
HAL Id: hal-01184101
https://hal.science/hal-01184101

Submitted on 12 Aug 2015

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

New Challenges for Future Avionic Architectures.
Pierre Bieber, Frédéric Boniol, Marc Boyer, Eric Noulard, Claire Pagetti

To cite this version:
Pierre Bieber, Frédéric Boniol, Marc Boyer, Eric Noulard, Claire Pagetti. New Challenges for Future
Avionic Architectures.. Aerospace Lab, 2012, 4, p. 1-10. �hal-01184101�

https://hal.science/hal-01184101
https://hal.archives-ouvertes.fr


Issue 4 - May 2012 - New Challenges for Future Avionic Architectures
	 AL04-11	 1

Mastering Complexity

New Challenges for Future 
Avionic Architectures

P. Bieber, F. Boniol, M. Boyer,
E. Noulard, C. Pagetti
(Onera)

E-mail: frederic.boniol@onera.fr

Electronic sets operated on aircraft are usually summarized as “avionic architec-
tures” (for “aviation electronic architecture”). Since the 70s, avionic architectures, 

composed of digital processing modules and communication buses, are supporting 
more and more avionic applications such as flight control, flight management, etc. 
Hence, avionic architectures have become a central component of an aircraft. They 
have to ensure a large variety of important requirements: safety, robustness to equip-
ment failures, determinism, and real-time. 

In response to these requirements, aircraft manufacturers have proposed several solu-
tions. This article has a twin objectives: firstly to survey the state of the art of existing 
avionic architectures, including the IMA (for Integrated Modular Avionic) architecture of 
the most recent aircraft; and secondly to discuss two challenges for the next genera-
tion of avionic architectures: reconfiguration capabilities, and integrating COTS proces-
sing equipment such as multi-core processors. We believe that these two challenges 
will be central to the next generation of IMA architectures (called IMA-2G for IMA 2d 
generation).

Introduction

Aerospace systems

Avionic systems represent a growing part of aircraft costs: 35 to 
40% in civil aircraft, and more than 50% in military aircraft. These 
systems are responsible for various applications, such as naviga-
tion, guidance, stability, fuel management, air/ground communica-
tions, passenger entertainment, etc. Their complexity is continuously 
growing (more and more functions to integrate, the aircraft becomes 
a real information system). In parallel, communication and informa-
tion management technologies are evolving and new solutions for avi-
onics are being invented. The implementation of the avionic systems 
of modern civil (B787, A350) and military (Rafale, Gripen, A400M, 
etc.) aircraft tends to rely on an IMA (for Integrated Modular Avionic) 
architecture instead of the more classical federated architecture. In a 
federated architecture, each system has private avionic resources, 
whereas in an IMA architecture avionic resources can be shared by 
several systems. The types of avionic resources that are generally 

considered are computers with real-time operating systems or local 
area network with real-time communication protocols.

An important consequence of the emergence of IMA in aerospace 
architectures is to allow development of x-by-wire1  distributed appli-
cations, composed of a great deal of equipment (sensors, actuators, 
physical devices, software modules, memory modules, etc.) suppor-
ted by the IMA platform. That leads to more and more complex sys-
tems, which are becoming increasingly difficult to validate.

Aerospace systems requirements

Aerospace systems are often characterized by two properties. Firstly, 
they are an information processing subsystem of their embedding 
systems, i.e., the aircraft. Second, they are reactive, i.e., they interact 
with their physical environment (e.g., the crew, the physical devices, 
etc.) at a speed imposed by the environment. Consequently, they 
have to meet a wide variety of constraints imposed by the embedding 
system and by the environment.

1 x-by-wire is a generic term used to describe control systems that depend on a real-time communication network to connect different electronic components. Historically, these 
control systems relied on mechanical or hydraulic linkages, and the goal of x-by-wire is to replace nearly every automotive hydraulic/mechanical system with ultra dependable 
electronic systems. The “x” in “x-by-wire” denotes any safety-related application, such as steering, braking, flight control.



Issue 4 - May 2012 - New Challenges for Future Avionic Architectures
	 AL04-11	 2

	 •Safety constraints: by nature avionic systems may cause 
severe damage if they malfunction. This possibility is dramatically 
increasing with the emergence of x-by-wire technologies, where 
critical applications (guidance and stability for instance) are totally 
managed by software modules. It is therefore of great importance to 
guarantee that such a system works correctly in all situations. For 
instance, let’s consider a landing gear control system. The system 
is in charge of maneuvering landing gears and associated doors 
by controlling a set of physical devices, such as hydraulic jacks. 
Obviously, this system has to satisfy a list of requirements, such 
as “if the landing gear command button has been down for a given 
amount of time t, then the gears will be down in less than t time 
units”. These properties characterize a real-time behavior of the 
control software together with the communication network between 
software modules and equipments. Due to the critical nature of the 
system it is necessary to guarantee that, whatever the behavior of 
the rest of the system (i.e., other applications), the right orders are 
sent at the right time to the right actuators (hydraulic jacks, gears, 
doors, etc.).
	 •Dependability constraints: by nature, embedded equipment 
may fail (with a given probability). Obviously, catastrophic failures 
are not acceptable at run time above a given probability level. It is 
therefore necessary to ensure that the system continues to work 
well (possibly in a degraded mode) even in the event of equipment 
failure. 
	 •Real-time constraints are of great importance when dealing 
with x-by-wire dynamic systems. The total time delay is important for 
stability and performance of closed loop control of the flight control 
system, the automatic pilot system, the flight management system, 
the braking system, etc. The time lag between data input and the 
corresponding output (orders to actuators for instance) are due to (a) 
computing, (b) communication latency through the “wires” (i.e., the 
buses, the communication switches...), and (c) storage time. Typical-
ly, the inputs are pre-processed before being used in the main com-
putational cycle, and the output will be post-processed after being 
computed. The pre- and post-processing may involve unit conver-
sion, reasonableness checks, comparison with input from other com-
puters (voting, etc.), and integrity checks on the communication links. 
In the IMA context, this pre- and post-processing are supported by 
shared computing resources. Similarly, the main computational cycle 
may involve several software modules running concurrently on IMA-
shared resources and managed by real-time scheduling policies. Due 
to resources sharing, the time required for these activities may vary 
but could increase the effective lag between input and output orders 
above the value corresponding to the specified iteration rate. That 
could impact the performance of the closed loop control system, and 
consequently the stability of the aircraft. Guaranteeing and verifying 
real-time constraints are major tasks when designing and validating 
aerospace systems.

