Pattern distribution in various types of random trees - Archive ouverte HAL
Communication Dans Un Congrès Discrete Mathematics and Theoretical Computer Science Année : 2005

Pattern distribution in various types of random trees

Résumé

Let $\mathcal{T}_n$ denote the set of unrooted unlabeled trees of size $n$ and let $\mathcal{M}$ be a particular (finite) tree. Assuming that every tree of $\mathcal{T}_n$ is equally likely, it is shown that the number of occurrences $X_n$ of $\mathcal{M}$ as an induced sub-tree satisfies $\mathbf{E} X_n \sim \mu n$ and $\mathbf{V}ar X_n \sim \sigma^2 n$ for some (computable) constants $\mu > 0$ and $\sigma \geq 0$. Furthermore, if $\sigma > 0$ then $(X_n - \mathbf{E} X_n) / \sqrt{\mathbf{V}ar X_n}$ converges to a limiting distribution with density $(A+Bt^2)e^{-Ct^2}$ for some constants $A,B,C$. However, in all cases in which we were able to calculate these constants, we obtained $B=0$ and thus a normal distribution. Further, if we consider planted or rooted trees instead of $T_n$ then the limiting distribution is always normal. Similar results can be proved for planar, labeled and simply generated trees.
Fichier principal
Vignette du fichier
dmAD0121.pdf (123.77 Ko) Télécharger le fichier
Origine Fichiers éditeurs autorisés sur une archive ouverte
Loading...

Dates et versions

hal-01184031 , version 1 (12-08-2015)

Identifiants

Citer

Gerard Kok. Pattern distribution in various types of random trees. 2005 International Conference on Analysis of Algorithms, 2005, Barcelona, Spain. pp.223-230, ⟨10.46298/dmtcs.3359⟩. ⟨hal-01184031⟩

Collections

TDS-MACS
58 Consultations
629 Téléchargements

Altmetric

Partager

More