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Abstract

In view of the minimization of a function which is the sum of a
differentiable function f and a convex function g we introduce descent
methods which can be viewed as produced by inexact auxiliary prob-
lem principle or inexact variable metric forward-backward algorithm.
Assuming that the global objective function satisfies the Kurdyka-
 Lojasiewicz inequality we prove the convergence of the proposed al-
gorithm extending results of [5] by weakening assumptions found in
previous works.

1 Introduction

We revisit the algorithms studied in [5] for the minimization of a function
which is the sum of a differentiable function f and a convex function g. For
that purpose we use the Auxiliary Problem Principle (A.P.P.) which was de-
veloped in [6]. It allows to find the solution of an optimization problem by
solving a sequence of problems called auxiliary problems and as such gives
a general framework which can describe a large class of optimization algo-
rithms. One of the basic algorithm which can be obtained through the A.P.P.
is the so-called Forward-Backward (F.B.) algorithm [4]. The convergence of
the F.B. algorithm has been recently established for nonconvex functions
f and g in [3] under the assumption that that the function f is Lipschitz
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differentiable and that the global objective function satisfies the Kurdyka-
 Lojasiewicz (KL) inequality [10]. It is of importance to note that given the
KL assumption it is possible to prove the convergence of an inexact F.B.
algorithm. Inexact F.B. or Inexact A.P.P. means that the auxiliary opti-
mization problems which are iteratively solved can be solved approximately,
the approximation will goes to zero as the algorithm converges. Moreover,
as pointed in [3], the KL inequality holds for a wide class of functions.

In [5], the authors study a potential way to accelerate the inexact F.B.
algorithm through variable metric strategy in the context of nonconvex func-
tion. In this article, simplifying the original proof of [3] we can prove the
convergence of the inexact variable metric F.B. algorithm of [5] under weaker
assumptions.

2 Preliminaries

We recall here some standard definitions from variational analysis follow-
ing [14, 3]. The Euclidean scalar product of Rm and its corresponding norm
are respectively denoted by 〈·, ·〉 and ‖·‖. For a given positive definite matrix
A we denote by 〈·, ·〉A and ‖·‖A the scalar product of Rm and its correspond-
ing norm defined for all (x, y) ∈ R

m × R
m by

〈x, y〉A = 〈Ax, y〉 and ‖x‖A = 〈Ax, x〉 1

2 .

If F : Rm ⇉ R
m is a point-to-set mapping its graph is defined by

GraphF
def
= {(x, y) ∈ R

m × R
m : y ∈ F (x)} ,

while its domain is given by

domF
def
= {x ∈ R

m : F (x) 6= ∅} .

Similarly, the graph of a real-extended-valued function ψ : Rm → R∪{+∞}
is defined by

Graphψ
def
= {(x, s) ∈ R

m × R : s = ψ(x)} ,

and its domain by

domψ
def
= {x ∈ R

m : ψ(x) < +∞} .

The epigraph of ψ is defined as usual as

epiψ
def
= {(x, λ) ∈ R

m × R : ψ(x) ≤ λ} .
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When ψ is a proper function, i.e. when domψ 6= ∅ , the set of its global
minimizers, possibly empty, is denoted by

argminψ
def
= {x ∈ R

m : ψ(x) = inf ψ} .

The level set of ψ at height δ ∈ R is lev≤δψ
def
= {x ∈ R

n : ψ(x) ≤ δ}. The
notion of subdifferential plays a central role in the following theoretical and
algorithm developments. For each x ∈ domψ, the Fréchet subdifferential of
ψ at x, written ∂̂ψ(x), is the set of vectors v ∈ R

m which satisfy

lim inf
y 6=x
y→x

1

‖x− y‖ (ψ(y) − ψ(x) − 〈v, y − x〉) ≥ 0.

When x 6∈ domψ, we set ∂̂ψ(x) = ∅. The limiting processes used in an
algorithmic context necessitate the introduction of the more stable notion of
limiting-subdifferential (or simply subdifferential) of ψ. The subdifferential
of ψ at x ∈ domψ, written ∂ψ(x), is defined as follows

∂ψ(x)
def
=

{

v ∈ R
m : ∃xn → x, ψ(xn) → ψ(x), vn ∈ ∂̂ψ(xn) → v

}

.

It is straightforward to check from the definition the following closedness
property of ∂ψ: Let (xn, vn)n∈N be a sequence in R

m × R
m such that

(xn, vn) ∈ Graph ∂ψ for all n ∈ N. If (xn, vn) converges to (x, v), and
ψ(xn) converges to ψ(x) then (x, v) ∈ Graph ∂ψ. These generalized notions
of differentiation give birth to generalized notions of critical point. A nec-
essary (but not sufficient except when ψ is convex) condition for x ∈ R

m to
be a minimizer of ψ is

0 ∈ ∂ψ(x) . (1)

A point that satisfies (1) is called limiting-critical or simply critical.
The derivative of a differentiable function ψ is strongly monotone with

constant a, if it exists a > 0 such that

for all, x, y ∈ R
m 〈∇ψ(x) −∇ψ(y), x− y〉 ≥ a ‖x− y‖2 . (2)