Safety, dependability and real-time constraints have a direct impact 
on architecture design at aircraft and system level, and on the valida-
tion/certification process. Hence, aircraft manufacturers have to show 
compliance with international regulations using means that have been 
accepted by the certification authorities. This includes showing that 
safety requirements are enforced, establishing the predictability of 
communication and computing real-time performances and deve-
loping software and hardware according to strict development gui-
delines. This context makes designing and verifying aerospace sys-
tems, and particularly avionic architecture, a substantially different 
and more difficult task than for classical systems and software.

In response to this difficulty, aerospace researchers and engineers 
have developed two successive families of avionic architectures: 
federated architectures and IMA architectures.

Brief history: from federated architectures to IMA

From federated architectures…

The first avionic devices to be embedded in aircraft were radios for 
communication and navigation in the 1940s. Since this period, analog 
and digital electronic controllers began to replace mechanical aircraft 
functions and equipment. One of the most popular examples of digital 
embedded systems is the flight control system (FCS), automatically 
controlling the trajectory of the aircraft according to the pilot’s naviga-
tion orders. Until the 1990s the global architecture of the avionic sys-
tem (including the FCS) was designed in accordance with the “federa-
ted architecture” principle: “one function = one computer”. Figure 1 
depicts an example of a federated architecture: the architecture of 
the A340 FCS. This system is composed of several software func-
tions (FCPC, FCSC, etc.). Each function runs on a dedicated resource 
connected to its dedicated sensors and actuators. In other words, 
each function owns its dedicated equipment, including computing 
resources, sensors and actuators. Consequently, each function + 
resources set could be considered as a standalone subsystem. The 
main advantage of this so-called federated architecture is that it has 
quite limited resource sharing, and the dependencies between sub-
systems were well understood. 

Up to the end of the 1990s, most of the civil aircraft, including the 
Airbus family A320, A330 and A340, were based on the federated 
architecture principle. However, since the 1990s, the airlines want 
more and smarter functionality, such as precise flight management 
capabilities, on board maintenance systems, larger entertainment 
systems for passengers, etc. The concept “one function = one dedi-
cated subsystem” could no longer be maintained. The concept met 
its natural limit when the weight and volume of the dedicated subsys-
tems hit the envelope restrictions of the aircraft. Another drawback 
became obvious: the huge number of different resources significantly 
increased the maintenance costs for airlines in terms of worldwide 
computer spares provisioning and handling. So a new approach was 
needed.

Figure 1. Example of a federated architecture: the A340 Flight Control System 
architecture



Issue 4 - May 2012 - New Challenges for Future Avionic Architectures
	 AL04-11	 3

… to IMA-1G architectures

This new approach, called IMA (Integrated Modular Avionics), is 
based on two complementary principles. The first principle is to in-
tegrate multiple software functions with possibly different criticality 
levels on single avionic computing resources in order to keep the 
weight, volume and cost of the avionic architecture within reaso-
nable limits. However, due to resource sharing, this first idea leads 
to side-effects and non-functional dependencies between avionic ap-
plications. Troubleshooting and modifications become very difficult. 
Moreover, proving that the system behaves safely requires knowledge 
of the whole system. It cannot be done in an incremental way function 
by function, as in previous federated architectures, and design and 
the certification process become a nightmare. 

So a second principle is needed to simplify the design process and re-
ceive certification: strict and robust partitioning, i.e. a set of principles 
implemented by hardware and software means (such as middleware) 
which prevent interference between functions, exactly as if each func-
tion runs on its own virtual resources with guaranteed performances 
whatever the behavior of other functions. 

IMA-1G (for IMA first generation, developed and certified for A380 
and B787) is based on these two principles.

IMA-1G: description and main principles

Resource sharing and robust partitioning are the central ideas of the IMA 
concept. They are based on two standards: ARINC 653 [1] which defines 
partitioning principles in processing modules, and ARINC 664 [2] which 
defines partitioning principles for communications between functions.

Processing module partitioning

ARINC 653 specifies the management of avionic applications on 
common processing modules. As has already been explained, an avi-
onic application is composed of several software functions running 
on different processing modules. According to ARINC 653 principles, 
functions from different applications resident in a processing module 
are partitioned with respect to space (resources partitioning) and time 
(temporal partitioning).
 	 •Resources partitioning 
Each partition is allocated a set of spatial resources (memory, non-
volatile memory, I/O resources, etc.) in a static manner, that is to 
say that the module integrator has the task of assigning maximum 
allowed resources to each partition while respecting space segre-
gation between them. Low-level mechanisms (at operating system 
level) provide protection for partition data against any modification 
from the other partitions. They monitor function activity with reference 
to allowed resources which are statically allocated through configu-
ration tables. 
	 • Temporal partitioning
 The scheduling of functions on each module is defined off-line by a 
periodic sequence of slots statically organized in a time-frame named 
the MAjor time Frame (MAF). Each function is allocated a time slot 
for execution. At the end of this time slot the partition is suspended 
and execution is given to another function (from another application). 
Thus, each function periodically executes at fixed times.

Functions become in this manner totally independent, where faulty 
ones can be isolated without affecting much of the system integrity.

