensor. So all subsets have the same cost which is in fact
Nsamin. One simple condition is Ov ∈ N

∗, this allows to
make 	Ov
 disjoint minimal subsets of sensors. So in this
topology, measurement and communication radius (Rm and
Rc) can be easily computed from NS , Nsamin and k values,
and we are assured that these chosen parameters can provide
the maximum k-coverage quality (Q = 1).

Fig. 2. Measurement Radius (Rm) computation in a ring topology with
k = 3, r = 1, NS = 16, Ov = 2, and NR = 320

B. Minimal measurement and communication radius

Let’s us assume the following:
• θS : the angle between two consecutive sensors on the

ring (θs = 2Π/NS ).
• θr: the angle between two consecutive regions on the ring

(θr = 2Π/NR ).
• θRm

: the equivalent angle to Rm.
• θRc

: the equivalent angle to Rc

To determine the minimal Rm and Rc radius, we must take
into account regions which are located first, exactly between
two inactive sensors (see r1 in Figure 2) second exactly
between two active sensors (see r2 in Figure 2). If k is even
r1 region (resp. r2) needs Ov · k (resp. Ov · k +1) Op-sensors
that can measure them and, respectively for odd values of k.

That’s mean that it must have Ov · k + 1 Op-sensors in the
disk Dm of each Op-sensor. This is equivalent to an angle of
2 · θRm

. So we have Ov · k + 1 = θRm

Π · Ns.

We can compute the minimal measurement radius:

Rm = 2 · r · sin(
θRm

2
) = 2 · r · sin(

Π · (Ov · k + 1)
2 · Ns

) (5)

For the minimal communication radius, we have to choose
an equivalent angle radius such that θRc

≥ 2 · θRm
and so

Rc ≥ 2·r ·sin (θRm
). That means in this topology that initially

an Op-sensor should have at least 2·Ov ·k neighboring sensors.

C. Maximum global performance computation

The simple ring topology enables us to analytically produce
the maximum Global Performance Pmax(Q). Pmax(Q) may
be reached by successive sensor minimal subsets where for
each successive period Q = 1 and Crel = 1.

Op-sensors need to send messages at each CGS period.
These message sendings consume energy. So the shorter the
period durations are, the more numerous the periods are.
Consequently, all being equal, shortest periods consume more
energy. That is why, our model has to take into account the
number of periods, their duration and the energetic cost of
message transmission.

So if we want to reduce the energy consumed by the
message transmissions, we have to limit the number of
periods and so increase their duration. The maximum full
k-coverage duration is reached when each sensor has just to
stay active during one period (we assume that initially all
sensors have the same energy level). In this case the network
we be able to provide �Ov� periods of full k-coverage. We
propose to consider this case as a reference for this paper.

However there is a drawback when very long period dura-
tion is considered. The k-coverage quality is reduced for the
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remaining period time when any active sensor fails during the
period.

The following formal analysis propose to determine the
maximal global performance (Pmax(1)) on the ring topology
by taking into account these parameters:

• The initial energy level of each sensors.
• The wished number of active periods of each sensor (N ).
• The maximal total number of periods (N · Ov) with the

full k-coverage (Q = 1). This number value is equal to
N ·Ov because there are Ov disjoint minimal subsets of
active sensors.

• The energy spent in communications and measurements
for each sensor.

• Each period duration (TN ).

Basically, we can say that Pmax(1) = N · Ov · T (N), so
the main task is to determine T (N).

Our hypothesizes are the following:

• CGS scheduling duration is negligible over TN .
• Energy consumed during CGS scheduling is negligible:

it is lower than the energy consumed by the communica-
tions and the measurements.

• The parameters of all the sensors have the same initial
values (sensor locations excepted).

Global energy balance:

• E0: initial energy level.
• ER: remaining energy level.
• EC : energy consumed in communications and computa-

tions.
• EM : energy consumed in measurements.

ER = EO − (EM + EC) (6)

Energy balance of an Op-sensor for a period:

• dEM

dta
: energy consumed in measurements per time unit.

• eca: energy consumed in communications and computa-
tions during an active period.

• ecs: energy consumed in communications and computa-
tions during a sleeping period.

• em: energy consumed to send a message to a maximum
distance of Rc.

With our previous hypothesis we can say that:

• eca ≈ 3.em because an awake sensor has sent at most 3
messages (Hello, STD messages plus an Awake message
when Df �= −1).

