Some remarks concerning harmonic functions on homogeneous graphs - Archive ouverte HAL
Communication Dans Un Congrès Discrete Mathematics and Theoretical Computer Science Année : 2003

Some remarks concerning harmonic functions on homogeneous graphs

Résumé

We obtain a new result concerning harmonic functions on infinite Cayley graphs $X$: either every nonconstant harmonic function has infinite radial variation in a certain uniform sense, or there is a nontrivial boundary with hyperbolic properties at infinity of $X$. In the latter case, relying on a theorem of Woess, it follows that the Dirichlet problem is solvable with respect to this boundary. Certain relations to group cohomology are also discussed.
Fichier principal
Vignette du fichier
dmAC0113.pdf (81.4 Ko) Télécharger le fichier
Origine Fichiers éditeurs autorisés sur une archive ouverte
Loading...

Dates et versions

hal-01183944 , version 1 (12-08-2015)

Identifiants

Citer

Anders Karlsson. Some remarks concerning harmonic functions on homogeneous graphs. Discrete Random Walks, DRW'03, 2003, Paris, France. pp.137-144, ⟨10.46298/dmtcs.3348⟩. ⟨hal-01183944⟩

Collections

TDS-MACS
42 Consultations
789 Téléchargements

Altmetric

Partager

More