Communication resources partitioning

Arinc 664 describes the management of communication resources 
(i.e., the communication network). Communication flows are stati-
cally segregated into Virtual Links (VL). Each VL is dedicated to a 
single function and implements a traffic shaper. It is characterized by 
a Bandwidth Allocation Gap (BAG), i.e., the minimal time interval se-
parating two successive messages on the VL. This principle has been 
implemented in the Avionics Full Duplex Ethernet (AFDX) architecture. 
AFDX constitutes one of the major technological breakthroughs in the 
avionics of the A380. In effect, and for the first time for such an air-
craft category, the avionic system is based on a redundant and reliable 
Ethernet network. Key criteria for the choice of AFDX technology were 
avionic-specific constraints (security, temporal problems), the arrival of 
Ethernet switching and the size of the computer market. The final choice 
is therefore the switched Ethernet (full-duplex mode). The AFDX stan-
dard defines the electrical and protocol specifications for the exchange 
of data between Avionics Subsystems. One thousand times faster than 
its predecessor in the old federated architectures: the ARINC 429 bus.

A typical IMA platform is described in figure 2. Its hardware architec-
ture consists of a set of computing processing modules (called CPM) 
that are connected to ARINC664 communication switches. CPM are 
grouped into clusters so that all the CPM in a cluster are connected 
to the same communication switch. Avionics applications (labeled A1 
to A3 on CPM1, B1 to B3 on CPM2, etc.) are hosted in the partitions 
running on the computing modules. Data flows exchanged by applica-
tions hosted on different computing modules are transmitted through 
communication switch paths that connect the two computing modules.

Figure 2. Typical IMA-1G architecture

The two standards ARINC 653 and ARINC 664 globally define the 
IMA concept that has been implemented in the Airbus A380 and the 
Boeing B787 for instance.

IMA-1G: benefits and impacts 

Several benefits and impacts of IMA are discussed in [12]. The bene-
fits are mainly weight and power consumption reduction. However, 
new difficulties arise: understanding and side-effects and dependen-
cies between applications due to resource sharing.
 
Weight and power consumption reduction

Since IMA makes use of shared computing resources, the circuitry 
that once was contained within each federated resource (dedicated 

A1 A2 A3 B1 B2 C3

C1 C2 C3

D1 D2 D3

E1 E2 E3 F1 F2 F3

G1 G2 G3 H1 H2 H3

I1 I2 I3

J1 J2 J3

K1 K2 K3L1 L2 L3

Switch 1 Switch 3

Switch 2 Switch 4

CP
M

 1
1

CP
M

 1
0

CP
M

 9

CP
M

 1
2

CP
M

 8

CP
M

 7

CP
M

 6

CP
M

 5
CP

M
 4

CP
M

 3

CP
M

 2

CP
M

 1

ARINC663 OS

ARINC 664

Communication Network

ARINC663 OS

ARINC663 OS

ARINC663 OS

ARINC663 OS ARINC663 OS ARINC663 OS ARINC663 OS

ARINC663 OS

ARINC663 OS

ARINC663 OS ARINC663 OS



Issue 4 - May 2012 - New Challenges for Future Avionic Architectures
	 AL04-11	 4

to a given function) is now contained within a common IMA plat-
form. For instance, computing processors that were duplicated in the 
federated case for fault-tolerance are replaced by a common set of 
IMA processors (and the associated infrastructure such as power, 
cooling, and redundancy mechanisms). Similarly, dedicated commu-
nication links are replaced with common communication channels 
(and the associated wiring). And finally, dedicated I/O interfaces are 
replaced by common I/O interfaces (and the associated wiring).

Globally, IMA results in a reduction in the required physical resources. 
Reduced physical resources translate to global weight and power 
savings for the aircraft. For instance, the number of processing units 
in the A380 is half that of previous generations. Reductions in airline 
operating costs are expected to be significant, with the decrease in 
the number of computers and cables (for power supply or communi-
cation) contributing to a reduction of aircraft weight leading to better 
fuel consumption efficiency. In the same way, fewer types of equip-
ment will mean the airline has to buy and store fewer types of spare 
parts, which should lead to savings in maintenance costs.

Side-effects and dependencies between applications

The IMA architecture has a considerable impact on system deve-
lopment, as it is no longer possible to develop a system or a sub-
system without considering its dependencies due to resource sha-
ring with other systems. Of course, in federated avionic systems, 
functional dependencies between applications must be identified 
and taken into account. For instance, several aircraft applications, 
such as flight controls, depend on the navigation system or on the 
radioaltimeter system for altitude data. Hence, the impact of the 
loss of navigation or radioaltimeter data is taken into account when 
developing the flight control system. But resource sharing adds new 
indirect dependencies, similar to side-effects, between systems or 
subsystems. With regard to system safety, shared resources might 
cause common-cause failures. In the same way, resource sharing 
might cause unpredictable (or at least difficult to predict) overloads, 
implying delays and possibly a missed deadline or loss of infor-
mation at run time. Let’s consider the example of navigation data, 
produced by the navigation function for the flight control system. 
Assume that navigation data is allocated to a communication bus 
that is also in charge of transmitting diagnostic and maintenance 
information. It could then happen that, if a failure occurs somewhere 
in the aircraft (even on a non-critical equipment), the alarm and 
maintenance information overloads the communication network, 
leading to delays or to the navigation data not being transmitted. 
Such a scenario might lead to a catastrophic situation, although the 
initial single failure is of minor importance. 

More generally, multiplexing all avionics communication flows on 
standard COTS communication resources would not have maintai-
ned the guarantees (in terms of guaranteed bandwidth, segregation, 
determinism) provided by dedicated avionic buses (like the ARINC 
429 standard used in the federated architectures). For instance, traffic 
confluence inside Ethernet switches lead to variable latency. Hence, 
without any further assumption on a limitation of the communication 
flows, the occupation rate of each output port of each communica-
tion resource in the network is not predictable. Therefore, end-to-end 
latencies through the network are not predictable.