• ecs ≈ 2.em because an asleep sensor has sent 2 messages
(Hello and STD messages).

After N · Ov periods, we have for each sensor the following
energy balance:

• EM = dEM

dta
· N · TN

• EC = ((N −1) ·Ov + i) ·ecs +N.eca, where i is the rank
of the subset during the last Ov periods (1 ≤ i ≤ Ov).

To compute Pmax(1), we have to take into account the case
where sensors have consumed all their energy (i = Ov and
ER = 0). In this case we can say the following:

E0 = EM + EC =
dEM

dta
· N · TN + N · (Ov.ecs + eca) (7)

Let’s us assume the following ratios:
• α = EC

EM
. α enables us to compare the energy quantity

consumed in communications and computations (which
a lost energy) against the energy consumed in measure-
ments (which is a well utilized energy).

• β = ecs

eca
the ratio of the communication costs, the

communications cost of the asleep state over the awake
state. Typically it is equal to 2/3.

We can say that: E0 = EM + EC = Ec
(1/α+1)

Thus: α = 1
(E0/EC−1)

And EC(N) = N · eca(β.(Ov − 1) + 1) = N · EC(1)

Then:

αN = 1
E0

EC (N)−1
= 1

E0
N·EC (1)−1

, with EC(1) = E0
1/α1+1

Consequently:

αN =
α1 · N

1 − α1 · (N − 1)
(8)

with 1 ≤ N < E0/EC(1)

We can now compute the period duration TN . An
interesting α1 value is 0. That means all energy is consumed
in measurements and that N ·TN will be constant (∀ N ∈ N

∗).
We name this constant the reference time (Tref ).

Also, if α1 = 0 then αN = 0 ∀ N ∈ N
∗ (see equation 8).

In this case we can say that: Pmax(1) = Ov · Tref .

Since:

E0 = EM · (αN + 1) =
dEM

dta
· N · TN · (αN + 1) (9)

If N = 1 and α1 = 0 then E0 = EM = dEM

dta
· Tref . If we

assume that Tref = 1 (for normalization) we can say that:

dEM

dta
= E0 (10)

Thus: EM = dEM

dta
· N · TN = E0

1+αN

Then:
TN =

1
N.(1 + αN )

(11)

Consequently:

Pmax(1) = Ov · N · TN =
Ov

1 + αN
(12)

Because 0 � α1 � αN and according to our references,
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we can say that: P (1)
Ov

≤ Pmax(1)
Ov

≤ 1.

And for P (1) normalization we can propose the following:

Pn(1) = P (1)
Pmax(1) = P (1)

Ov
· (1 + αN ).

IV. CGS PERFORMANCES

We have performed the simulations with various Ov , NS ,
NSamin and k values but all simulations have the same number
of periods (N = 30).

A. Coverage quality

In this section we have selected the results of some
representative simulations with Ns = 99, Ov = 3, k = 4.
We introduced some message loosing to evaluate the CGS
robustness. We compare the coverage quality provided by
CGS and the Random Scheduling (RS) algorithm. The
advantage of the RS algorithm is, it does not need to send any
message. Thus message loss has no impact on RS algorithm.

We have performed the simulations with various loss
probability pl, and various sleeping probability ps. A good
value for ps should be ps = 1 − 1/Ov ≈ 0.667.

In Figure 3, the coverage quality curves of CGS and
Random Scheduling evolve similarly along the time because in
the two cases coverage quality can be chronologically divided
in two behavior phases:

1) first a constant coverage quality is assured.
2) then the coverage quality is decreasing to zero (the

number of Op-sensors is deceasing).

Fig. 3. CGS coverage quality as a function of messages loss probability (pl)
vs Random Scheduling coverage quality as a function of sleeping probability
(ps) with Ns = 99, Ov = 3 and k = 4.

