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Abstract: The present paper deals with the development of bounded feedback control laws
mimicking the strategy adopted by flapping flyers to stabilize the attitude of systems falling
within the framework of rigid bodies. Flapping flyers are able to orient their trajectory
without any knowledge of their current attitude and without any attitude computation. They
rely on the measurements of some sensitive organs: halteres, leg sensilla and magnetic
sense, which give information about their angular velocity and the orientation of gravity and
magnetic field vectors. Therefore, the proposed feedback laws are computed using direct
inertial sensors measurements, that is vector observations with/without angular velocity
measurements. Hence, the attitude is not explicitly required. This biomimetic approach is
very simple, requires little computational power and is suitable for embedded applications on
small control units. The boundedness of the control signal is taken into consideration through
the design of the control laws by saturation of the actuators’ input. The asymptotic stability
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of the closed loop system is proven by Lyapunov analysis. Real-time experiments are carried
out on a quadrotor using MEMS inertial sensors in order to emphasize the efficiency of this
biomimetic strategy by showing the convergence of the body’s states in hovering mode, as
well as the robustness with respect to external disturbances.

Keywords: biomimetic attitude stabilization; MEMS inertial sensors; bounded control;
output feedback; flapping flyers; quadrotor unmanned aerial vehicles (UAVs)

1. Introduction

Flapping flyers perform different types of maneuvers during their flight based on information provided
by their sensitive organs. This information allows the animal to control its own equilibrium, to orient
itself in its environment and to interact with it, as well as to perform tasks. The sensitive organs of an
insect, for example, comprise visual sensors, such as the ocelli and the compound eyes, besides other
biological sensors, such as halteres, sensilla and magnetic sense [1–3].

Specialists claim that flight control commands involved in insect flight originate in the fly’s brain,
which has 3000 nerve cells, or neurons [3]. However, these three thousand neurons, each interpreted as
an on-off (binary) transistor, give no more computational power than possessed by a toaster [4]. Despite
the above-mentioned aspects, insects are more agile than modern aircraft equipped with super-fast digital
computers. Consequently, and as is proposed in [4], flight control from the insect flight perspective
represents a paradigm change with respect to conventional flight control, used by manned and unmanned
aircraft systems. Currently, conventional flight controls use few measurements and many computations,
whereas insects flight control does the opposite: many measurements issued from multiple sensors and
little computation.

Adopting this strategy, the insect determines its trajectory and adapts its body’s velocity and attitude to
track it. Given the maneuverability of flying insects, it is natural to look to biology to get inspiration from
their attitude control strategies and to mimic them. Attitude control concerns a wide variety of robotic
applications in scenarios aiming to ensure orientation stabilization or trajectory tracking. Moreover, it
is a major step that helps to guarantee the position stabilization of underactuated systems where the
translational and rotational degrees of freedom must be coupled in order to achieve movement in 3D
space. Some illustrative examples for the application include micro-satellites, unmanned aerial vehicles
(UAVs), autonomous underwater vehicles (AUVs), etc.

Many approaches have been reported in the literature to develop attitude stabilizing control laws for
various applications [5–13]. The list is far from being exhaustive. Although the aforecited strategies
have solved the attitude stabilization problem, they are based on state feedback: the attitude, represented
by the Euler angles in R3, the quaternion in S3 ⊂ R4 or the rotation matrix in SO(3) [14] and the angular
velocity in R3, which are supposed to be known. Since a direct measurement of the attitude is not
possible, the information about attitude is obtained through adequate observers (attitude estimators) that
combine sensor measurements (see [15–18] and the references therein). The sensors used for attitude
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determination can be classified into two main categories: (i) the angular velocity sensors (i.e., rate
gyros) that give the measurement of the angular velocity; and (ii) the reference vector sensors (i.e.,
magnetometers, accelerometers, star trackers, sun sensors) that give the projection, in their local frame,
of a fixed vector in space. This projection is known as “vector observation”. Nowadays, there exist many
commercial attitude units that are based on these type of sensors and attitude estimators. However, the
attitude estimator algorithms require powerful computing capacities, which makes them inconvenient for
embedded applications with weight or computer power restrictions. Moreover, these strategies are not
inspired by natural flight, which is based directly on sensor measurements.

In recent years, a considerable amount of effort has been dedicated to solving the problem of rigid
body attitude stabilization by means of inertial pointing, where, similarly to the present work, the control
laws are based on direct measurements of the vector reference sensors (e.g., no attitude representation is
needed). This problem has been studied under various assumptions and scenarios; for instance, requiring
angular velocity measurements as in [19–24], in the absence of angular velocity measurements in an
aerospace framework [25] and in an aerial-robotics framework [26]. On the other hand, the aerodynamic
forces developed by the flapping flyer’s wings are bounded because of the boundedness of the flapping
wings’ angles. Technically, it is well known that for a system that operates over a wide range of
conditions, it may happen that the control law reaches the actuator limits, deteriorating the control
performance or even leading to instability [27,28]. As evidenced by the above reviewed literature,
very little attention has been dedicated to the attitude stabilization problem using bounded control with
different bounds for each axis.

Among possible applications, a quadrotor mini-aircraft is used in the present work to test the
biologically-inspired control torque computed over sensor measurements that mimic the sensitive organs
used by insects. The quadrotor is an under-actuated nonlinear dynamic system having four input forces
(delivered by the four propellers (see Figure 3)) and six output coordinates (attitude and position).
Mathematically, it gives rise to two cascaded subsystems: rotational and translational ones. The
longitudinal and lateral movements cannot be performed without a coupling to the rotational degrees
of freedom. Therefore, an efficient attitude control is crucial to maintaining a desired attitude in order to
reach a desired position despite the external disturbance. Some linear and nonlinear control techniques
have been applied for the attitude stabilization of the quadrotor mini-helicopter, for example [29–35].
Actually, the control laws previously mentioned assume that the system states are available, i.e., attitude
(e.g., Euler angles, quaternion, rotation matrix) and angular velocity, which is not the case of the
present work.

The present paper deals with the development of biomimetically-inspired control laws aiming to
stabilize the attitude of systems falling within the framework of rigid bodies. The inputs of the control
laws are the direct measurements of onboard sensors, equivalent to those that an insect is equipped with,
without the need for an explicit attitude reconstruction (angles, quaternions or rotation matrix). Hence,
unlike conventional approaches, the computational cost used for the attitude estimation/reconstruction
is avoided. First, a bounded, continuous and static control law is developed using the measurements of
the angular velocity (e.g., halteres) and the attitude error via direct measurement of the reference vector
sensors (e.g., leg sensilla and magnetic sense). A second bounded, continuous and dynamic control
law is proposed based only on the measurements of the reference vector sensors: information about the
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angular velocity comes from at least two non-collinear vector observations, without any reconstruction
of it. This control law spares the measurements of the angular velocity (halteres) in case this sensitive
organ is no longer working. Although the control laws are a function of the vector observations, the
stability analysis is carried out on the configuration space SO(3) of the physical rigid body, in order
to avoid any reinterpretation. The asymptotic stability of the rigid body subject to the control laws is
proven by means of Lyapunov analysis in both cases. The proposed approach is applied to the real-time
attitude stabilization of a quadrotor aircraft in hover mode. The angular velocity is obtained using three
rate gyros mounted orthogonally (equivalent to the halteres), and the vector observations are obtained
from a triaxial accelerometer and a triaxial magnetometer (equivalent respectively to the leg sensilla and
the magnetic sense). The two control law capabilities are tested to ensure the stabilization in a desired
constant orientation. They show an expected performance in terms of stabilization time and robustness
relative to sensor noise and external disturbances. The rest of the paper is structured as follows. Some
mathematical preliminaries and the problem statement are presented in Sections 2 and 3. The control
laws are addressed in Section 4 with the stability proofs. The application to quadrotor UAVs is proposed
in Section 5, and experimental results are shown in Section 6. Finally, conclusions are addressed in
Section 7.

