
HAL Id: hal-01184108
https://hal.science/hal-01184108v1

Submitted on 12 Aug 2015

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Fast Packet Recovery for PULL-Based P2P Live
Streaming Systems

Houssein Wehbe, Gérard Babonneau, Bernard Cousin

To cite this version:
Houssein Wehbe, Gérard Babonneau, Bernard Cousin. Fast Packet Recovery for PULL-Based P2P
Live Streaming Systems. Second International Conference on Advances in P2P Systems (AP2PS
2010), Oct 2010, Florance, Italy. pp.20-25. �hal-01184108�

https://hal.science/hal-01184108v1
https://hal.archives-ouvertes.fr

Fast Packet Recovery for PULL-Based P2P Live
Streaming Systems

Houssein Wehbe, and Gérard Babonneau
Orange Labs

4, rue du Clos Courtel
Cesson Sévigné, France, 35512

Email: {houssein.wehbe, gerard.babonneau}@orange-
ftgroup.com

Bernard Cousin
IRISA / Université de Rennes 1

Campus de Beaulieu
Rennes, France, 35042

Email: Bernard.Cousin@irisa.fr

Abstract— Nowadays, Peer-to-Peer (P2P) networks play an
essential role in large scale live video transmission. Though many
algorithms have been proposed to deal with packet loss in P2P
networks, there is still a lack of mechanisms dealing with the
delay and loss constraints of live video streaming. In this paper,
we propose a new loss recovery mechanism allowing the quality
optimization of live video transmitted on P2P networks. Its
principal feature consists in request retransmission of lost
packets from a peer different of the original packet sender. This
mechanism increases the probability of choosing the best
available peer to make the retransmission and hence, improves
the received video quality before its display time. We show by
simulations that the proposed solution is efficient in comparison
with the current retransmission mechanisms. This solution is
independent from the sender peer selection used algorithm.

Keywords: Peer-to-peer network; video streaming; packet loss;
packet recovery; efficient; retransmission mechanism.

I. INTRODUCTION
In the last few years, multimedia data transmission over IP

networks has spread enormously. High quality video
transmission is becoming more and more important. However,
video transmission generates constraints on the network in
terms of bandwidth, latency, error rate and jitter.

The emergence of peer-to-peer (P2P) systems in the live
video transmission context, also called P2P live streaming
systems, enables a large performance improvement when it is
compared to a centralized system, mainly in terms of
scalability. The P2P principle is based on the equivalence
between the roles of all the system entities called "peers". In
most of these systems, the video is split into chunks, i.e.,
fragments, which could be either pushed by the issuer peers or
pulled by the receiver ones. In PULL-based P2P systems, the
video applicant initiates itself the video distribution from its
owners by deciding the chunk and the peer to use. In PUSH-
based P2P approach, the video owners manage the system.
They decide the chunk to be sent and the destination peer. In
these systems, video clients have a more passive role. In both
approaches, the peers build a P2P overlay used for chunks
transmission. This overlay is a P2P network built on the basic
of another network, Internet network for instance. The P2P
overlay construction for each peer is achieved mainly by the

selection algorithms of its peer neighbors. The peers in the
overlay are connected via logical links, each of which
composed of a path in the underlying network. In general,
peers are the end hosts in the underlying network.

To get a good video quality, a client must receive its chunks
before their display times. Generally, a chunk is transmitted
over the internet in several IP packets. Without forward-error-
correction (FEC) technique, the loss of one single packet
makes this chunk unusable. The chunk receiver cannot use it
nor send it to other peers. This may degrade the video quality
in a large number of peers. To guarantee the quality of service,
a packet recovery technique must be applied. This technique
must ensure fast packet recovery. In other words, the packets
should be received before their chunk display time.

In literature, P2P live streaming systems focus on the
algorithm design of overlay construction [1] or chunk exchange
policy between peers [2], i.e., the choice of chunks to send
(respectively receive) and its destination receiver (resp. sender)
in PUSH-based (resp. PULL-based) P2P system. However,
they do not propose a specific recovery technique of lost
packets. Moreover, usual recovery techniques do not take into
account the video temporal constraints since they have been
proposed initially for file transmission. In practice, these
techniques propose to retransmit the lost packets from their
original sender. However, if this peer is not available during
the retransmission request, the probability for not receiving
retransmitted packets in time will remains very high. Which
can affect the video quality.

