Near―perfect non-crossing harmonic matchings in randomly labeled points on a circle - Archive ouverte HAL
Communication Dans Un Congrès Discrete Mathematics and Theoretical Computer Science Année : 2005

Near―perfect non-crossing harmonic matchings in randomly labeled points on a circle

Résumé

Consider a set $S$ of points in the plane in convex position, where each point has an integer label from $\{0,1,\ldots,n-1\}$. This naturally induces a labeling of the edges: each edge $(i,j)$ is assigned label $i+j$, modulo $n$. We propose the algorithms for finding large non―crossing $\textit{harmonic}$ matchings or paths, i. e. the matchings or paths in which no two edges have the same label. When the point labels are chosen uniformly at random, and independently of each other, our matching algorithm with high probability (w.h.p.) delivers a nearly―perfect matching, a matching of size $n/2 - O(n^{1/3}\ln n)$.
Fichier principal
Vignette du fichier
dmAD0103.pdf (143.97 Ko) Télécharger le fichier
Origine Fichiers éditeurs autorisés sur une archive ouverte
Loading...

Dates et versions

hal-01184038 , version 1 (12-08-2015)

Identifiants

Citer

József Balogh, Boris Pittel, Gelasio Salazar. Near―perfect non-crossing harmonic matchings in randomly labeled points on a circle. 2005 International Conference on Analysis of Algorithms, 2005, Barcelona, Spain. pp.17-26, ⟨10.46298/dmtcs.3366⟩. ⟨hal-01184038⟩

Collections

TDS-MACS
83 Consultations
645 Téléchargements

Altmetric

Partager

More