2. Mathematical Background

Consider two orthogonal right-handed coordinate frames: the body coordinate frame,
Eb = [~eb1, ~e

b
2, ~e

b
3], located at the center of mass of the rigid body, and the inertial coordinate frame,

Ef = [~ef1 , ~e
f
2 , ~e

f
3 ], located at some point in space. The rotation of the body frame Eb with respect to the

fixed frame Ef is represented by the attitude matrix R ∈ SO(3) = {R ∈ R3×3 : RTR = I, detR = 1}.
Denoting by ω = [ω1 ω2 ω3]

T the angular velocity vector of the body frame Eb relative to the
inertial frame Ef , expressed in Eb, the rotational kinematic and dynamic equations of the rigid body are
given by [14]:

Ṙ = −[ω]×R (1)

Jω̇ = −[ω]×Jω + Γ (2)

where [ξ]× is the skew symmetric matrix associated to the axial vector ξ = [ξ1 ξ2 ξ3]
T :

[ξ]× =

 0 −ξ3 ξ2

ξ3 0 −ξ1
−ξ2 ξ1 0


It is worth remembering that [ξ]×χ = ξ × χ, for all χ, ξ ∈ R3. J ∈ R3×3 represents the

positive-definite constant inertia matrix of the rigid body expressed in the frame Eb, and Γ ∈ R3 is
the vector of control torques in Eb. These torques depend on the couples generated by the actuators,
aerodynamic couples, such as gyroscopic couples, gravity gradient, etc. In this paper, it is assumed that
these torques are only generated by the actuators. Equations (1) and (2) describe the rotational motion
of a rigid body that has dynamics evolving on the tangent bundle TSO(3) [36,37].

As mentioned in the Introduction, the flapping flyer is provided with information, from multiple
sensitive organs. For insects, one can cite the following:
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• The halteres: They are gyroscopic biological sensors, located at the wing bases. They allow the
detection of the rotational movement of the body and the determination of its angular velocity
along the three axes [1,3].

• The sensilla: Located on the antenna, wings and legs, these cuticular sense hairs detect chemical or
mechanical stimuli. Particularly, the leg sensilla determine the direction of the gravity field vector
with respect to the insect’s body frame [1,3].

• The magnetic sense: This determines the direction of the Earth’s magnetic field vector with respect
to the insect’s body frame [1,3].

These three sensitive organs have some technological equivalents: rate gyros, accelerometers and
magnetometers, respectively, and they can be divided into two main kinds:

• The angular velocity sensors: These sensors give the measurement of the angular velocity ω. They
are assumed to be perfect: problems caused by bias or limited measurement range are not treated
in the present work.

• The reference vector sensors: Consider a unit vector ~sk; its representation sfk in the fixed frame Ef

and sbk in the body frame Eb. Assume that sfk is constant. These two representations are linked up
through the rotation matrix R:

sbk = Rsfk (3)

In attitude control applications, the vectors sfk are also called reference vectors and are generally
quite accurately known. The body vectors sbk are known as “vector observations” and are
obtained from on-board sensors (accelerometers, magnetometers, sun sensors, star trackers, etc.).
k ∈ {1, 2, . . . , n} represents the number of on-board reference vector sensors. Sensor
imperfections are not taken into account in this work.

Vector observations and angular velocity are related through the kinematic Equation:

ṡbk = [sbk]×ω = −[ω]×sbk (4)

Extending to n vector observations and defining Sb = (sb1 s
b
2 . . . s

b
n)T , it gives:

Ṡb :=

 ṡb1
...
ṡbn

 =

 [sb1]
×

...[
sbn
]×
ω =: Mω (5)

The error between the current attitude, defined by a rotation matrix R of the inertial frame Ef axes,
and the desired attitude, defined by a rotation matrix Rd of Ef ’s axes, is quantified by [14]:

Re = RRT
d

Alternatively, information about the attitude error can be defined as the error between the sensor
measurements in the body frame Eb and the desired values of the reference vectors projected in Eb. The
vector of attitude error γ is defined by:

γ =
1

n

n∑
k=1

[Rsfk ]×(Rds
f
k) =

1

n

n∑
k=1

[sbk]×Rds
f
k (6)
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From the perspective of the attitude estimation/determination framework, it is well known that at least
two different vector observations at each measurement instant are required in order to obtain complete
attitude information [15]. Therefore, to bring the rigid body to a desired orientation, one should nullify
the attitude error by forcing γ to zero using at least two non-collinear vectors at each measurement
instant, i.e., n ≥ 2.

Remark 1. If only one vector observation is available (n = 1), this vector is linked to the reference
vector, through the rotation matrix R: sb1 = Rsf1 . This equation provides a two-dimensional constraint
over the three-dimensional rotation matrix. Therefore, a single vector observation does not provide the
complete attitude information. In this case, it is impossible to identify a rotation about the axis sb1 in the
body coordinate frame or, equivalently, about the axis sf1 in the inertial coordinate frame.

Define a scalar saturation function satN(·) bounded between ±N , with N > 0, as:

satN(x) = min(N,max(−N, x)), ∀x ∈ R (7)

Define also a vector saturation function for N = [N1 N2 · · · Nn] as:

SatN(X) = [satN1(x1) . . . satNj
(xj) . . . satNn(xn)]T , ∀X = [x1, . . . , xn] ∈ Rn (8)

with j ∈ {1, . . . , n} and n is the vector dimension.

3. Problem Statement

The main purpose of the present paper is to design control strategies that would be able to ensure the
stabilization of a rigid body’s attitude by mimicking the strategy adopted by flapping flyers to stabilize
their attitude. These strategies are based on the use of direct measurements of some sensitive organs,
that is the attitude is not explicitly required. Furthermore, the proposed feedback controls take into
account the physical constraints and limitations of the body’s structure and actuation. This is ensured
by a saturation of the control torque and actually allows the system to avoid unwanted damage and to
maximize its effectiveness. This can be mathematically formulated as:

Γj ∈ [−Γ̄j, Γ̄j], j ∈ {1, 2, 3}

where Γ̄j represents the bound of the control torque component Γj and corresponds to the actuators’
saturation bounds equivalent to the bounds of the aerodynamic torques developed by the flapping flyer’s
wings because of the boundedness of the flapping wing angles.