In this paper, we propose to request retransmission of lost
packets from a randomly selected peer different from the
original sender. Indeed, we assume that the original sender in
not always the most appropriate to achieve the retransmission.
The mechanism proposed in this work aims to choose an
available sender for retransmission. This choice increases the
probability for receiving the lost packets before their display
time and enhances then the received video quality. Our
retransmission mechanism is mainly applied in PULL-based
P2P live streaming systems [3]. Indeed, these systems, it is the
client that manages the video streaming and then the video
quality improvement. It has information on the chunks it
requires and on the system peers. In loss case, it may then
easily apply our retransmission mechanism. The advantage of

this mechanism is that it does not need adding new signaling
messages, or the modification of the overlay construction used
algorithms. The performance carried on the proposed
mechanism shows its efficiency in comparison with current
retransmission mechanisms.

This paper is organized as follows. Section 2 presents the
state of the art of loss recovery mechanisms used in current
P2P streaming systems. Section 3 presents our proposed
solution. Section 4 introduces its performance evaluations.
Finally, Section 5 concludes our works.

II. STATE OF THE ART
The loss recovery schemes used in P2P streaming systems

are based on packet retransmission or FEC techniques.

Packet retransmission is a very simple and well known
method in the state of the art. In transport control protocol
(TCP) the video receiver must send to the sender an
acknowledgement for each received packet. The sender uses
the lack of acknowledgement (or several acknowledgements
with the same acknowledgement number) to detect lost packets
and retransmit them. But given that TCP considers the packets
loss as network congestion signs, it reduces its transmission
rate systematically, at loss detection. This may additionally
degrade the video quality. Moreover, in asymmetric networks
(like P2P networks using, for instance, ADSL links as access
network) when the receiver upload channel is blocked, the
acknowledgements can be lost or arrive late to the sender. In
this case as well, TCP sender needlessly reduces its
transmission rate. For these reasons, TCP is still not suitable
for real-time video transmission.

User Datagram Protocol (UDP) does not have these
drawbacks because it maintains its transmission rate, but it
does not have a lost packet recovery mechanism. To apply
retransmission with UDP protocol, it is necessary to define a
technique dealing with packet loss detection at receiver. That
allows it to request their retransmission. We can, for instance,
use the Real-Time Transport Protocol (RTP) [4]. This protocol
allows the sender to number the packets before sending them.
The receiver can thus send a retransmission request when a
packet loss is detected. However, with this simple
retransmission mechanism, video receivers do not have
guarantee on packet recovery time and thus on the video
quality.

To solve the retransmission issue in UDP, the FEC
technique is proposed. In this technique, a redundancy data is
added to the transmitted stream in such a way the lost packets
can be recovered by the receiver without retransmission. The
live video case, video source must know the rate of loss and its
pattern for adding enough redundancy data to protect the
stream. However, in P2P networks, where the links are
heterogeneous and nodes behavior is unpredictable, video
source cannot know the loss rate throughout the whole paths.
Thus, the use of FEC in these networks does not allow
correcting all loss types. Besides, generally the redundancy
data quantity introduced into the stream is very high, because it
is permanently configured to repair the worst loss case. This
may increase network congestions and therefore contribute to
the packets loss.

In reality, most of the current P2P streaming systems use
TCP protocol for data transport [1][6][7]. Systems using UDP
protocol (for instance [8]) do not propose a specific loss
recovery mechanism. An enhancement for video quality
transmitted over P2P network was proposed in [9]. It consists
in protecting, via FEC and/or retransmission, the most
important video packets. The authors of [9] suppose that these
packets may contain an image of type I and P of a group of
pictures (GOP) of a MPEG video stream. Indeed, images of
these two types are more important than the images of the third
type (B image) because the decoding of the third type is
dependent on both first ones. Also P images depend on I
images. Results presented in [9] show that this protection
technique improves the video quality. However, performance
analyses have been carried out on a P2P system where the
receiver can receive the video packets from only one peer.
However, these results are only valid in this particular case.
Other works have been concentrated on retransmission of pre-
recorded video. They do not treat the retransmission of live
video where the video is more sensitive to transmission delay
[5]. The authors of [11] propose a model-based packet
scheduler for P2P streaming systems with retransmission. Their
proposal consists in requesting retransmission of lost packets
from their original sender. This sender is chosen initially by a
specific technique. Its principle is that the video receiver
watches the channel state of all the peers which it knows, and
then it chooses for each video packet the peer minimizing the
transmission delay. That may, according to the authors,
accelerate recovery in the loss case and then improve the video
quality. However, this technique is not optimal and it can not
be applied in the live video case. Indeed, it requires selecting a
sender for each IP packet, which may in P2P live streaming
systems, according to [10], generate an important loss rate and
a waste of network resources. Generally, it is preferable to
apply the sender selecting technique for each chunk composes
of several packets. This proposal will be detail in the next
sections using live streaming video.