Remark 1 If a differentiable and convex function ψ satisfy (2), then for
all x, y ∈ R

m we have

Dψ(y, x)
def
= ψ(y) − ψ(x) − 〈∇ψ(x), y − x〉 ≥ a

2
‖x− y‖2 . (3)

The function Dψ(y, x) is called the Bregmann distance associated to function
ψ.
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The derivative of a differentiable function ψ is Lipschitz with constant
L (or L-Lipschitz), if it exists L > 0 such that,

‖∇ψ(x) −∇ψ(y)‖ ≤ L ‖x− y‖ . (4)

Remark 2 Note, that, thanks to the Lemma 1 (see for example [12, 3.2.12])
when the derivative of a function ψ is L-Lipschitz then we have

for all, x, y ∈ R
m Dψ(y, x) ≤ L

2
‖x− y‖2 . (5)

Lemma 1 (Descent Lemma) Let ψ : R
m → R be a function and C a

convex subset of R
m with nonempty interior. Assume that ψ is C1 on a

neighborhood of each point in C and that ∇ψ is L-Lipschitz continuous on
C. Then, for any two points x, u ∈ C,

ψ(y) ≤ ψ(x) + 〈∇ψ(x), y − x〉 +
L

2
‖x− y‖2 . (6)

3 Auxiliary Problem Principle and variations on

F.B. Algorithm

We consider here the Auxiliary Problem Principle (A.P.P) for a function

h
def
= f + g where g : Rm → R ∪ {+∞} is a proper lower semicontinuous

convex function and f : R
m → R is differentiable. The core step of the

A.P.P. algorithm is to consider the solution of the auxiliary problem

y ∈ argmin
y∈Rm

Tx(y), with Tx(y)
def
= 〈∇f(x), y − x〉+DK(y, x)+g(y)−g(x).

(7)
where DK is the Bregman distance (3) associated to a given core function K
which is assumed to be differentiable. Starting with x0 ∈ dom g we iterate
the core step to build a sequence (xn)n∈N with xn+1 ∈ argminy∈Rm Txn(y)
(Note that this sequence will stay in dom g and with proper choice of the
core K, the argmin considered in the iteration is reduced to a unique point).
Under technical assumptions the constructed sequence will have a cluster
point which is a critical point of the function h.

The A.P.P is quite versatile and as developed in [6] many different algo-
rithms can be obtained using a proper choice of the core function K. The
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existence and even uniqueness of a solution to Problem (7) can be ensured
by proper choice of of the core function. Note also, that the core function
can be replaced by a sequence of functionals which may depend on the it-
erations and over-relaxation or under-relaxation can be introduced in the
sequences. The convergence details are given in [6, Theorem 2.1] under con-
vexity assumptions. We do not recall them here, since our purpose is to
focus to the inexact version. We just give an example of a possible core
choice which leads to the so-called F.B. algorithm.

Suppose that the core function K is chosen as K(x) = ‖x‖2 /(2γ) then
we obtain

Tx(y)
def
=

1

2γ
‖y − (x− γ∇f(x))‖2 + g(y) − g(x) . (8)

This choice of Tx operator mixed with under-relaxation with parameter λ ∈
(0, 1] gives the so-called F.B. algorithm which consists of the iterations:

yn ∈ proxλ,g(xn − γ∇f(xn)) and xn+1 = (1 − λ)xn + λyn . (9)

The proximal operator, proxλ,g, being defined by

proxλ,g(x) = argmin
y∈Rm

(

g(y) +
1

2λ
‖y − x‖2

)

. (10)

The minimization problem in (10) has a unique solution when g is a proper
convex lower semicontinuous function [7, Lemma 4.1.1]. The Variable Metric
Forward-Backward algorithm (V.M.F.B.) is obtained when the core function
K is set to a weighted norm (or more precisely to a sequence of weighted
norms) ‖·‖A /(2γ) whereA is a positive definite matrix to be properly chosen.
This gives rise to extensions of the prox operator with weighted metric [7,
Definition 4.1.2].

Before exposing the inexact F.B. or V.M.F.B. algorithm, we recall a ba-
sic property which is satisfied by the iterates of the A.P.P. and which will
remains valid in the case of an inexact algorithm. We easily check that
Tx(x) = 0 for all x ∈ R

m, and therefore for y∗ ∈ argminy∈Rm Tx(y) we nec-
essarily have Tx(y∗) ≤ 0. The A.P.P algorithm will thus have iterates in the
set {y |Tx(y) ≤ 0}. This last property is a requested assumption when con-
sidering inexact algorithms. We have the following simple characterization
which combined with assumptions on the core K will ensure the decrease of
the main function h = f + g during iterations.

Lemma 2 For all y ∈ R
m and all x ∈ dom g we have

{y |Tx(y) ≤ 0} = {y |h(y) +DK−f(y, x) ≤ h(x)} . (11)
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Proof : Using the definition of the Bregman distance, we obtain the following
equivalent expression of the Tx operator Tx(y) = h(y) +DK−f (y, x) − h(x)
and the result follows. �

We end this section showing that choosing y ∈ {y′ |Tx(y′) ≤ 0} and
then z = (1 − λ)x + λy with λ > 0 (over or under-relaxation) will ensures
decreasing values of h.