The classical attitude stabilization problem is defined as driving the body’s orientation from any initial
condition to a desired constant orientation and maintaining it thereafter. As a consequence, the angular
velocity vector is also brought to zero and remains null once the desired attitude is reached.{

R → Rd

ω → 0
as t→∞
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The desired and the actual attitudes, Rd and R, are identical if for all k ∈ {1, . . . , n} with n ≥ 2,
sbk = Rsfk = Rds

f
k , and therefore, from Equation (6), γ = 0. However, the reverse is not true, and γ is

also minimized for:
sbk = −Rd s

f
k (9)

Analyzing Equality (9) with respect to the number of non-collinear reference vectors n:

• If n ≥ 3, this identity defines a symmetry with respect to the frame’s origin and can be expressed
as sbk = −Rd s

f
k . −Rd, however, does not belong to SO(3) and, as a consequence, is not a rotation

matrix. Consequently, Equality (9) defines a physically non-feasible configuration. Hence, a null
attitude error γ = 0 makes sense only if sbk = Rd s

f
k .

• If n = 2, there exists a plane Π that contains the vectors Rd s
f
1 and Rd s

f
2 . The configurations

sbk = −Rd s
f
k , k ∈ {1, 2}, can be reached by a rotation of 180 ◦ (π rad) about the normal vector ~n

to the plane Π at the vectors’ intersection (Figure 1). Some specific cases of sfk allow the definition
of symmetry with respect to the separate axes ~ef1 , ~e

f
2 , and ~ef3 if sfk , k ∈ {1, 2}, belong respectively

to the planes (~ef2 , ~e
f
3 ), (~ef1 , ~e

f
3 ), (~ef1 , ~e

f
2 ) (Figure 1). In this case, sbk = −Rd s

f
k is equivalent to

sbk = RsRd s
f
k with Rs a symmetric matrix that belongs to SO(3) and has a trace Tr(Rs) = −1:

Rs ∈ {diag(1,−1,−1),diag(−1, 1,−1),diag(−1,−1, 1)} (10)

defining a symmetry with respect to ~ef1 , ~e
f
2 and ~ef3 , respectively. One should emphasize that it

would be therefore more judicious to choose the reference sensors so that the reference vectors
belong to one of the three planes (~ef1 , ~e

f
2 ), (~ef1 , ~e

f
3 ) or (~ef2 , ~e

f
3 ), which has been adopted in the present

work. If such reference sensors do not exist, another approach would be the definition of the fixed
frame with respect to the reference sensors, such that an orthogonalization of the reference vectors
is used to construct an ortho-normal basis (~ef1 , ~e

f
2 , ~e

f
3 ).

Figure 1. Symmetry with respect to the normal vector ~n to the plane Π (a); the symmetry
with respect to the plane (~ef1 , ~e

f
3 ) (b).
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• If n = 1, the symmetry is defined with respect to a plane. This case is not considered in the
present work.

As a conclusion, there exist two sets by which the angular velocity ω and the attitude error γ are equal
to zero, namely (ω,R) = (0, Rd) and (ω,R) = (0, RsRd). Define E as the union of these two sets:

E = {(ω,R) ∈ TSO(3) : ω = 0, R = PRd, P ∈ P} (11)

with:
P := {diag(1, 1, 1),diag(1,−1,−1),diag(−1, 1,−1),diag(−1,−1, 1)} (12)

Note that P forms a subgroup of the group of orthogonal matrices O(3).

4. Biologically-Inspired Attitude Stabilization

In this section, two bounded control laws aiming to stabilize the orientation of a rigid body given by
Equations (1) and (2) are proposed. Both control laws (i) are based on an output feedback using on-board
sensor measurements and (ii) respect the actuators’ limitation by bounding the developed torque (see
Sections 2 and 3). Vector observations, defining the attitude error, besides the measurement of the angular
velocity, are the basis for the first control law computation. This corresponds to the case of accessibility
of the halteres, leg sensilla and magnetic sense measurements for an insect (see Figure 2). In the second
one, the three rate gyros mounted orthogonally are spared, i.e., the measurements of the halteres are
not accessible, and only vector observations are available. This case corresponds, for example, to
applications that are limited in terms of aircraft payload or sensor failure. To establish the conditions that
guarantee an asymptotic convergence, the geometric configuration of the vector observations is required
to satisfy the following assumption.

Assumption 1. There are at least two non-collinear vector observations at each measurement instant
i.e., sbk with k ∈ {1, 2, . . . , n} and n ≥ 2. The case of the non-existence of these two vectors is admittedly
considered beyond the scope of this paper.

~e b
1

~e b
2

~e b
3

Eb

The halteresThe sensilla

Figure 2. Biologically-inspired attitude stabilization.
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4.1. Bounded Attitude Control with Vector Observations and Angular Velocity Measurements

Theorem 1. Consider the rigid body rotational dynamics described by Equations (1) and (2). The
attitude error between current and desired orientations is defined by Equation (6) with n ≥ 2. It is
assumed that the body’s angular velocity ω = [ω1 ω2 ω3]

T is measured by three rate gyros mounted
orthogonally. Define the bounded control Γ = [Γ1 Γ2 Γ3]

T by:

Γj = −satNj
(λjωj)− ργj, j ∈ {1, 2, 3} (13)

where Γ̄j = Nj + ρ is the bound of the control torque component Γj , satNj
(·) is the classical saturation

function defined by Equation (7) and λj, ρ ∈ R>0 are tuning parameters, such that Nj > ρ with
Λ = diag(λj). Then, the control torque defined in Equation (13) asymptotically stabilizes the rigid body
at (ω,R) = (0, Rd) with a domain of attraction equal to TSO(3) \ {(0, RsRd)}.

Before giving the proof of Theorem 1, an analysis of the closed loop system’s equilibrium, using the
control law defined in Equation (13), is given:

0 = −[ω]×R

0 = −[ω]×Jω + Γ

which yields ω = 0 and Γ = 0, and therefore, γ = 0. Following the analysis given in Section 3, the
closed loop system’s equilibrium is given by the set E defined in Equation (11).

Proof. Consider the candidate Lyapunov function V defined by:

V (ω,R) =
1

2
ωTJω +

δ

n

n∑
k=1

[1− (Rsfk)TRds
f
k ] (14)

V (ω,R) is a continuous and positive definite function on TSO(3), since V (ω,R) > 0 for all (ω,R) ∈
TSO(3) \ (0, Rd) and V (ω,R) = 0 if and only if (ω,R) = (0, Rd).

Note that sbk = Rsfk , and sfk is constant. The derivative of the Lyapunov Function (14) along a solution
of the closed loop system is given by:

V̇ (ω,R) = ωTJω̇ − δ

n

n∑
k=1

ṡb
T

k Rds
f
k

= ωT (−[ω]×Jω + Γ)− δ

n

n∑
k=1

([sbk]×ω)TRds
f
k

= ωTΓ +
δ

n

n∑
k=1

ωT ([sbk]×Rds
f
k)

Replacing in Equation (6), one has:

V̇ =
3∑

j=1

[ωj(−satNj
(λjωj)− ργj) + δωjγj]
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Choosing δ = ρ and since λj > 0, j ∈ {1, 2, 3}, it follows that:

V̇ (ω,R) = −ω1satN1(λ1ω1)− ω2satN2(λ2ω2)− ω3satN3(λ3ω3) = −ωTSatN(Λω) ≤ 0 (15)

Thus, the derivative of the Lyapunov function along a solution of the closed loop system is
negative semidefinite.