The second important benefit of the AFDX architecture is that, if func-
tions are statically allocated in modules and if all functions respect 
their communication contract (i.e. the bandwidth allocation gap asso-
ciated with each virtual link), then it is possible to mathematically 
prove that
	 • no message is lost during the communication (i.e. no queue 
will overflow), 
	 • the end-to-end delay of any message is bounded, and it is pos-
sible to evaluate an over-approximation of this bound.

These assertions do not guarantee absolute behavior determinism, 
but only a weaker form of determinism, which is sufficient to bring the 
guaranteed service required by essential avionics systems. Moreover, 
a “last but not least” benefit is that the certification process of the IMA 
communication network is (partly) based on this mathematical proof. 
This proof is based on the network calculus theory [10] (see also 
Chap. 15 of [18]). Network calculus is a recent analytic technique de-
dicated to switched communication networks. Input and output flows 
of the network are defined by positive increasing functions. Each node 
in the network (the switches) is then defined by its service curve [8]. 
Informally, the service curve determines the quantity of information, 
which may have been served until a given duration. Such a theory 
allows the formal determination of upper bounds, such as queue 
capacity required in each switch, and global maximum response time 
needed for each flow to cross the network. Network calculus has 
been used for certification of the A380 avionic network, and is now 
integrated in the Airbus network development process.

Next steps: two new challenges for IMA architectures

Towards reconfiguration capabilities

As explained above, IMA architectures have been defined to design 
avionics platforms that share communication and computation re-
sources according to the two standards ARINC 653 and ARINC 664; 
these two standards impose static and fixed allocations. However, it 
could be interesting, in the event of a hardware failure for example, 
to be able to reconfigure the system, which means reallocating func-
tions to safe modules. To meet this objective, the next generation of 
IMA platforms are to include reconfiguration capabilities in order to 
limit the effect of hardware failures on aircraft operational reliability. 
Such a reconfiguration capability is one of the next great challenges 
for avionic architectures.
 
Onera, in collaboration with Thales and Airbus, has explored the 
reconfiguration issue for IMA architectures in the European SCAR-
LETT project 2. The solution proposed for introducing reconfiguration 
capabilities in the next generations of IMA architectures is developed 
in section 3.

Towards high performance IMA architectures

The last decade has seen the emergence of multicore and manycore 
architectures, i.e. chips integrating several cores. These architec-
tures are replacing the “old” monocore processors in all commer-
cial domains, including avionics. The integration of monocore pro-
cessing modules in IMA architectures is becoming more and more 
expensive because of the ongoing scarcity of these components. 

2 http://www.scarlettproject.eu/, point of contact: didier.hainaut@fr.thalesgroup.com



Issue 4 - May 2012 - New Challenges for Future Avionic Architectures
	 AL04-11	 5

As a consequence, multi and manycore processors will be unavoi-
dable in the next IMA-2G architecture.

They also offer promising opportunities for airframers due to their high 
level of computing power. The use of more flexible and lighter struc-
tures, for instance, means embedding far more complex flight control 
systems needing short response times and huge computations. It is 
expected that suitably controlled multi or manycore systems will pro-
vide the appropriate increase in computation power needed by these 
complex applications, paving the way towards greener aircraft by 
reducing aircraft structure weights.

However, embedding multi or manycore architectures is a real chal-
lenge because they make it hard to ensure time predictability due to 
intensive resource sharing and because they do not satisfy the same 
fault model as monoprocessors. 

Onera, in collaboration with Thales and Airbus, has explored this chal-
lenge. A first solution has been proposed for embedding predictable 
multicore architectures in avionic systems. This first step towards high 
performance IMA architectures is discussed in § "Second challenge".

First challenge: towards a reconfigurable architecture

Objectives and main ideas

Reconfigurable IMA should be able to change the configuration of the 
platform by moving applications hosted on a faulty computing module 
to spare computing modules. 

               
(a) Initial configuration                         (b) Configuration after losing module M1
Figure 3. Reconfiguration example

Let’s look at the notion of reconfigurable IMA with a simple example: 
the platform is composed of five modules (M1…, M5) and two commu-
nication switches (S1, S2). The initial configuration is drawn in figure 
3(a): module M5 is a spare initially shut down and free of application 
(in white in the picture). If some failure occurs on module M1 then the 
applications initially hosted on this module can be reconfigured on the 
spare M5, and all communications from and to M1 (VL1, VL2) have to 
be rerouted according to this new allocation. The configuration obtained 
is shown in figure 3(b) (reallocations are shown in red).

The main goals to be achieved by the reconfigurable IMA platform 
are to:
	 • Improve the operational reliability of the aircraft while preser-
ving current levels of safety;
	 • Avoid unscheduled maintenance and associated costs;
	 • Limit the impact of reconfiguration on certification practices 
and effort. 

Aircraft systems have to enforce stringent safety requirements that 
address the effects of failures on the life of passengers. To satisfy 
these requirements a minimum level of redundancy is associated with 
an application on the basis of the severity of the effects of its loss. 

For instance, three occurrences of an application managing cabin air 
pressure would be required because loss of cabin pressurization is 
catastrophic whereas no occurrence of an application managing in-
flight entertainment is required, as it is considered as a comfort appli-
cation the loss of which has no safety effects.

Operational reliability addresses the effect of failures on economi-
cal aspects of flight operations. One source of improvement is to 
decrease the number of flight delays or cancellations caused by 
faulty computing modules. Before each flight, the health status of 
all equipments is assessed in order to check whether for all appli-
cations the correct level of redundancy is available. If this is not the 
case the aircraft cannot be used (NOGO). It should be possible to 
restore the minimum level of redundancy by moving the applications 
running on the faulty module to a non-faulty one. This should also 
help to defer maintenance operations until the aircraft has reached 
an appropriate location.

