Approximation and Analytical Studies of Inter-clustering Performances of Space-Filling Curves - Archive ouverte HAL
Communication Dans Un Congrès Discrete Mathematics and Theoretical Computer Science Année : 2003

Approximation and Analytical Studies of Inter-clustering Performances of Space-Filling Curves

Résumé

A discrete space-filling curve provides a linear traversal/indexing of a multi-dimensional grid space.This paper presents an application of random walk to the study of inter-clustering of space-filling curves and an analytical study on the inter-clustering performances of 2-dimensional Hilbert and z-order curve families.Two underlying measures are employed: the mean inter-cluster distance over all inter-cluster gaps and the mean total inter-cluster distance over all subgrids.We show how approximating the mean inter-cluster distance statistics of continuous multi-dimensional space-filling curves fits into the formalism of random walk, and derive the exact formulas for the two statistics for both curve families.The excellent agreement in the approximate and true mean inter-cluster distance statistics suggests that the random walk may furnish an effective model to develop approximations to clustering and locality statistics for space-filling curves.Based upon the analytical results, the asymptotic comparisons indicate that z-order curve family performs better than Hilbert curve family with respect to both statistics.
Fichier principal
Vignette du fichier
dmAC0106.pdf (189.55 Ko) Télécharger le fichier
Origine Fichiers éditeurs autorisés sur une archive ouverte
Loading...

Dates et versions

hal-01183933 , version 1 (12-08-2015)

Identifiants

Citer

Ho-Kwok Dai, Hung-Chi Su. Approximation and Analytical Studies of Inter-clustering Performances of Space-Filling Curves. Discrete Random Walks, DRW'03, 2003, Paris, France. pp.53-68, ⟨10.46298/dmtcs.3338⟩. ⟨hal-01183933⟩

Collections

TDS-MACS
64 Consultations
763 Téléchargements

Altmetric

Partager

More