It is worth remembering that SO(3) is compact. Hence, for any (ω(0), R(0)) ∈ TSO(3), the set:

Ω = {(ω,R) ∈ TSO(3) : V (ω,R) ≤ V (ω(0), R(0))}

is a compact, positively-invariant set of the closed loop.
Let E be the set of all of the points for which V̇ (ω,R) ≡ 0. From La Salle’s invariance principle, it

follows that all solutions that start in Ω converge to the largest invariant set in E contained in Ω. From
Equation (15), V̇ (ω,R) ≡ 0 implies that ω ≡ 0. Then, substituting this last identity into the closed loop
system defined by Equations (1) and (2) with the feedback given in Equation (13), one has:

E = {(ω,R) ∈ TSO(3) : ω ≡ 0, γ ≡ 0}

with γ defined in Equation (6).
Thus, following the analysis of the closed loop system’s equilibria, the largest invariant set in E is

given by Equation (11), i.e., E = E . The four points given in Equations (11) and (12) correspond to the
equilibria of the closed loop system in TSO(3). Consequently, all trajectories of the closed loop system
converge to one of the equilibrium solutions in E . Furthermore, if at t0 = 0, the solution of the closed
loop system lies in E , it remains there for t > t0.

Now, consider separately each equilibrium point of E defined by Equations (11) and (12). Evaluating
the Lyapunov function defined in Equation (14) at these points, one obtains:

V (0, Rd) = 0 and V (0, RsRd) = 2δ

Actually, the points (0, Rd) and (0, RsRd) correspond respectively to a minimum (V (0, Rd) = 0) and
a local maximum (V (0, RsRd) = 2δ) of the Lyapunov function of Equation (14). The derivative V̇ (ω,R)

is equal to zero at these points.
Next, consider any initial condition (0, (RsRd)

∗) different from (0, RsRd). Then, evaluating the
Lyapunov function at these points trivially gives:

(0, (RsRd)
∗) 6= (0, RsRd) ⇒ V (0, (RsRd)

∗) < 2δ

Since V̇ < 0 outside E , any initial condition outside E will lead to a decrease of the Lyapunov function
and a convergence to an equilibrium point, where V vanishes (as well as V̇ ), that is (0, Rd). Hence,
solutions of the closed loop system whose initial conditions are different from (0, RsRd) converge
asymptotically to (ω,R) = (0, Rd).
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4.2. Attitude Stabilization with Vector Observations and without Angular Velocity Measurements

In this section, a control law free of velocity measurements is developed. It is based only on the
vector observations sbk and their derivatives with k ∈ {1, 2, . . . , n} and n ≥ 2. Practically, this solution
corresponds to applications where only a triaxial accelerometer (used as an inclinometer) and a triaxial
magnetometer are on-board. Then, one has the following result:

Theorem 2. Consider the rigid body rotational dynamics described by Equations (1) and (2). The
attitude error between current and desired orientations γ is computed through Equation (6). Define the
bounded control torque Γ = [Γ1 Γ2 Γ3]

T as:

Γ = −λMTSatN(vm)− ργ
ζ̇ = −avm

vm = ζ + bSb

(16)

with a, b ∈ R>0 the filter parameters and λ, ρ ∈ R>0 the tuning parameters. Sat(·) is defined in
Equation (8). The 3n vector N is composed by adding n times a vector of strictly-positive saturation
levels N̄ = [N̄1 N̄2 N̄3], that is Ni := N̄j for i = 3(k − 1) + j, j ∈ {1, 2, 3}, k ∈ {1, . . . , n}. With the
above definitions, the dynamic control law defined in Equation (16) asymptotically stabilizes the rigid
body at (ω,R, vm) = (0, Rd, 0) with a domain of attraction equal to TSO(3) × R3n \ {(0, RsRd, 0)}.
Furthermore, the control torque Γj remains bounded by Γ̄j along each axis.

Before giving the proof of Theorem 2, the idea behind the construction of the feedback defined in
Equation (16) is explained. It is assumed that the angular velocity is not measured (no rate gyros are
used). Then, one way is to use Equation (5) to reconstruct the angular velocity by means of ω = M †Ṡb,
where M † = (MTM)−1MT is the pseudo-inverse matrix of M , and to use it in Theorem 1. This
approach has two main drawbacks. First, it requires relatively heavy computations because of the
pseudo-inverse matrix. Furthermore, the numerical stability becomes an issue in the case that the sensors’
number increases. Secondly, it also requires the derivation of the vector observations, known to be very
sensitive to noise. This problem can be avoided by taking the difference between the signal and its
low-pass filtered version, which approximates the derivative for low frequencies [38]. In the present case,
this filter is given by the last two Equations of (16) in its state-space realization. The filter’s output is vm,
which is one of the arguments of the control torque defined in Equation (16). In fact vm and the matrixM
provide the required damping to achieve asymptotic stabilization. Furthermore, exact knowledge of the
angular velocity is not required. Note that the dynamic control law defined in Equation (16) is similar
to the one proposed in [39] for attitude tracking. However, in the aforementioned work, the knowledge
of the quaternion is necessary, contrary to the proposed feedback.

The state of the system defined by Equations (1) and (2) subject to the control described in
Equation (16), in a closed loop, evolves in TSO(3) × R3n. The analysis of the equilibrium point of
this closed loop system yields ω = 0 and Γ = 0. Then, from Equation (5), one obtains Ṡb = 0. The
second and third Equations of (16) can be written as v̇m = −avm + bṠb; then vm = 0, and consequently,
γ = 0. Using the same arguments of the previous control law, there exist two sets of equilibrium points
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for the closed loop system, namely (ω,R, vm) = (0, Rd, 0) and (ω,R, vm) = (0, RsRd, 0). Given Rd

and sfk , let Ē denote the set of equilibrium solutions for the closed loop system:

Ē ={(ω,R, vm) ∈ TSO(3)× R3n : ω = 0, vm = 0, R = PRd, P ∈ P} (17)

with P defined in Equation (12).
Note that the low-pass filter given by the last two Equations of (16) is equivalent to v̇m = −avm+bṠb,

but does not necessitate the computation of Ṡb.

Proof. Consider the candidate Lyapunov function L:

L =
1

2
ωTJω +

δ

n

n∑
k=1

[1− (Rsfk)TRds
f
k ] + αb−1

3n∑
i=1

∫ vmi

0

satNi
(σ)dσ (18)

L is a continuous, proper and positive definite function. sat(·) is the classical saturation function defined
in Equation (7) and is obviously Lipschitz. L(ω,R, vm) > 0 for all (ω,R, vm) ∈ TSO(3) × R3n and
L(ω,R, vm) = 0 if and only if (ω,R, vm) = (0, Rd, 0). Since sfk is constant and Rsfk = sbk, the derivative
of L along the solutions of the closed loop system, using γ defined in Equation (6), is given by:

L̇ = ωTJω̇ − δ

n

n∑
k=1

ṡb
T

k Rds
f
k + αb−1SatTN(vm)v̇m

= ωTΓ + ωT δγ − αab−1SatTN(vm)vm + αSatTN(vm)Ṡb

= ωTΓ + ωT δγ − αab−1SatTN(vm)vm + αSatTN(vm)Mω

= −αab−1SatTN(vm)vm︸ ︷︷ ︸
L̇1≤0

+ωTΓ + ωT δγ + αωTMTSatN(vm)︸ ︷︷ ︸
L̇2

Analyzing L̇2, it follows from Γ defined in Equation (16) that:

L̇2 = −λωTMTSatN(vm)− ωTργ + ωT δγ + αωTMTSatN(vm)

Choosing δ = ρ and α = λ, one obtains:
L̇2 = 0

Consequently, the derivative of the Lyapunov function defined in Equation (18) is given by:

L̇ = L̇1 + L̇2 = −αab−1SatTN(vm)vm ≤ 0

Thus, the derivative of the Lyapunov function along the solutions of the closed loop system is
negative semidefinite.