Reconfiguration constraints and principles: a first proposal

According to the IMA standards, several functions are available in 
order to manage the platform, they include a:
	 • Data-Loading function that stores all the application software 
and loads the application software in accordance with the allocation 
of applications onto the computing modules;
	 • Monitoring and Fault Detection function that constantly receives 
information about the health of the hardware components and is able 
to detect that a component is faulty;
	 • Power Supply Management function that is able to switch on 
and off the power supply of the various hardware components of the 
platform.

For reconfigurability purposes, a new function, called the Reconfi-
guration Supervisor (supervisor for short), needs to be embedded 
in the aircraft. The role of the supervisor consists in determining 
when a reconfiguration can occur and in performing a “correct by 
construction” modification of configurations in order to reach a 
better and safe state. The supervisor behavior is described by the 
following:

1 - Triggering a reconfiguration

When a computing module fails, a reconfiguration can be launched 
if this failure has an operational reliability impact, meaning that the 
aircraft becomes NOGO. The Monitoring and Fault detection function 
detects a NOGO module failure and sends this event to the super-
visor. First, the supervisor applies usual maintenance procedure to 
check that the failure cannot be repaired by a simple reset of the 
module. For this it interacts with the Power Supply Management and 
the Monitoring and Fault detection to check if the reset has repaired 
the module. If the reset works then the module restarts the hosted 
avionics applications and the failure is corrected; otherwise the super-
visor performs the next steps.

2 - Selection of a correct configuration

When the failure is confirmed the supervisor must determine the cur-
rent state of the platform in order to select the next configuration. The 
sorting takes into account the side-effect on aircraft and the duration 
of the reconfiguration execution. The selection process is the fol-
lowing:



Issue 4 - May 2012 - New Challenges for Future Avionic Architectures
	 AL04-11	 6

	 • Set of configurations
We note Application the set of applications hosted by the plat-
form, Cluster the set of clusters of the platform, Basic_Module 
(resp. Spare_Module) the set of modules (resp. spare modules) in 
a cluster and Basic_Partition (resp. Spare_Partition) the set of 
partitions (resp. spare partition) running on a module. Let us denote 
bm=|Basic_Module|, sm=|Spare_Module|, c=|Cluster|, 
f=|Application|, bp=|Basic_Partition| and sp=|Spare_Par-
tition|.

Definition 1 (Configuration)
A configuration is an allocation of avionics applications on computing 
elements and it is represented by a function 

Conf: Application → Computing_Element

where the set Computing_Element is defined by Cluster × (Basic_
Module ∪ Spare_Module) × (Basic_Partition ∪ Spare_Partition).

For module level reconfiguration, the identifier of the partition for 
an application remains unchanged wherever the application is 
allocated. Therefore, we can optimize the set to be Computing_
Element=Basic_Module ∪ Spare_Module. In figure 1, avionics 
application A1 is allocated in its initial partition on the first module of 
the first cluster. Thus Conf(A1)=(1,1,1). For module level reconfi-
guration, there are exactly (c(bm+sm))f configurations. This corres-
ponds to the number of integer functions [1,f]→[1,c(bm+sm)]. For 
partition level reconfiguration, there are exactly

( ( )( )
( ( )( ))!

( ( )( ) )!
f
c bm sm bp sp

c bm sm bp spA c bm sm bp sp f+ +
+ += + + −

configurations. This corresponds to the number of injective integer 
functions [1,f]→[1,c×(bm+sm)×(bp+sp)]. All these configurations 
are known at design time. Note that we only consider nominal confi-
gurations and not degraded ones where an avionics application may 
not be allocated because there are not enough fail-free computing 
elements. The sequences of possible reconfigurations starting from 
an initial configuration can then be represented by a directed acyclic 
graph.
	 • Reconfiguration policy
The reconfiguration policy defines generic rules to be followed. It is 
chosen off-line and impacts the on-line selection process of the next 

configuration. For instance, we can decide that there is no priority 
among avionics applications and then, once a spare has been occu-
pied, no other application can be hosted on this spare. Or we could 
associate a priority level with the applications and then a reconfigured 
application can be removed to leave the spare to a failed application 
with higher priority level. Another rule can give an order on the spares. 
The policy would then consist in reallocating on the first spare if it is 
available, otherwise on the second if this one is available and so on.

Let us consider the architecture f=2, c=1, bm=2, sm=2 where a 
module can host at most one application. For a module level reconfi-
guration we obtain several directed acyclic graphs of reconfigurations 
depending of the policy. For any of these graphs a node corresponds 
to a configuration, which is a list of pairs (number of application, 
number of hosting module). Below are shown the graphs associated 
with two policies that both order spare modules:
     
On the first graph (figure 4(a)), spares are not reconfigured, meaning 
that if a spare fails then hosted applications are lost. While on the se-
cond graph (figure 4(b)) they can be reallocated. For instance, transi-
tion (g) corresponds to a reconfiguration consecutive to the failure of 
the spare module 3. Reconfiguration graphs are different. Transitions 
(g) and (h) are missing on the left side graph because, according to 
this policy, when application 1 is running on spare 3 and this spare 
fails it is not possible to move 1 to spare 4.

	 • Resource and real-Time constraints
A configuration is safe if it satisfies some constraints. For instance, 
an application can be hosted on a module only if it provides adequate 
resources for the application such as processing power or memory. 
There are other kinds of constraints, such as segregation, that are 
described in [14].

A transition is safe if the intermediate steps are safe (they do not impact 
the integrity of the aircraft) and the duration of the transition is bounded 
by an appropriate value. The transition from one configuration to another 
is done by applying several basic procedures. All such elementary pro-
cedures are stored in some repository associated with a WCET (worst 
case execution time). For instance, data-loading a complete module is an 
elementary step and always takes less than a bounded amount of time, 
which is computed off-line. Globally, major reconfigurations done on the 
ground during two consecutive flights must take less than 15 minutes in 

	 (a) First policy: without spare reallocation                     	 (b) Second policy: with spare reallocation
	 Figure 4. Examples of reconfiguration graphs



Issue 4 - May 2012 - New Challenges for Future Avionic Architectures
	 AL04-11	 7

order to limit the flight delay. Minor reconfigurations done in-flight must 
complete more quickly according to the real-time requirements of the 
functions to reconfigure (generally less than several milliseconds).

