Average properties of combinatorial problems and thermodynamics of spin models on graphs - Archive ouverte HAL
Communication Dans Un Congrès Discrete Mathematics and Theoretical Computer Science Année : 2003

Average properties of combinatorial problems and thermodynamics of spin models on graphs

Alessandro Vezzani
  • Fonction : Auteur
  • PersonId : 917476
Davide Cassi
  • Fonction : Auteur
  • PersonId : 916471
Raffaella Burioni
  • Fonction : Auteur
  • PersonId : 917477

Résumé

The study of thermodynamic properties of classical spin models on infinite graphs naturally leads to consider the new combinatorial problems of random-walks and percolation on the average. Indeed, spinmodels with O(n) continuous symmetry present spontaneous magnetization only on transient on the average graphs, while models with discrete symmetry (Ising and Potts) are spontaneously magnetized on graphs exhibiting percolation on the average. In this paper we define the combinatorial problems on the average, showing that they give rise to classifications of graph topology which are different from the ones obtained in usual (local) random-walks and percolation. Furthermore, we illustrate the theorem proving the correspondence between Potts model and average percolation.
Fichier principal
Vignette du fichier
dmAC0131.pdf (248.49 Ko) Télécharger le fichier
Origine Fichiers éditeurs autorisés sur une archive ouverte
Loading...

Dates et versions

hal-01183924 , version 1 (12-08-2015)

Identifiants

Citer

Alessandro Vezzani, Davide Cassi, Raffaella Burioni. Average properties of combinatorial problems and thermodynamics of spin models on graphs. Discrete Random Walks, DRW'03, 2003, Paris, France. pp.333-344, ⟨10.46298/dmtcs.3329⟩. ⟨hal-01183924⟩

Collections

TDS-MACS
62 Consultations
778 Téléchargements

Altmetric

Partager

More