Recall that SO(3) is compact. Hence, for any (ω(0), R(0), vm(0)) ∈ TSO(3)× R3n, the set:

Ω = {(ω,R, vm) ∈ TSO(3)× R3n : L(ω,R, vm) ≤ L(ω(0), R(0), vm(0))}

is a compact, positively-invariant set of the closed loop. From La Salle’s invariance principle, it follows
that all solutions that start in Ω converge to the largest invariant set in Ē contained in Ω. L̇(ω,R, vm) ≡ 0
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implies that vm ≡ 0 ⇒ Ṡb ≡ 0 ⇒ ω ≡ 0. Then, substituting this last identity into the closed loop
system defined by Equations (1), (2) and (16), one has:

Ē = {(ω,R, vm) ∈ TSO(3)× R3n : ω ≡ 0, vm ≡ 0, γ ≡ 0}

with γ defined in Equation (6). Following the same arguments of the proof of Theorem 1, it results
that L̇ < 0 outside Ē given in Equation (17), and the control law acts to ensure the convergence of the
solutions of the closed loop system to the equilibrium point (ω,R, vm) = (0, Rd, 0) where L = L̇ = 0.

Finally, it is still necessary to check that the control satisfies the saturation constraints. In the
following, for two vectors ϑ1 and ϑ2 of the same dimension, ϑ1 ≤ ϑ2 will mean that for each
component i, ϑ1i ≤ ϑ2i . Using Equation (16) and the fact that γ is unitary, it follows that:

Γ = −λMTSatN(vm)− ργ

≤ λ
n∑

k=1



[
|sbk3| |s

b
k2
|
] [N̄2

N̄3

]
[
|sbk3| |s

b
k1
|
] [N̄1

N̄3

]
[
|sbk2| |s

b
k1
|
] [N̄1

N̄2

]


+

ρρ
ρ

 ≤ λn

0 1 1

1 0 1

1 1 0


N̄1

N̄2

N̄3

+

ρρ
ρ

 =

Γ̄1

Γ̄2

Γ̄3



The vector of saturation levels N̄ is given as a function of the torque saturation Γ̄i on each axis by:N̄1

N̄2

N̄3

 =
1

2λn

−1 1 1

1 −1 1

1 1 −1


Γ̄1 − ρ

Γ̄2 − ρ
Γ̄3 − ρ

 (19)

with the following constraint inequality in order to keep the levels real and strictly positive:(
Γ̄i − ρ

)
<

∑
j∈{1,2,3}, j 6=i

(
Γ̄j − ρ

)
(20)

Inequality (20) is always fulfilled taking identical Γ̄j on each axis. Note, however, that it is also
fulfilled with two identical bounds and a smaller one (which is the case of quadrotor helicopters
addressed in Sections 5 and 6). Therefore, if the torque physical bounds do not satisfy the inequality, it
is always possible to artificially change one control bound to obtain an admissible solution.

5. Application to Quadrotor Helicopter

In this section, a quadrotor mini-aircraft is used to test the biologically-inspired control torque
proposed in the earlier section. The quadrotor is a small aerial vehicle that belongs to the VTOL
(vertical taking-off and landing) class of aircraft, which gives rise to great interest because of its high
maneuverability, its payload capacity and its ability to hover. Furthermore, owing to symmetry, it is
relatively simple to design and construct. Quadrotors are lifted and propelled, forward and laterally,
by controlling the rotational speed of four blades mounted at the four ends of a simple cross and
driven by four brushless DC motors (BLDC). On this platform (see Figures 3 and 4), given that the
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front and rear motors rotate counter-clockwise while the other two rotate clockwise, gyroscopic effects
and aerodynamic torques tend to cancel each other out in trimmed flight. The rotation of the four
rotors generates a vertical force, called the thrust T , equal to the sum of the thrusts of each rotor
(T = f1 + f2 + f3 + f4). The pitch movement θ is obtained by increasing/decreasing the speed of the
rear motor while decreasing/increasing the speed of the front motor. The roll movement φ is obtained
similarly using the lateral motors. The yaw movement ψ is obtained by increasing/decreasing the speed
of the front and rear motors while decreasing/increasing the speed of the lateral motors. In order to avoid
any linear movement of the quadrotor, these maneuvers should be achieved while maintaining a value
of the total thrust T that balances the aircraft weight. In order to model the system’s dynamics, two
frames are defined: a fixed frame in the space Ef = [~ef1 , ~e

f
2 , ~e

f
3 ] and a body-fixed frame Eb = [~eb1, ~e

b
2, ~e

b
3],

attached to the quadrotor at its center of gravity, as shown in Figure 3.

Figure 3. Quadrotor: fixed frame Ef = [~ef1 , ~e
f
2 , ~e

f
3 ] and body-fixed frame Eb = [~eb1, ~e

b
2, ~e

b
3].

According to [40], the six degrees of freedom model (position and orientation) of the system
can be separated into translational and rotational motions, represented respectively by ΣT and ΣR in
Equation (21). The quadrotor model can be expressed as:

ΣT :

 ṗ = v

v̇ = ge3 −
1

m
RTTe3

ΣR :

{
Ṙ = −[ω]×R

Jhω̇ = −[ω]×Jhω − ΓG + Γ
(21)

where m denotes the mass of the quadrotor and Jh its inertial matrix expressed in Eb. g is the gravity
acceleration, and e3 = [0 0 1]T . p = [x y z]T represents the position of the quadrotor’s center of gravity,
which coincides with the origin of the frame Eb, with respect to the frame Ef , v = [vx vy vz]

T its linear
velocity in Ef , and ω denotes the angular velocity of the quadrotor expressed in Eb. ΓG ∈ R3 contains
the gyroscopic torques created by the rotational motion of the quadrotor and the four rotors; Γ ∈ R3

is the vector of the control torques, and −Te3 is the total thrust expressed in Eb. Note that the attitude
model (rotational motion) of the quadrotor differs from the general rigid body model by means of the
gyroscopic torques ΓG. R is the rotational transformation from Ef to Eb.

The reactive torque Qi due to the i-th rotor drag, i ∈ {1, 2, 3, 4}, and the total thrust T generated by
the four rotors can be approximated by an algebraic relationship with the pulse width-modulated (PWM)
control signal applied to the BLDC-drivers:

Qi = kmumi
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T = bm

4∑
i=1

umi =
4∑

i=1

fi (22)

where the input signals umi are expressed in seconds, i.e., the time during which the PWM control signal
applied to the motor i is in the high state. km > 0 and bm > 0 are two parameters that depend on the air
density, the dynamic pressure, the lift coefficient, the radius and the angle of attack of the blades and are
experimentally obtained.

