Rigorous Result for the CHKNS Random Graph Model - Archive ouverte HAL
Communication Dans Un Congrès Discrete Mathematics and Theoretical Computer Science Année : 2003

Rigorous Result for the CHKNS Random Graph Model

Rick Durrett
  • Fonction : Auteur
  • PersonId : 828831

Résumé

We study the phase transition in a random graph in which vertices and edges are added at constant rates. Two recent papers in Physical Review E by Callaway, Hopcroft, Kleinberg, Newman, and Strogatz, and Dorogovstev, Mendes, and Samukhin have computed the critical value of this model, shown that the fraction of vertices in finite clusters is infinitely differentiable at the critical value, and that in the subcritical phase the cluster size distribution has a polynomial decay rate with a continuously varying power. Here we sketch rigorous proofs for the first and third results and a new estimates about connectivity probabilities at the critical value.
Fichier principal
Vignette du fichier
dmAC0109.pdf (104.77 Ko) Télécharger le fichier
Origine Fichiers éditeurs autorisés sur une archive ouverte
Loading...

Dates et versions

hal-01183940 , version 1 (12-08-2015)

Identifiants

Citer

Rick Durrett. Rigorous Result for the CHKNS Random Graph Model. Discrete Random Walks, DRW'03, 2003, Paris, France. pp.95-104, ⟨10.46298/dmtcs.3345⟩. ⟨hal-01183940⟩
157 Consultations
1135 Téléchargements

Altmetric

Partager

More