When the message loosing probability increases (from
0% to 50%) the length of the first behavior phase of CGS
decreases from 70 to 30 (see P (1) in table I) but the Q level
is constant (Q ≈ 1). That’s why we consider the duration of
the CGS first behavior phase as P (1). The length of CGS
second behavior phase (which corresponds to P (0 < Q < 1))

pl 0.00 0.05 0.1 0.2 0.30 0.40 0.50
P (Q = 1) 70 69 65 58 50 41 30
P (Q > 0) 73 72 69 62 54 47 33

P (0 < Q < 1) 3 3 4 4 4 6 3
Q 0.99 0.98 0.97 0.98 0.97 0.95 0.97
σQ 0.07 0.11 0.14 0.11 0.14 0.20 0.16

TABLE I
CGS COVERAGE QUALITY Q AND GLOBAL PERFORMANCES AS A

FUNCTION OF MESSAGES LOSS PROBABILITY WITH N = 30, Ov = 3, AND

k = 4.

ps 0.083 0.167 0.333 0.667
P (Q = 1) 27 0 0 0
P (Q > 0) 42 55 72 109

P (0 < Qs < 1) 15 55 72 109
Q 0.90 0.99 0.74 0.47
σQ 0.28 0.005 0.33 0.23

TABLE II
RANDOM SCHEDULING GLOBAL PERFORMANCES (P (Q)) AS A FUNCTION

OF SLEEPING PROBABILITY ps VALUES WITH N = 30, Ov = 3, AND

k = 4.

is shorter than the length of CGS first behavior phase (the
ratio is 6/47 for pl = 0.40). On all simulations, during
first and second behavior phases, CGS provided a mean
k-coverage quality (Q) between 0.95 and 0.99 with standard
deviation (σQ) between 0.07 and 0.20.

RS behaves differently. Indeed when the sensors sleeping
probability increases (from 0.083 to 0.667) the two behavior
phases increase. Total durations for P (Q > 0) increase from
42 to 109. (see Figure 3) They could be higher than CGS
ones. However, mean coverage quality goes down to 0.47.
The only case where RS provides a full k-coverage (but for
a limited time interval) is for the lowest ps value 0.083. One
could expect from RS a better behavior: full k-coverage may
be reached as soon as the ps value is lower than 2/3.

These results show that CGS has been first designed to
ensure full k-coverage (Q = 1) as in [7]. These results also
show CGS robustness because when messages are lost, CGS
manages to maintain Q = 1. Message losses disturb the
sensors because they could not accurately build the NCRS list
and take appropriate scheduling decisions. So the selection of
the active sensor subset is disturbed by the message loss and
that increases the coverage cost.

Now we know that CGS provides, first of all, full k-
coverage, thus the evaluation of its coverage cost (when
Q = 1) is very significant.

B. Coverage cost

In this paper we only give the results of simulations with
100 sensors. Others simulations have been made with 300
and 999 sensors, they confirm the stability of our observations.

We propose to study the CGS cost coverage within the
periods where:

• Q = 1.
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• All sensors are operational.
• There are no message loss and no synchronization prob-

lem.
• There are no error in sensor locations.
• All sensors have Df and STD values which are different

to −1 (the last periods are avoided).

Fig. 4. CGS relative coverage cost (< crel >) as a function of overdosing
(Ov) and k.

As we can see on Figure 4, CGS does not have the same
mean coverage costs for different topologies. The relative
mean coverage cost decreases from 1.45 to 1.16 when k
increases from 2 to 7 and with Ov values between 2 and 5.

One can note that for k > 3, k seems to be the most
discriminative parameter for the mean cost coverage. Indeed
mean coverage cost values are very closed when k > 3
because the differences between the values are lower than
0.05. The most homogeneous results are obtained for k = 4
(the mean coverage cost is 1.25 and the standard derivation
is 0.006). That’s why results shown on previous and next
subsections are based on a k = 4 value.

Figure 4 shows us that when k value increases from 2 to
7 mean relative coverage cost decreases from 1.40 to 1.20.
We explain this by the fact that the number of neighbor
sensors increases as k and Ov increase (number of neighbors
≈ 2 ·Ov · k). So the larger number of neighbors a sensor has,
the best the mean cost coverage is.

k being constant, the higher Ov is, the lower mean cost
coverage is. One may think that cost coverage simply depends
on the accurate knowledge of the topology. That could be
described by the ratio Cr/NS . But simulations with NS =
300 and NS = 900 with the same k and Ov values (and
consequently with the same Cr value) tell us that NS do not
affect the mean cost coverage.

So let’s us compare the global analytical and experimental
performances.

C. Comparison of analytical and experimental global perfor-
mances

The experimental relative cost coverage which is superior
or equal to 1 when Q = 1 reduces the number of periods
N ′p (with N ′p ≤ Ov ·N ). It is also reduced the experimental
global performance P ′(1) if we consider the same period
duration TN .