	 • Continuity of service
When a module fails, the other avionics applications should not be impac-
ted by a reconfiguration. In the case of partition level reconfiguration, the 
interactions between the supervisor and modules involved in the current 
reconfiguration must be transparent for the other partitions. For instance, 
data-loading and initialization must be realized during the partition time. In 
the case of distant reconfiguration, the routing of the impacted switches 
must be modified while ensuring the continuity of the remaining traffic.

3 - Reconfiguration execution

If a correct transition, with respect to the avionics constraints and the 
reconfiguration policy, has been found, the reconfiguration is perfor-
med. Basically, a reconfiguration is broken down into elementary steps: 
power up a spare module or a spare partition on a running module, 
test that the spare is fail-free and load the time application sequencing 
(at module level), data-load the code and initialize the partitions on the 
spare (during predetermined time slots for partition level), then verifica-
tion by Monitoring and Fault detection that the spares are working cor-
rectly. A notification and report are sent to the maintenance terminals.

The sequence execution should be transactional and secure, i.e. the 
sequence should entirely succeed or totally fail. For this purpose, 
each step is acknowledged (succeeded, failed, not performed). Any 
step can be aborted without a side-effect on aircraft safety, perfor-
mance and security. For instance, an access to an already allocated 
memory must be refused by Monitoring and Fault detection.

Discussion: mid-term and long-term perspectives

About the certification issue

Certification practices require safety assessments and showing real-
time predictability for all configurations of a system. Two approaches 
can be considered. The first one consists in validating all the possible 
configurations. Currently, in an IMA-1G platform there is a unique confi-
guration, which is completely certified. Because of the large number 
of reachable configurations (for c=4, bm=5, sm=1 there are 1296 
configurations for local reconfiguration and 146001 for distant reconfi-
gurations) the certification of an IMA-2G process must evolve in order 
to certify a family of configurations. Model based safety assessment, 
as described in [14], should be able to cope with the large number of 
reconfigurations. For real-time performance predictability it should be 
possible to consider that a local module reconfiguration in a cluster has 
no impact on performance.

A second approach could consist in certification of the tools used 
and the process followed for the generation of the configurations. This 
second approach is independent with the number of possible configu-
rations, provided that the generation process is mainly automatic. This 
second method has not been explored by the recent work. However, it 
could be a promising alternative for the certification issue.

First lessons and next issues

The reconfiguration objectives explored by this preliminary work have 
the aim of enhancing the operational reliability of the aircraft. This is 

a different goal from the reconfigurable avionic systems proposed in 
the literature [15,11,16,9,3] where reconfiguration is one means to 
achieving fault tolerance. Similarly, the classic FDIR (Failure Detection 
Isolation and Recovery) procedure used in most space systems uses 
dynamic reconfiguration during the recovery phase. In those cases 
the system is statically configured with a set of may-be-redundant 
(but specialized) equipment which may be powered off/on when fai-
lure occurs. In the SCARLETT project we aim at configuring generic 
resources, i.e. IMA modules, with uploadable software functions.

However, even if our primary objectives are different, the methodo-
logy, the software and/or hardware architecture design [15,9,11] are 
helping us toward our goals:
	 • The steps of reconfiguration process are usually the same (er-
ror diagnostic, select new configuration, apply configuration, etc.)
	 • The widespread idea of precomputed and identified configura-
tion as a means to certifying configuration seems appealing,
	 • The need for timing constraint considerations in the reconfigu-
ration process for real-time application. Furthermore, the reconfigura-
tion principles presented in the ASAAC standard (see [3]) for military 
aircraft IMA will be of particular interest if we want to explore the 
distributed implementation of the reconfiguration supervisor.

Mid-term perspectives would be the implementation of an on-the-
ground module and partition level reconfiguration. We also plan to detail 
the analysis of the proposed solution in terms of operational reliability, 
safety and certification. A longer-term perspective is to study other sce-
narios including in flight reconfiguration and reconfiguration for safety.

Second challenge: integrating high performance pro-
cessors for time critical functions

Multicore architectures have reached the embedded systems market 
quite recently. They feature high integration and a good performance-
per-watt ratio thanks to resource sharing between cores. Standard 
multicore include 2 to 8 cores on the chip. Cores usually have one or 
two levels of private instruction and data caches and share an additio-
nal level, as well as a common bus to the main memory. Such archi-
tectures often implement hardware cache coherency schemes that 
allow running parallel applications designed under the very conve-
nient shared memory programming model.

Unfortunately, resource sharing makes the timing analysis of critical 
software very complex if not infeasible. This is due to the difficulty 
of taking all the possible inter-task conflicts into account, in particu-
lar when the cache coherency controller generates implicit commu-
nications. For these reasons we believe that multicore processors 
will be difficult to use for the design of safety critical systems.

On the other hand, many-core architectures limit resource sharing 
and favor explicit communications between cores. Many-core chips 
include numerous cores (more than 16) with distributed memories 
(so the conflicts are limited) and a complex communication network 
based on a network-on-a-chip (NoC) technology. They do not feature 
hardware cache coherency and the inter-core communications must 
be explicit, either to implement software-controlled cache coherency 
or the message-passing model.

We are convinced that such features are more suitable for safety 
critical systems in the sense that inter-core communications are 



Issue 4 - May 2012 - New Challenges for Future Avionic Architectures
	 AL04-11	 8

software-managed and thus more predictable. However, conflicts on 
the network still may occur due to implicit accesses of the main memo-
ry on cache misses and must be considered when performing timing 
analysis.