Gyroscopic torque ΓG is given by:

ΓG =
4∑

i=1

Jr([ω]×e3)(−1)i+1ωmi

where ωmi is the rotational speed of rotor i and Jr is the equivalent inertia of the DC motor, the blades
and the gear. The components of the control torque vector Γ = [Γ1 Γ2 Γ3]

T generated by the rotors are
given by:

Γ1 = d(f3 − f4) = dbm(um3 − um4)

Γ2 = d(f1 − f2) = dbm(um1 − um2)

Γ3 = −Q1 +Q2 −Q3 +Q4 = km(−um1 + um2 − um3 + um4)

(23)

with d being the distance from one rotor to the center of mass of the quadrotor. Combining Equations (22)
and (23), the forces and torques applied to the quadrotor are written as:

(
Γ

T

)
=


0 0 dbm −dbm
dbm −dbm 0 0

−km km −km km

bm bm bm bm




um1

um2

um3

um4


= NUm

(24)

whereUm = [um1 um2 um3 um4]
T . Since N is an invertible matrix, the signals; control is easily obtained.

The specification and parameters of the quadrotor prototype are depicted in Table 1.

Table 1. The specification and parameters of the quadrotor.

Parameter Description Value Units

m Mass 0.986 kg
d Distance 0.23 m
Jhxx Inertia about ~eb1 8.13 × 10−3 kg·m2

Jhyy Inertia about ~eb2 8.13 × 10−3 kg·m2

Jhzz Inertia about ~eb3 10.89 × 10−3 kg·m2

bm Proportionality Constant 5106.8 N/s
km Proportionality Constant 342.4 N·m/s
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5.1. Sensors Modeling

The quadrotor is equipped with a sensor suite (MAG-suite) composed of a triaxial magnetometer,
a triaxial accelerometer and three rate gyros mounted orthogonally. The MAG-suite represents the
sensory system of the insects that is used for their attitude stabilization, i.e., halteres, leg sensilla and
magnetic sense.

The MAG-suite’s components are carefully collocated, so that their sensitive axes coincide with
the body’s frame Eb. The inertial coordinate frame Ef is chosen to be the NED (north, east, down)
coordinate frame. In this case, the reference vectors are the gravitational and magnetic vectors. The
vector observations, i.e., the gravitational and magnetic vectors expressed in the body frame Eb, are
obtained from the triaxial accelerometer and the triaxial magnetometer. The angular velocity of the
quadrotor is obtained from the three rate gyros. For control purposes, a simple measurement model that
does not include a bias term, calibration errors or limited measurement range is considered. As will be
shown within the experimental results, the control law is robust with respect to the noise present in these
sensor measurements and to external perturbations.

5.1.1. Rate Gyros

The angular velocity ω = [ω1 ω2 ω3]
T is measured by three rate gyros mounted orthogonally. That is:

ωG = ω + ηG

where ω is the true angular velocity of the quadrotor and ηG ∈ R3 is the vector of zero-mean noise
supposed bounded.

5.1.2. Accelerometers

The accelerometers measure the difference between the inertial acceleration and gravity expressed in
the body frame Eb. Then, the triaxial accelerometer’s output can be written as:

sb1 = R(a− ge3) + ηs

where a ∈ R3 is the projection, in the inertial frame Ef , of the acceleration vector ~a of the body.
g = 9.81 m·s−2 denotes the gravity acceleration and ηs ∈ R3 is the vector of bounded zero-mean noise.
If the absolute acceleration of the quadrotor is small relative to the gravity acceleration (|a| � |ge3|), the
“vector observation” given by the accelerometer is:

sb1 = −Rsf1 + ηA (25)

with sf1 = ge3/|ge3| = [0 0 1]T and ηA = ηs + ηa, where ηa represents the vibrations and small
accelerations of the quadrotor.

Remark 2. In absence of motion reaction forces exerted by the environment, the quadrotor (or any VTOL
vehicle in general) only experiencesacceleration along the body-fixed direction ~eb3 for the taking-off
and horizontal translational movements. In the present case, only the attitude stabilization is studied.
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Therefore, |a| � |ge3| and the triaxial accelerometer can be used as a reference vector sensor where
the gravity vector is the reference vector and the acceleration itself is considered as a disturbance. In
the case where the translational movements are considered, velocity sensors embedded on the quadrotor
can be used to determine the vertical force or thrust and to compute the acceleration subsequently. A
compensation of this acceleration in the measurements delivered by the accelerometer can be considered
in order to obtain only the projection of the gravity vector in the body’s frame.

5.1.3. Magnetometers

The magnetic field vector expressed in the frame Ef is supposed to be modeled by the unit vector
sf2 = [0.71 0 0.69]T , which represents the direction of the magnetic field vector in Puebla city, Mexico
(GPS: 19◦01′41.78′′ N, 98◦11′16.81′′ W) where the experiments have been carried out. Since the
measurements are relative to the body frame Eb, they are given by:

sb2 = Rsf2 + ηM

where ηM ∈ R3 denotes the perturbing magnetic field supposed to be modeled by zero-mean
bounded noise.

Remark 3. The quadrotor evolves in a limited space characterized by a constant magnetic field vector.

5.2. Determination of the Unstable Equilibrium

Given the accelerometer sensor measurement sf1 = [0 0 1]T and the magnetometer sensor
measurement sf2 = [0.71 0 0.69]T (Figure 1), one can easily notice that the two vectors belong to the
plane (~ef1 , ~e

f
3 ). The identity sbk = −Rds

f
k = RsRds

f
k is defined by a symmetry relative to the axis ~ef2 ;

therefore, Rs = diag(−1, 1,−1), which characterizes a rotation of angle 180◦ about the axis ~ef2 .

5.3. Bounded Output Feedback for Quadrotor Attitude Stabilization

In order to stabilize the attitude of the quadrotor UAV, the subsystem ΣR of Equation (21) is used. The
rotational motion of the helicopter responds to the control torques arising from the linear combination
of the blades’ rotational speed given in Equation (24). Hence, the maximum airframe control torque
depends on the highest rotational speed of the actuators that are used.

Consequently, the maximum torques that can be applied to control the quadrotor’s rotational motion
are given by:

Γ̄1 = 0.15 N·m, Γ̄2 = 0.15 N·m, Γ̄3 = 0.09 N·m (26)

In order to avoid unwanted damages to the actuators, the bounded attitude control presented in the
previous section is applied to the subsystem ΣR of Equation (21).

Corollary 1. Consider the quadrotor UAV rotational dynamics described by the subsystem ΣR

of Equation (21). The bounded control input defined in Equation (13) asymptotically stabilizes
the quadrotor at the equilibrium (ω,R) = (0, Rd) with a domain of attraction equal to
TSO(3) \ {(0, RsRd)}.
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Proof. The steps of the proof are identical to those of Theorem 1. The only difference lies in the vector
ΓG, which adds a term that is canceled because of the relation:

ωTΓG = ωT ([ω]×e3)
4∑

i=1

Jr(−1)i+1ωmi
= 0

where Jr is the inertia of the rotor.

In the case where the angular velocity is not available, the control law proposed in Theorem 2 can
be applied to the quadrotor described by the subsystem ΣR of Equation (21). Then, one claims the
following result:

Corollary 2. Consider the quadrotor mini-helicopter rotational dynamics described by the subsystem
ΣR of Equation (21). The bounded control input defined in Equation (16) asymptotically stabilizes
the quadrotor at the equilibrium (ω,R, vm) = (0, Rd, 0) with a domain of attraction equal to
TSO(3)× R3n \ {(0, RsRd, 0)}.

Proof. The steps of the proof are identical to those of Theorem 2 and Corollary 1.