So P ′(1) = N ′p · TN

and P ′n(1) = N ′p
Ov·N = N ′p·TN

Ov
· (1 + αN )

We simulated CGS with various α1 values. Table III
shows us that α(N = 30) increases from 0 to 6.92 for α1

values between 0 and 0.03 because of the increasing of
the communication cost. Maximum period duration T (N)
decreases from 0.033 = 1/N to 0.004. Mean relative coverage
is constant and close to 1.25.

As expected, Pmax(1) and P (1) decrease when α1 increases
(see Figure 5). Consequently, for α1 = 0, Crel = 1.25, we
have Pn(1) ≈ 0.77, which is closed to the expected value of
Pmax(1)
Ov·Crel

= 0.80.

CGS is advised for high α1 values. Indeed the higher α1

value is (thus the higher communication costs are), the better
Pn(1) is (because coverage costs are less determinant in P (1)
than communication costs). Pn(1) increases from 0.77 to 0.92
when α1 increases from 0 to 0.03. We can say that the higher
the communication costs are, the more interesting the use of
CGS seems to be.

α1 0.000 0.001 0.005 0.010 0.020 0.030
α(30) 0.00 0.03 0.18 0.42 1.42 6.92
T (30) 0.033 0.032 0.028 0.023 0.013 0.004

< Crel > 1.25 1.26 1.26 1.26 1.26 1.25

TABLE III
CGS PARAMETERS EVOLUTION AS A FUNCTION OF α1 VALUE WITH

N = 30, Ov = 3, AND k = 4.

Fig. 5. CGS global relative and absolute performances with N = 30, Ov = 3
and NS = 99.

V. CONCLUSION

Simulations results are coherent with our formal analysis.
They have been applied on a ring topology and they give rise
to the best use cases of CGS (with the higher Pn values).
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Our results from coverage quality study prove that CGS
was first designed to guaranty the k-coverage. They prove
also CGS robustness when there are message loosing, because
the highest coverage quality is maintained but for a shorter
duration. So CGS algorithm guarantees (when possible)
to find in a distributed manner a good approximation of
the optimal solution of the k-coverage problem. The found
solutions are some of the best whatever the knowledge of the
sensors about their neighbor decisions or neighbor existences.

Moreover the coverage cost study reveals that CGS
scheduling efficiency (with a full k-coverage) increases as k
and the overdosing (Ov) increase. This is due to the increasing
of the number of one-hop neighbors and the increasing of
number of sensors that can measure a region (respectively
2 · k · Ov and k · Ov in a ring topology).

Then we are convinced that the more the sensors have
neighbors (and the more they know their existences or
their decisions) the less the relative cost coverage is; And
since k-coverage is provided, the more the relative global
performance is.

Global relative performance put in evidence that the more
the energy spent in communications is rather in measure ones
for a sensor, the more the CGS relative global performances
are. We explain this by the fact that in this case the relative
coverage cost (typically closed to 1.25 in our results) is less
significant on relative global performances.

That’s the reasons why we advise to use CGS when the first
objective is the full k-coverage and in a topology with high k
and overdosing values and/or with high communication costs.

VI. OPEN PROBLEMS

Additional performance analysis could be done by taking
into account the imprecisions of the sensor locations and the
potential lack of synchronization between sensors.

An interesting but future study is whether it should be
better to optimize the number of sensors in the network or
the sensor radius (communication and measurement radius).
Let give a short glance about the tradeoff in this optimization
problem. In one hand, the performance of the algorithm is
function of the overdosing (that is good). But, the overdosing
is related to the number of sensors in the network. And the
network energy is the sum of the energy of all the sensors
in the network. Thus the network energy increases as the
overdosing increases (which is bad from an efficiency point of
view). In the other hand, if the measurement radius increases
more regions are covered by one sensor (which is good).
But if the communication radius increases the collision rate
and (sometimes) the energy consumed by the communication
will increase. Thus communications will become less efficient
(which is bad).

A such study can be easily done thanks to our ring topology.
In this topology measurement and communication radius can
be easily deduced from the k-coverage and the overdosing.

Nevertheless to take these points into consideration, our
energy model have to be enhanced. For instance the energy
consumed by a message transmission could be function of the
distance between the sender and destinations, or in another
way function of the overdosing.

The increasing of measurement and communication radius
could be considered by increasing the cost due to communi-
cations (α1 and so αN ). For instance if we choose a physical
model which compute the energy consumed when a message
is sent to a certain distance (em).
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