The challenges

Many-core platforms involve several non predictable mechanisms for 
managing the resource sharing which make it hard to ensure time predic-
tability. Most of the works in the literature on many-core architectures are 
concerned with high performance: the idea is to extend and adapt current 
operating systems to the new architectural organization [6,17,13]. The 
main concern of an embedded system designer is somehow different: 
he/she wants to determine the worst-case behaviors in order to verify that 
the hard real-time requirements are always met, rather than to study the 
average performance. Three challenges arise.

First challenge: processing timing analysis

The first requirement for implementing a safety critical system on 
a platform is the ability to determine the worst-case execution time 
(WCET) for any task. The possible interactions and resource conten-
tions due to the task concurrency must be taken into account. The 
widespread method based on measuring the execution time of a func-
tion on the target has been demonstrated to be generally speaking 
unsafe. The preferred approach is static timing analysis based on 
modeling techniques, which determines a safe upper bound for the 
WCET [4]. However, this approach is not yet suitable for many-core 
architectures. Improving this approach for many-core platforms and 
for time critical applications is the first next challenge to solve for inte-
grating high performance processors in avionic architectures. 

Second challenge: communication timing analysis

Knowledge of the timing behaviors of the accesses on the internal 
network is fundamental. The user must determine at what time an 
access is made, where and when a message crosses the network or 
memory components. The algorithms to compute communication time 
bounds are, of course, dependent of the communication technology. 
And this technology has dramatically changed moving from monopro-
cessor to many-core systems. As the number of components on a chip 
was low, the medium was a simple bus. In that case, only one device 
can drive the medium at a time, with a bus arbiter and an arbitration 
policy (such as round-robin, static priority or TDMA). But with the ma-
ny-core generation the communication architecture has been enriched 
to allow a routing network, leading to the so-called networks-on-chip 
(NoC). In that case, there are links and switches, using either packet-
oriented switching (store and forward), circuit-oriented switching (cut-
through), or some intermediate policy (like the wormhole).

Most of the research on worst-case communication time have been 
made for external networks and bus [7]. These results are expected 
to be reusable for the many-core internal network.

Third challenge: memory access timing analysis

The last components that are difficult to predict are the memory 
controller and the memory. A RAM is a 3-dimensional storage com-
ponent organized in banks, rows (or memory pages) and columns. 
An access (a read or a write) refers to a reference (num bank, num 
row, num column). The memory controller sends the command to the 

memory, it can ask for an activation which consists in storing a row 
in a buffer, a read or a write on an opened row, or a precharge which 
consists in saving and closing a row. All these commands require 
some timings. The memory response for a read also takes some time. 
The memory controller FIFO can sometimes reorder the references. To 
be able to predict worst case Memory access time for IMA many-core 
modules with several avionic applications becomes a real challenge. 

A first solution for improving many-core predictability in avionic 
architectures: time oriented approaches

Any critical systems designer has to cope with these problems and 
has mainly two approaches to safely embed a many-core architec-
ture. The first involves designing specific predictable processor archi-
tectures. In this way it is possible to greatly improve worst-case ana-
lyses. The cost of such specific hardware developments may often 
prevent their use and may force the designer to rely on a COTS. The 
second approach is therefore to apply an execution model: the idea 
is to define some rules that constrain and reduce the number of non 
predictable behaviors. If the rules are well chosen, the system may be 
analyzed without too much pessimism. The basis of this is applying 
time oriented mechanisms by constraining the behaviors within ti-
ming slots.

Time oriented approaches help the arbitration to shared resources. 
These solutions are well suited within the context of critical embedded 
systems since they make the formal verification easier and simplify 
the programming. The idea is to off-line allocate timing slots where 
the behaviors are constrained and thus analyzable.

Onera and Airbus have proposed a time oriented execution model 
on multicore to force the COTS to be deterministic [5]. The idea is 
to distinguish on each core the moments of functional computation 
and the moments of read/write from/to the memory. These two types 
of accomplishments occur separately in distinct pre-defined slices. 
Each core is assumed to have a local clock physically derived from a 
common hardware clock. Consequently, the concept can apply on a 
COTS. The separation of behaviors leads to several interesting real-
time properties: the functional behavior is fully deterministic; the static 
WCET evaluation of an execution slice is reduced to a static WCET 
evaluation of a non preemptive sequential code on a monoprocessor, 
which is a well-known problem; and the worst case interference on 
the communication network between the cores and the memory is 
predictable. 

Discussion, mid-term and long-term perspectives

These last results obtained by Onera and Airbus seem to be promi-
sing. They allow the embedding of many-core processors for time 
critical avionic computers to be considered. However, a new question 
arises: how to embed such a component into an IMA architecture. 
The challenge is two-fold. Firstly guaranteeing that different avionic 
functions implanted on the same module do not interfere, which 
could be done by an extension of the previous time oriented execu-
tion model. The second question is more promising and concerns the 
assessment of the worst-case behavior of each function. The ques-
tion is: it is possible to determine this worst-case behavior for a given 
function without knowing the internal behavior of the other functions 
running on the same module. This modularity issue is central in the 
IMA development process. This will be the one of main issues for the 
next IMA-2G architecture 



Issue 4 - May 2012 - New Challenges for Future Avionic Architectures
	 AL04-11	 9

Acknowledgements

The authors are grateful to the French Ministry of Civil Aviation and the European Commission for partial funding of this work. The authors would like to 
thank J. Foisseau for his valuable contributions.