III. THE PROPOSED RETRANSMISSION MECHANISM
In PULL-based P2P live streaming systems, video receiver

decides which chunk should be requested and its sender peer. It
exchanges, periodically with its neighbor signaling messages to
know their available chunks, and then it chooses the chunk to
request. The presence of several peers having the same video
chunk raises an issue about the selection of the best peer to
ensure a good quality of service for the chunk transmission.
Several metrics exist which are used to select this peer, such as
the available bandwidth between sender and receiver, available
bandwidth of the sender node, the transmission delay between
sender and receiver, i.e., one way delay, the round-trip time
(RTT), the number of hops, etc. Signaling messages exchanged
between peers or monitoring mechanisms allow estimation of
these metrics.

Generally, a chunk is bigger than a IP packet [10]. A chunk
will be sent in several IP packets. In network disturbance cases,
one or some consecutive IP packets are lost. Video receiver
considers a chunk unusable if at least one packet is lost. It can
not display this chunk neither sends it to other peers. To
improve video quality received by all the system peers, we

P1

P3

P2

p1 p2 p3 p4 p5

TV

T0

C1

P1

P3

P2

p1 p2 p3 p4 p5

TV

T0

C1

Figure 2: Retransmission of lost
packets is requested to peer different
from the original sender.

P1

P3

P2

p1 p2 p3 p4 p5

p3

TV T1

C1

P1

P3

P2

p1 p2 p3 p4 p5

p3

TV T1
P1

P3

P2

p1 p2 p3 p4 p5

p3

TV T1

C1

Figure 1: Video chunk transmission on
P2P networks. Retransmission of lost
packets is requested to the original
sender.

carry out a lost packet retransmission. In fact, the
retransmission of some packets allows decreasing network
congestion by comparing it with the chunk complete
retransmission or redundancy FEC that must be sent
permanently even if there is no loss in the network.

In current P2P streaming systems, the receiver requests the
retransmission of lost packets from their original sender. This
is the case of TCP and most of retransmission techniques
proposed with UDP [9][11]. This is the peer that sends their
chunks. The receiver chooses the best peer available in the
network according to the selection algorithm used. This peer is
thus the best which may give the chunk at time. However, after
loss detection, it is not necessarily the best sender of
retransmission packets. Indeed, firstly, the processing and
sending capacity of this sender is, on one hand, reduced by
sending others packets belonging to the chunk affected by loss.
On the other hand, the capacity can be reduced by new chunk
requests received by this peer since it was selected. Secondly,
processing and sending capacities of other peers may have
significantly increased. Thirdly, loss rate and delay
characteristics can vary according to the data volume
transmitted. For example, small volumes (only one packet),
often undergo shorter delays than large volume. For these
reasons we propose to request retransmission of lost packets
from the most available peer. It will not necessarily be the
original sender. In this way, the probability of receiving the
retransmitted packets before their chunk display time is
increasing. This is very important in live video streaming
because the receiver watches live video and hence is very
sensitive to the display time. Figure 1 and Figure 2 show such
scenario in which the mechanism proposes in figure 2 is more
efficient than current mechanism. In the scheme represented in
these figures, the peer P2 needs the chunk C1 existing in peers
P1 and P3. Without loss of generality, let us assume that Round
Trip Time (RTT) between P2 and P1 is less than RTT of (P2-
P3), that the upload bandwidth of P3 is greater than that of P1
and the chunk C1 is composed of packets (p1, p2, p3, p4, p5).
Though, P1 is closer to P2, its lower upload bandwidth does
not guarantee the complete reception of C1 before its display
time, noted TV in Figure 1 and 2. Thus, P2 sends its request to
P3. Now, let us assume that the packet p3 is lost during its
transmission between P3 and P2. If P2 requests retransmission
of p3 from P3, C1 will be received completely at instant T1.
However, if T1 is greater than TV display time, C1 will be
considered unusable. However, if P2 sends its retransmission
request to P1 (Figure 2), the probability of receiving the
retransmitted packet at instant T0 smaller than TV, is high.
Indeed, issuing a single packet does not request a large
bandwidth. Thus, our retransmission mechanism can allow the
complete reception of the chunk before its display time, which
improve the quality of the video display.

