Discrete Random Walks on One-Sided ``Periodic'' Graphs - Archive ouverte HAL
Communication Dans Un Congrès Discrete Mathematics and Theoretical Computer Science Année : 2003

Discrete Random Walks on One-Sided ``Periodic'' Graphs

Michael Drmota
  • Fonction : Auteur
  • PersonId : 832499

Résumé

In this paper we consider discrete random walks on infinite graphs that are generated by copying and shifting one finite (strongly connected) graph into one direction and connecting successive copies always in the same way. With help of generating functions it is shown that there are only three types for the asymptotic behaviour of the random walk. It either converges to the stationary distribution or it can be approximated in terms of a reflected Brownian motion or by a Brownian motion. In terms of Markov chains these cases correspond to positive recurrence, to null recurrence, and to non recurrence.
Fichier principal
Vignette du fichier
dmAC0108.pdf (114.88 Ko) Télécharger le fichier
Origine Fichiers éditeurs autorisés sur une archive ouverte
Loading...

Dates et versions

hal-01183939 , version 1 (12-08-2015)

Identifiants

Citer

Michael Drmota. Discrete Random Walks on One-Sided ``Periodic'' Graphs. Discrete Random Walks, DRW'03, 2003, Paris, France. pp.83-94, ⟨10.46298/dmtcs.3344⟩. ⟨hal-01183939⟩

Collections

TDS-MACS
81 Consultations
820 Téléchargements

Altmetric

Partager

More