References

[1] Aeronautical Radio Inc – ARINC 653: Avionics Application Software Standard Interface. 1997.
[2] Aeronautical Radio Inc – ARINC 664: Aircraft Data Network, Part 1: Systems Concepts and Overview. 2002.
[3] ASAAC Consortium - ASAAC final draft of proposed guidelines for system issues - volume 4: System configuration and reconfiguration. 2004.
[4] C. BALLABRIGA, H. CASSÉ, C. ROCHANGE,  P. SAINRAT  -  Otawa: An open Toolbox for Adaptive wcet Analysis. 8th International Workshop on Software 
Technologies for Embedded and Ubiquitous Systems (SEUS’10), LNCS vol. 6399, 2010.
[5] F. BONIOL, H. CASSÉ, E. NOULARD, C. PAGETTI - Deterministic Execution Model on COTS Hardware. International Conference on Architectue of Com-
puting Systems (ARCS), München, Germany, 2012.
[6] S. BOYD-WICKIZER, H. CHEN, R. CHEN, Y. MAO, F. KAASHOEK, R. MORRIS, A. PESTEREV, L. STEIN, M. WU, Y. DAI, Y. ZHANG,  Z. ZHANG - Corey: An 
Operating System for Many Cores. 8th Symposium on Operating Systems Design and Implementation, 2008.
[7] M. BOYER, N. NAVET, X. OLIVE, E. THIERRY - The Pegase Project: Precise and Scalable Temporal Analysis for Aerospace Communication Systems with 
Network Calculus. LNCS vol. 6415 pp. 122–136. Springer, 2010.
[8] R.-L. CRUZ - A Calculus for Network Delay. Part I: network elements in isolation. IEEE Trans. on Inf Theory 37(1), pp. 114–131, 1991.
[9] S.-M. ELLIS - Dynamic Software Reconfiguration for Fault-Tolerant Real-Time Avionic Systems. Microprocessors and Microsystems, Proc. of the 1996 
Avionics Conference and Exhibition, vol. 21, issue 1, pp. 29–39, 1997.
[10] J.-Y. LE BOUDEC, P. THIRAN - Network Calculus: a Theory of Deterministic Queuing Systems for the Internet. LNCS vol. 2050. Springer, 2001.
[11] C. METRA, A. FERRARI, M. OMANA, A. PAGNI - Hardware Reconfiguration Scheme for High Availability Systems. IOLTS ’04: Proc. of the Int. On-Line 
Testing Symposium, Washington, DC, USA, 2004.
[12] J. MOORE - The Avionics Handbook. Spitzer, C.R. (ed.) Advanced Distributed Architectures, pp. 33-1–33-12. CRC Press, Boca Raton, 2001.
[13] S. PETER, A. SCHPBACH, D. MENZI, T. ROSCOE - Early Experience with the Barrelfish OS and the Single-Chip Cloud Computer. Proc. of the 3rd Intel 
Multicore Applications Research Community Symposium (MARC), Ettlingen, Germany, 2011.
[14] L. SAGASPE, P. BIEBER - Constraint-Based Design and Allocation of Shared Avionics Resources. 26th AIAA-IEEE Digital Avionics Systems Conference, 
2007.
[15] K. SEELING - Reconfiguration in an Integrated Avionics Design. Digital Avionics Systems Conference, 15th AIAA/IEEE, 1996.
[16] C. Sriprasad, M. Harvey - Dynamic Software Reconfiguration Using System-Level Management. 14th Digital Avionics Systems Conference (DASC), 
1995.
[17] D. WENTZLAFF, C. G. III, N. BECKMANN, K. MODZELEWSKI, A. BELAY, L. YOUSEFF, J. MILLER, A. AGARWAL - A Unified Operating System for Clouds 
and Manycore: Fos. 1st Workshop on Computer Architecture and Operating System co-design (CAOS), 2010.
[18] R. ZURAWSKI - Embedded Systems Handbook. CRC Press, Inc., Boca Raton, FL, USA, 2004.

Acronyms

AFDX  (Avionics Full Duplex Ethernet)
BAG  (Bandwidth Allocation Gap)
COTS  (Commercial Off-The-Shelf)
FCPC  (Flight Control Primary Computer)
FCS  (Flight Control System)
FCSC  (Flight Control Secondary Computer)
FDIR  (Failure Detection Isolation and Recovery)
IMA  (Integrated Modular Avionics)
I/O  (Input / Output)
MAF  (Major Frame)
NoC  (Network on Chip)
VL  (Virtual Link)
WCET  (Worst Case Execution Time)



Issue 4 - May 2012 - New Challenges for Future Avionic Architectures
	 AL04-11	 10

AUTHORS

Pierre Bieber holds a Ph. D. in computer science from the 
University of Toulouse. He works at Onera DTIM, where he is 
involved in research projects developing safety and security 
assessment techniques for avionics systems.

Frédéric Boniol graduated from a French Grand Ecole for Engi-
neers in Aerospace Systems (Suapero) in 1987. He holds a 
PhD in computer science from the University of Toulouse 
(1997). Since 1989 he has been working on the modeling and 
verification of embedded and real-time systems. Until 2008 he 
was professor at ENSEEIHT. He now holds a research position 

at Onera. His research interests include modeling languages for real-time 
systems, formal methods and computer-aided verification applied to avionics 
systems.

Marc Boyer obtained his Engineer Degree in Computer Science 
at ENSEEIHT in 1996, and his PhD thesis from Toulouse III Uni-
versity in 2001. He is a research scientist, in the DTIM depart-
ment at Onera. He works on architectures and formal methods 
for embedded communicating systems.

Eric Noulard graduated from a French Grand Ecole for Engi-
neers in Computer Science (ENSEEIHT) in 1995 and obtained 
his PhD in computer science from Versailles University in 
2000. After 7 years working in the Aerospace & Telecom field 
for BT C&SI, principally building high performance tests & vali-
dation systems, he joined the Onera research center in Tou-

louse as a Research Scientist. He works on distributed and/or embedded 
real-time systems and he is actively involved in the development of the CERTI 
Open Source project.

Claire Pagetti has a mathematical background and holds a 
PhD in computer science from the Ecole Centrale de Nantes 
(2004). She is currently a research engineer at Onera Toulouse 
and associate professor at ENSEEIHT. Her field of interest is 
mainly in safety-critical real-time systems. She is contributing 
to, and has participated in, several industrial and research pro-
jects in aeronautics.