In practice, several metrics may be used to select the best
retransmission sender RTT, peers bandwidth, etc. The
estimation of these metrics requires the exchange of signaling
messages periodically between peers. These messages may
increase network congestion, and then may contribute to the
packet loss. To limit the control messages overhead, we
propose to select the retransmission sender randomly among
peers having the chunk affected by loss. This retransmission

mechanism presents advantages in terms of flexibility and
robustness. It doesn't imply any constraint on the data coding
neither on network architectures. It does not need new control
messages. The only condition is that the receiver has a list of
peers having the chunk affected by the loss. This is always true
in PULL-based P2P live streaming systems, because the
receiver has this list before requesting initially the chunk. In
consequence, this mechanism works properly with any PULL-
based P2P system. To verify our mechanism effectiveness, we
carried out a set of simulations whose results are presented in
the next section.

IV. PERFORMANCE EVALUATION
Our mechanism is considered efficient if it can improve

video quality in comparison with mechanisms where the
receiver sends its request retransmission of the lost packets to
their original sender, called hereafter "classic mechanism". A
fairly high error rate will be applied. It puts the mechanisms
under conditions that do not allow them to correct all the
losses. Indeed, if we test the two mechanisms in situations
where a correction rate of 100% is assured, it would not be
possible to distinguish them.

 To show our mechanism effectiveness, we carried out,
using OPNET Modeler, a simulator modeling PULL-based
P2P live streaming service. We explain in this following the
chosen transmission algorithms.

To implement classic retransmission mechanism, we have
made the following choices: (1) using peers with highest
upload bandwidth, (2) request the chunks from the closest peer
in term of RTT. The first choice makes, in loss case, the
original sender of the lost packets more available. It has a high
bandwidth, and can therefore answer to many requests (chunk
transmissions or packet retransmissions) without having
congestion problems. In the second choice the use of RTT aims
to reduce as much as possible the packet transmission time.
Applying these two choices, the probability of receiving the
retransmitted packets before their chunk display time, will be
increased. This improves the video quality.

Then, we need to define a chunk location technique. Its aim
is to give to each peer in the system, a set of other peers and the
chunks they have. In classic P2P system, this set is used to
select a sender for a given chunk. This set is also used by our
mechanism to randomly select a retransmission sender. But,
our mechanism does not impose any constraint on the

0

10

20

30

40

50

60

70

10 15 20 25

Neighbor number

C
on

tro
l t

ra
ffi

c
pe

rc
en

ta
ge

 (%
)

Exchange_period = 1 s Exchange_period = 2 s
Exchange_period= 3 s Exchange_period = 4 s

Figure 4: Control traffic percentage in all the system relative to neighbor
number and signaling message exchange period.

0

5

10

15

20

25

30

35

10 15 20 25

Neighbor number

C
hu

nk
 lo

ss
 r

at
e

(%
)

Exchange_period = 1 s Exchange_period = 2 s
Exchange_period = 3 s Exchange_period = 4 s

Figure 3: Chunk loss rate evaluation relative to neighbor number and
signaling messages exchange period.

technique used to build this set of peers and their chunks.
Moreover in any P2P system it always exists. Any chunk
locating technique may be used. We propose to use the
following chunk location technique. When a new peer connects
to the system, it will receive a list of peers watching the video.
These peers are called "Neighbor" and the number of neighbor
is identified by the parameter "Neighbor_number".
Periodically, a peer exchanges with its neighbor peer signaling
messages to get their available chunks. The exchange period is
noted "Exchange_period". This periodic exchange exists in
many P2P systems such as [6][7]. The "Neighbor_number"
must be limited to reduce signaling message overhead and thus
the network congestion. In our simulator, we assign random
neighbors to a new peer among all the peers watching the
video. They will not thus necessarily be next to the first peer in
term of geographic distance or RTT. This choice ensures a load
balance in the network.