Remark 4. Corollaries 1 and 2 state that the quadrotor can be theoretically asymptotically stabilized
from any initial condition belonging to TSO(3) \ {(0, RsRd)} and TSO(3) × R3n \ {(0, RsRd, 0)},
respectively. However, the stabilization depends on the actuator dynamics. Actually, a quadrotor with
sufficient speed and power can fly in a loop without any problem. Nevertheless, hovering or flying in
a straight line upside down is quite impossible, since the profile of the blades would not allow this
to happen.

6. Experimental Results

This section is devoted to showing the effectiveness of the proposed control approaches. Experiments
on the quadrotor prototype (Figure 4) by the “Dynamical Systems and Control” group of the Autonomous
University of Puebla (BUAP) are carried out in real time.

Figure 4. The quadrotor mini-helicopter in flight.

The control laws are executed on a Spartan-6 FPGA LX9 MicroBoard. The Spartan-6 has the
ability to implement a “MicroBlaze” soft processor running at 66.7 MHz. Furthermore, the Spartan-6
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has the advantage of being able to develop custom modules, such as PWM generators and Universal
Synchronous/Asynchronous Receiver/Transmitter (USART) ports. A sensor suite composed of a triaxial
magnetometer, a triaxial accelerometer and three rate gyros mounted orthogonally is used to obtain the
vector observations and angular velocity by means of a serial communication (RS-232 ). A Bluetooth
modem linked to a PC is used to exchange the processed data. The desired attitude can be provided also
by means of a five-channel Radio-Control Spektrum DX5e with 2.4-GHz radio technology. Four power
modules are used to drive the motors by means of a PWM signal. The frequency of the PWM signal is
fixed at 500 Hz. The power for all system is supplied by a 11.1 Volt Li-Po battery, and the total weight
is 0.986 kg.

The FPGA inputs are the angular velocity and the vector observations (magnetic and gravity field
vectors) provided by the MAG-suite, alongside with the desired attitude provided by the ground station
by means of the Bluetooth modem or the Spektrum receiver (in the latter, case a timer detects and
measures the width of the pulses coming in from the receiver, which are proportional to the desired
angles and desired thrust). Since the desired attitude is provided by the pilot in terms of Euler angles,
the on-board processor computes the desired rotational matrix Rd in order to evaluate the attitude error
defined in Equation (6). Then, the attitude control law is computed, and the PWM signals used to
control the four motors rotational velocities are updated. Optionally, the embedded system can provide
the processed data to a ground station, in order to monitor the experiment. The attitude control loop
runs at 75 Hz, fixed by the MAG-suite constraints. The block diagram of the overall system is shown in
Figure 5.

MAG-Suite

Figure 5. The block diagram of the quadrotor’s attitude control system.

Two experiments are performed using the control torques defined in Corollaries 1 and 2, respectively,
and respecting the motors characteristics given in Equation (26). The objective of the experiments is to
bring the quadrotor from any initial orientation to the desired attitude defined by null roll, pitch and yaw
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angles and to hold it there by maintaining the angular velocity at zero. The desired thrust is taken as
T ≥ mg = 8.19 N, such that it guarantees a balance of the quadrotor’s weight. Note that the vectors ~sf1
and ~sf2 are non-collinear. Furthermore, the direction of ~sf1 coincides with the direction of the z-axis of
the inertial coordinate frame Ef .

6.1. Stabilization Using the Control Law of Corollary 1

The tuning parameters of the control input are set toN1,2 = 0.11,N3 = 0.05, λ = 0.05 and ρ = 0.04. The
initial conditions are (φ = 18◦, θ = −19◦ and ψ=−44◦) for the roll, pitch and yaw angles, respectively,
with a null angular velocity. The evolution of the the roll, pitch and yaw angles is shown in Figure 6. Note
that the angles are not used to compute the control torque; they are presented only to show the attitude
evolution, because they are more intuitive. The angular velocities, the vector observations (accelerometer
and magnetometer measurements), the control torques and the pulse width of the motor control signals
are presented in Figures 7–11, respectively. The convergence of the angles and angular velocities is
reached in an acceptable time (1.5 s). As can be seen in Figures 6 and 7, the initial conditions produce a
large error in the yaw angle and angular velocity. Consequently, the control signal Γ3 reaches its bound
of ±0.09 N·m (see Figures 10 and 11) and takes action on the system to stabilize it. Note that there
exists a slight deviation of the yaw angle. This is principally due to the disturbance in the magnetic
field induced by the motors. In spite of the aforementioned deviations, the system behavior remains
very acceptable.

The control law of Corollary 1 is also tested in the presence of disturbances applied successively to
the three axes (roll, pitch and yaw). These disturbances can characterize some winds facing the engine.
During experiments, the disturbances have been applied manually as a flick on the quadrotor body for less
than one second. Note that the disturbance produces a large error of the yaw angle and the corresponding
angular velocity, the control signal Γ3 reaches its bound once more. Evidently, the control acts to bring
the quadrotor to the desired attitude while respecting the motor constraints.
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Figure 6. Control law of Corollary 1: the evolution of the roll, pitch and yaw angles.
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Figure 7. Control law of Corollary 1: the evolution of the body’s angular velocity.
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Figure 8. Control law of Corollary 1: the evolution of the accelerometer measurement sb1.
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Figure 11. Control law of Corollary 1: the pulse width of the four motors’ control signals.
The red dashed lines define the bounds of the pulse width.

6.2. Stabilization Using the Control Law of Corollary 2

The control law presented in Corollary 2 is applied. The tuning parameters of the control input are set
to N̄1,2 = 0.29, N̄3 = 0.866, λ = 0.06, ρ = 0.04, a = 25 and b = 5, in order to respect the constraint (20). The
initial conditions are (φ = 19◦, θ =−4◦ and ψ =−31◦) for the roll, pitch and yaw angles, respectively, with
a null angular velocity. One should be careful with setting the initial condition of the two last Equations
of (16). A simple way is to set ζ(0) = vm(0) − bSb(0), when vm(0) = 0. The evolution of the the
roll, pitch and yaw angles, the corresponding angular velocities, the vector observations (accelerometer
and magnetometer measurements), the control torques and the pulse width of the motor control signals
are presented, respectively, in Figures 12–17. The convergence of the angles is reached in a suitable
time (1.5 s). The variations of the control torque signals are more pronounced relative to the control law
of Corollary 1. This is due to the disturbances induced by the vector observations used to reconstruct the
angular velocity. Note that the vector observations are noisier than the rate gyros. However, the effect of
oscillations is reduced when applied to the quadrotor, because the control signal is filtered by the motors.
This can be explained by the fact that a DC motor is equivalent to an integrator that behaves as a low-pass
filter or an averaging filter. As for the angles, the evolution of the angular velocity is depicted only for
the sake of clarity. It is not used in the control law’s computation.

