Constructing a sequence of random walks strongly converging to Brownian motion
Résumé
We give an algorithm which constructs recursively a sequence of simple random walks on $\mathbb{Z}$ converging almost surely to a Brownian motion. One obtains by the same method conditional versions of the simple random walk converging to the excursion, the bridge, the meander or the normalized pseudobridge.
Origine | Fichiers éditeurs autorisés sur une archive ouverte |
---|
Loading...