"Neighbor_number" and "Exchange_period" are two
important simulation parameters. They may affect the video
quality even if there is no loss in the network. If
"Neighbor_number" is small, the receiver will not have much
choice to select the best sender for a given chunk. The
probability of choosing an unavailable peer will thus be high,
with the risk to hinder the chunk reception and affect the video
quality. Similarly, if "Neighbor_number" is large, the number
of signaling messages exchanged between peers every
"Exchange_period" may generate traffic which may increase
network congestion and hence packets loss. Optimal values of
these two parameters are thus needed to ensure the video
quality. We carried out a series of simulations to find these
values and verify the validity of our algorithms before testing
our retransmission mechanism.

Our simulator consists of 500 peers and a central server
generating a live video. Without lack of generality, the
simulations were performed with a single video since the
videos are independent. The same assumptions are considered
in literatures [9][12]. We used a video of 300 kbit/s, as in [12].
Peers are homogeneous and have no constraint on their
download bandwidth (it is often the case in P2P system, such
as [13]). To respect the choices we discussed above, we
attribute to peers a large upload bandwidth. We chose a value
of 2 Mbit/s. It is very large compared to the video rate. It
allows each peer to serve many requests simultaneously and
ensure proper dissemination of content among peers. This
value is possible on FTTH network, but also on xDSL network.

A.Performance evaluation of the model without packet loss
Performance evaluation without loss of packet allows us to

find the good values for "Neighbor_number" and
"Exchange_period". These values will be used later to test our
retransmission mechanism with packet loss.

The most important metrics to measure are:

 Chunk loss rate: A chunk is considered lost if the
receiver does not receive its all packets before its
display time. To measure this metric, during the
simulation, each peer computes the number of video
chunks to be received and the number of chunks
considered as lost. Using the values computed by all

the system peers, we compute at the end of the
simulation, the lost chunks percentage for all video
chunks during the simulation. This percentage allows
us to know the system loss rate. If it is at 0%, it means
that all peers have received a perfect video.

 Control traffic percentage: This is the percentage of
bytes of the signaling messages in relation to the total
number of data bytes sent by the system peers
(signaling + data). This metric allows us to see if the
control traffic wastes the peer upload bandwidth.

0

1

2

3

4

5

6

7

8

Classic mechanism Our mechanism

C
hu

nk
 lo

ss
 ra

te
 (%

)

Figure 5: Comparison of the retransmission mechanism efficiency.
Chunk sender is chosen relative to RTT.

Figure 3 shows the chunk loss rate relative to
"Exchange_period" and "Neighbor_number". Since that there
is no loss on the network, the reason of chunks loss is due their
late reception. Figure 3 shows that the chunk loss rate
decreases with the number of Neighbor increasing. Indeed, if
the latter increases, the receiver has more choices to select a
best sender for a given chunk. This increases the probability of
finding an available sender, and reduces the probability of
receiving the chunk out of delay.

However, Figure 3 shows that chunk loss rate also varies
according to the "Exchange_period". When the period is larger
or equal to 2 s, we remark that chunk loss rate increases with
the increase of exchange period. The reason is that for a long
exchange period, peers must wait some time before locating the
new chunks in the system. This can delay the chunk requests
and consequently the chunk reception time. The probability of
receiving chunks with a delay will be large. This explains the
existence of chunk loss with a large exchange period. In the
case where exchange period is equal to 1 s, we can remark that
the loss rate is not always 0%. For instance, this is different
from the case where period is 2 s. With this short period,
chunks requests will not be delayed. The reason of the loss in
this case is, therefore, the non-availability of sender peers.
Figure 4 gives us a verification of this fact. It assesses the
control traffic percentage relative to "Neighbor_number" and
"Exchange_period". Remember that each peer must exchange
signaling messages with all its Neighbor at each
"Exchange_period". Thus the control traffic quantity increases,
thus, with the increase of "Neighbor_number". It also increases
if the exchange period is decreased. Figure 4 shows this
percentage variation. If the exchange period is 1 s, control
traffic percentage is high; it is grater then 45%. In this case,
peers send so much traffic control, which makes them less
available to send the chunks. These chunks may be received
out of delay. This explains the presence of loss when the period
is 1 s.