The present control law is tested with respect to some disturbances. Note that the disturbance produces
a large error in the angles, as well as in the angular velocity, making the control signals Γ1 and Γ3 reach
their bounds. Evidently, the control takes action on the system to overcome the disturbances, while only
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feasible control signals are applied to the system. This case study shows that the controller proposed in
this paper is robust with respect to external disturbances. The control law maximizes the effectiveness
of the actuators without endangering the system’s stability. This robustness property is essential in real
missions, where aerodynamic forces and other factors are present.
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Figure 12. Control law of Corollary 2: the evolution of the roll, pitch and yaw angles.
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Figure 13. Control law of Corollary 2: the evolution of the body’s angular velocity.
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Figure 14. Control law of Corollary 2: the evolution of the accelerometer measurement sb1.
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Figure 16. The bounded control torques of Corollary 2. The red dashed lines define the
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7. Conclusions

A biomimetic-based approach, inspired by insect flight, is presented in this paper for stabilizing rigid
bodies. This approach is based on the direct measurements of embedded sensors that mimic some
sensitive organs of flapping flyers, such as halteres, leg sensilla and magnetic sense. The boundedness
of the developed torques is also taken into account in this strategy. In other words, two bounded
stabilizing control torques based on a bounded feedback and computed over direct sensor measurements
are proposed. The first one is based on a rate gyro and directional sensor measurements. The second
one spares the angular velocity measurement and uses only directional sensor measurements. These
biomimetic-based control laws are low cost in terms of computations, since they take into account the
saturation of the actuators, are independent of the body’s inertia, ensure the asymptotic stability of the
system and do not need an explicit attitude reconstruction. The stability of the closed loop system,
subjected to the control laws, is proven by means of Lyapunov analyses. Note that the proof is not limited
to symmetric bodies, like quadrotor UAVs. The proof is therefore valid for possibly non-symmetric rigid
bodies. In spite of the sensor measurement disturbances, the stability of the proposed biomimetic-based
control laws is validated in real time through experimental tests using the quadrotor UAV of the
Autonomous University of Puebla (BUAP). Their robustness with respect to external disturbances is
also shown.

Future work concerns the application of this approach in real time on the flapping wing micro-aerial
vehicle prototype developed in the context of the project “Cooperative Control of Micro-UAVs
for Mapping and Precision Agriculture” supported by the Research and Postgraduate Office of the
Autonomous University of Puebla (VIEP-BUAP).

Acknowledgments

This work was partially supported by the Research and Postgraduate Office of the Autonomous
University of Puebla (VIEP-BUAP) under grant GUCJ-ING15-I, the Mexico’s National Council for
Science and Technology (CONACYT), the Grenoble Institute of Technology (Grenoble-INP) and
the “Entomoptère Volant Autonome” (EVA) project, supported by the French National Research
Agency (ANR).

Author Contributions

José Fermi Guerrero-Castellanos, Hala Rifaï and Nicolas Marchand proposed the output feedback
strategy, developed the control law and the stability proofs and wrote the paper. Rafael Cruz-José
and Samer Mohamed implemented the Inertial MEMS sensors suite and developed the simulations and
the optimization of real-time code for experimental tests. W. Fermín Guerrero-Sánchez and Gerardo
Mino-Aguilar developed the quadrotor prototype (parameter identification, ground station, on-board
system) and conducted the experiments.

Conflicts of Interest

The authors declare no conflict of interest.



Micromachines 2015, 6 1020

References

1. Alexander, D.E.; Vogel, S. Nature’s Flyers: Birds, Insects and the Biomechanics of Flight;
The Johns Hopkins University Press: Baltimore, MD, USA, 2004.

2. Campolo, D.; Barbera, G.; Schenato, L.; Pi, L.; Deng, X.; Guglielmelli, E. Attitude stabilization of
a biologically inspired robotic housefly via dynamic multimodal attitude estimation. Adv. Robot.
2009, 23, 955–977.

3. Dudley, R. The Biomechanics of Insect Flight: Form, Function, Evolution; Princeton Univerity
Press: Princeton, NJ, USA, 2002.

4. Zbikowski, R. Sensor-rich feedback control: A new paradigm for flight control inspired by insect
agility. IEEE Instrum. Meas. Mag. 2004, 7, 19–26.

5. Crouch, P.E. Spacecraft attitude control and stabilization: Applications of geometric control theory
to rigid body models. IEEE Trans. Autom. Control 1984, 29, 321–331.

6. Byrnes, C.; Isidori, A. On the attitude stabilization of rigid spacecraft. Automatica 1991, 27, 87–95.
7. Wen, J.T.; Kreutz-Delgado, K. The attitude control problem. IEEE Trans. Autom. Control 1991,

36, 1148–1162.
8. Fjellstad, O.; Fossen, T. Quaternion Feedback Regulation of Underwater Vehicles. In Proceedings

of the 3rd IEEE Conference on Control Application, Glasgow, UK, 24–26 August 1994.
9. Joshi, S.M.; Kelkar, A.G.; Wen, J.T. Robust attitude stabilization of spacecraft using nonlinear

quaternion feedback. IEEE Trans. Autom. Control 1995, 40, 1800–1803.
10. Belta, C. On Controlling Aircraft and Underwater Vehicles. In Proceedings of the IEEE

International Conference on Robotics and Automation, City, Country, 26 April–1 May 2004;
pp. 4905–4910.

11. Tayebi, A. Unit quaternion-based output feedback for the attitude tracking problem. IEEE Trans.
Autom. Control 2008, 53, 1516–1520.

12. Schlanbusch, R.; Loria, A.; Nicklasson, P.J. On the stability and stabilization of quaternion
equilibria of rigid bodies. Automatica 2012, 48, 3135–3141.

13. Mayhew, C.; Sanfelice, R.; Teel, A. On path-lifting mechanisms and unwinding in
quaternion-based attitude control. IEEE Trans. Autom. Control 2013, 58, 1179–1191.

14. Shuster, M.D. A survey of attitude representations. J. Astronaut. Sci. 1993, 41, 439–517.
15. Crassidis, J.L.; Markley, F.L.; Cheng, Y. Survey of nonlinear attitude estimation methods. J. Guid.

Control Dyn. 2007, 30, 12–28.
16. Mahony, R.; Hamel, T.; Pflimlin, J.M. Nonlinear complementary filters on the special orthogonal

group. IEEE Trans. Autom. Control 2008, 53, 1203–1218.
17. Martin, P.; Salaün, E. Design and implementation of a low-cost observer-based attitude and heading

reference system. Control Eng. Pract. 2010, 18, 712–722.
18. Guerrero-Castellanos, J.F.; Madrigal-Sastre, H.; Durand, S.; Torres, L.; Muñoz Hernández, G.A.

A robust nonlinear observer for real-time attitude estimation using low-cost MEMS inertial sensors.
Sensors 2013, 13, 15138–15158.



Micromachines 2015, 6 1021

19. Pounds, P.; Hamel, T.; Mahony, R. Attitude Control of Rigid Body Dynamics from Biased
IMU Measurements. In Proceedings of the 46th IEEE Conference on Decision and Control,
New Orleans, LA, USA, 12–14 December 2007; pp. 4620–4625.

20. Chaturvedi, N.A.; McClamroch, N.H.; Bernstein, D.S. Asymtotic smooth stabilization of the
inverted 3-D Pendulum. IEEE Trans. Autom. Control 2009, 54, 1204–1215.

21. Chaturvedi, N.A.; Sanyal, M.K.; McClamroch, N.H. Rigid-body attitude control. IEEE Control
Syst. Mag. 2011, 31, 30–51.

22. Khosravian, A.; Namvar, M. Rigid body attitude control using a single vector measurement and
gyro. IEEE Trans. Autom. Control 2012, 57, 1273–1279.
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