It may be noted that "Neighbor_number" best value is 15
peers, when the "Exchange_period" is 2 s. These two values
allow us to get the best video quality since the chunks loss rate
is 0%. Thus minimizing the control traffic quantity exchanged
between peers. By conducting simulations with these values,
we can ensure that there is no chunk loss due to the algorithms
selected such as the chunk location algorithm.

B.Performance evaluation with packet loss
To show the effectiveness of our mechanism, it is

compared with classic retransmission mechanism.

We have shown in the previous section that our simulation
model can guarantee a perfect video quality, if there is no loss
on the network. To compare the two retransmission
mechanisms, we have introduced on the links a uniform loss
which rate is equal to 10% of transmitted packets. This is a
very high rate compared to real network ones, but we have
selected this value to show our mechanism effectiveness.
Without lack of generality, we assume that signaling messages
are not affected by loss, which could correspond to transport
them by TCP.

Using parameter values deduced from previous paragraph,
we carried out two simulations. In the first, we applied classic
retransmission mechanism and in the second we applied our
mechanism. A retransmission mechanism is considered
efficient, if it ensures retransmitted packet reception before
their chunk display time. In other words, the mechanism is
considered efficient if it minimizes chunk loss rate. Remember
that a chunk is considered lost if one of its packets is affected
by a loss or if one of its packets arrives out of delay in relation
to the display time.

Using the RTT selection parameter, we first measured the
chunks loss rate with the two retransmission mechanisms. The
results are presented in Figure 5. This figure shows that the
chunk loss rate is 6.8% using the classic retransmission
mechanism where our proposed mechanism has minimized
this rate to 0.9%. These results show the effectiveness of our
mechanism since almost 99% of chunks are arrived on time.

According to these results, we can notice that the chunk
original sender is not necessarily the most adapted peer to
make the packet retransmission in loss case. Retransmission
from the original sender has not avoided the late arrival of
chunks. Thus this retransmission mechanism does not
guarantee the video quality. The results show also that the
retransmission from a peer selected randomly among the
neighbors, may improve the video quality since the chunks loss
rate is very low. The proposed retransmission mechanism
increases the probability of selecting an available sender peer
to make retransmission. This increases the probability of
receiving on time the retransmitted packets and hence improves
the video quality.

In Figure 5, the transmission algorithms and simulation
parameters were chosen to model the case where classic
retransmission can work as well as possible. Thus we can
assume that our mechanism will also be effective in any other
case. To verify this assumption, we carried out simulations
comparing the two retransmission mechanisms in another case.
We kept the same simulation parameters and we changed the
selection algorithm of sender peer. Indeed, if this algorithm
ensures the choice of the best peer for a given chunk, then the
retransmission from this peer can increase the probability of
receiving the retransmitted packets before their chunk display
time. Our mechanism shows its efficiency independently of the

0

1

2

3

4

5

6

7

8

Classic mechanism Our mechanism

Ch
un

k
lo

ss
 ra

te
 (%

)

Figure 6: Comparison of the retransmission mechanism efficiency. Chunk
sender is chosen randomly among the neighbors.

used algorithms. In the previous simulations, we have used an
algorithm selecting the sender for a given chunk according to
RTT. In the simulations presented in Figure 6, we used an
algorithm based on randomly selection of this peer among
peers having the chunk. We can remark that applying our
retransmission mechanism, the chunk loss rate is always
reduced in comparison with the classic retransmission. Thus,
we assume that there is no impact of the sender peer selection
algorithm on our retransmission mechanism effectiveness.

V. CONCLUSION
Today, video distribution towards a large number of

receivers is a fundamental need. Appearance of P2P systems
has allowed this need to be answered. Current P2P live
streaming systems have low video quality. The main reason is
the packet loss. This loss is due to the heterogeneous and
dynamic characteristics of peers involved in the system, as well
as the lack of performance guarantees in IP network.

Current P2P live streaming systems do not offer a specific
mechanism to solve packet loss problem. Usual mechanisms do
not take into account the packet recovery time since they are
proposed initially for file transmission. In this paper, we have
proposed a packet retransmission mechanism for PULL-based
P2P live streaming systems. It consists in requesting lost
packets retransmission from a peer randomly selected among
the peers having the chunk, in general, a different peer of the
original sender. We have shown that this increases the
probability of receiving retransmitted packets before their
chunk display time. With our mechanism, we have shown that
the chunk loss rate is reduced to 0.9% improving then the video
quality. The advantage of this retransmission mechanism is that
it does not impose constraints nor on P2P architectures, neither
on data coding. Moreover, this mechanism is independent from
the sender peer selection used algorithm.

REFERENCES

 R. Lobb, C da Silva, A. Leonardi, E. Mellia, and M. Meo, "Adaptive
overlay topology for mesh-based P2P-TV systems", 18th international
Workshop on Network and Operating Systems Support For Digital
Audio and Video, June 2009, pp. 31-36.

 P. Hoong and H. Matsuo, "Push-pull incentive-based P2P live media
streaming system", Wseas Transactions on Communications, Feb. 2008,
pp. 33-42.

 N. Magharei and R. Rejaie, "PRIME: peer-to-peer receiver-driven mesh-
based streaming", IEEE/ACM Transactions on Networking, Aug. 2009,
pp. 1052-1065.

 H. Schulzrinne, S. Casner, R. Frederick, and V. Jacobson, "RFC 3550 -
RTP: A Transport Protocol for Real-Time Applications", IETF standard,
July 2003.

 F. Pianese., J. Keller, and E. Biersack, "PULSE, a flexible P2P live
streaming system", 9th IEEE Global Internet Symposium, 2006, pp. 1-6.

 L. Vu, I. Gupta, J. Liang, and K. Nahrstedt, "Mapping the PPLive
network: Studying the impacts of media streaming on P2P overlays",
Department of Computer Science, University of Illinois at Urbana-
Champaign, Tech. Rep. UIUCDCS-R-2006-275, 2006.

 T. Do, K. Hua, and M. Tantaoui, "P2VoD: providing fault tolerant
video-on-demand streaming in peer-to-peer environment", IEEE
International Conference on Communications, 2004, pp. 1467-1472.

 M. Hefeeda, A. Habib, B. Botev, D. Xu, and B.Bhargava, "PROMISE:
peer-to-peer media streaming using CollectCast", Eleventh ACM
international Conference on Multimedia, 2003, pp. 45-54.

 B. Akabri.; H. Rabiee, and M. Ghanbari, "Packet Loss Recovery
Schemes for Peer-to-Peer Video Streaming", Third International
Conference on Networking and Services (ICNS), IEEE Computer
Society, 2007, pp. 94.

 N. Hegde, F. Mathieu, and D. Perino, "Size Does Matter in Epidemic
Live Streaming", Technical report 7032, INRIA, 2009.

 Y. Jung and Y. Choe, “Channel-adaptive packet scheduler for
retransmission-based peer-to-peer stored-video streaming”, Tenth IEEE
International Symposium on Multimedia, 2008, pp. 390-395.

 M. Zhang, Q. Zhang, L. Sun, and S. Yang, "Understanding the Power of
Pull-Based Streaming Protocol: Can We Do Better?", IEEE Journal on
Selected Areas in Communications, 2007, pp. 1678-1694.

 F. Picconi and L. Massoulie, "Is there a future for mesh-based live video
streaming?", Eighth International Conference on Peer-to-Peer
Computing, 2008, pp. 289-298.

 Z. Xinyan, L Jiangchuan, L. Bo, T. Shing, and Y. Peter,
"CoolStreaming/DONet: A Data-driven Overlay Network for Peer-to-
Peer Live Media Streaming", In IEEE Infocom, 2005, pp.13-17.

 M. Castro, P. Druschel, A. M. Kermarrec, A. Nandi, A. Rowstron, and
A. Singh, "Splitstream: High-bandwidth multicast in cooperative
environments", Nineteenth ACM symposium on Operating systems
principles, 2003, pp. 298-313.

 C. Zhang, H. Jin, D. Deng, S. Yan, Q. Yuan, and Z. Yin, "Anysee:
Multicast-based Peer-to-Peer Media Streaming Service System", Asia-
Pacific Conference on Communications, 2005, pp. 274-278.

 H. Luo, D. Wu, S. Ci, A. Argyriou, and H. Wang, "Quality-Driven TCP
Friendly Rate Control for Real-Time Video Streaming", Global
Telecommunications Conference, 2008, pp. 1-5.