Lemma 3 Let y ∈ R
m and x ∈ dom g be such that y ∈ {y′ |Tx(y′) ≤ 0}.

Assume that the derivative of f is L-Lipschitz and K is such that

DK(y, x) ≥ c

2
‖y − x‖2 (12)

where c is a positive real. Then we have, for any z = (1 − λ)x + λy and
λ > 0,

h(x) ≥ h(z) +
λc− L

2
‖z − x‖2 . (13)

Proof : We successively have

h(z) =f(z) + g(z) = f(z) + g((1 − λ)x + λy)

≤f(z) + (1 − λ)g(x) + λg(y) (g convex)

≤f(x) + 〈∇f(x), z − x〉 +
L

2
‖z − x‖2 + g(x) (with (4))

+ λ(g(y) − g(x))

≤h(x) +
L

2
‖z − x‖2 + λ (〈∇f(x), y − x〉 + g(y) − g(x)))

≤h(x) +
L

2
‖z − x‖2 − λDK(y, x) . (Tx(y) ≤ 0)

We thus obtain h(x) ≥ h(z) + (λc−L)
2 ‖z − x‖2. �

We turn now to the informal presentation of the inexact F.B. algorithm
as described in [5]. The ingredients of the algorithm are as follows. The

core functions is chosen as K(x)
def
= (1/2) ‖x‖2A where the given positive

definite matrix A is changed during the iterations. Under relaxation is
used. The minimization step y ∈ argminy∈Rm Tx(y) is replaced by a partial
minimization. We choose y ∈ {y |Tx(y) ≤ 0} and such that it exists v ∈
∂h(y) such that ‖v‖ ≤ τ ′ ‖x− y‖.
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4 Kurdyka- Lojasiewicz properties

In order to prove the convergence of the inexact F.B. algorithm in the non-
convex or non-strongly-monotone case we will use as in [5, 3] the Kurdyka-
 Lojasiewicz property assumption that we describe here. The main result of
this section is Theorem 5 which is the same as [3, Theorem 2.9] with a proof
based on a simpler Lemma 4 which enables us to easily take into account
relaxation in the proposed algorithm as given in Corollary 6. The Kurdyka-
 Lojasiewicz property was originally developed in [11, 10, 8]. It was first used
in gradient methods in [1] to prove the convergence of descent iterations.

In this section, a and b are fixed positive constants and h : R
m →

R ∪ {+∞} is a given proper lower semicontinuous function. For a fixed

x∗ ∈ R
m, the notation hx∗ denotes the function hx∗(·) def

= h(·) − h(x∗) and
[d < h < e] denotes the set {x ∈ R

m : d < h(x) < e}. The following
definition is taken from [2] as used in [3].

Definition 3 (Kurdyka- Lojasiewicz property) The function h : Rm → R ∪
{+∞} is said to have the Kurdyka- Lojasiewicz property (KL property) at
x∗ ∈ dom ∂h if there exist η ∈ (0,+∞], a neighborhood U of x∗ and a
continuous concave function φ : [0, η) → R

+ such that:

1. φ(0) = 0,

2. φ is C1 on (0, η),

3. for all s ∈ (0, η), φ′(s) > 0,

4. for all x in U ∩ [h(x∗) < h < h(x∗) + η], the Kurdyka- Lojasiewicz
inequality holds

φ′(h(x) − (x∗)) dist(0, ∂h(x)) ≥ 1 . (14)

Proper lower semicontinuous functions which satisfy the Kurdyka- Lojasiewicz
inequality at each point of dom ∂h are called KL functions.

Assumption 1 (Localization condition). Let x∗ ∈ R
m be given, a variable

x ∈ R
m is said to satisfy assumption B(U, η, ρ) if there exists ρ > 0 such

that

h(x) ∈ B(h(x∗), η), x ∈ B(x∗, γ(x)) and B (x∗, γ(x) + δ(x)) ⊂ U
(15)

where the functions γ and δ are given by

γ(x)
def
= ρ+

b

a
φ (hx∗(x)) and δ(x)

def
=

√

hx∗(x)

a
. (16)
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We start with a technical Lemma. If the function h has the KL property
at a point x∗, we prove that we can find a neighborhood of x∗ which is
such that all the values of y satisfying Equations (17) and (18) will stay
in the same neighborhood. This Lemma is simpler that the corresponding
lemma [3, Lemma 2.6] because we assume that y is such that h(x∗) < h(y).
This assumption appears to be sufficient to prove Theorem 5 since equality
is treated separately. More precisely:

Lemma 4 Assume that the function h has the Kurdyka- Lojasiewicz prop-
erty at x∗ ∈ dom ∂h with parameters (U, η, ρ) and assume that x ∈ R

m

satisfy property B(U, η, ρ). Let y ∈ R
m such that h(x∗) < h(y) satisfying

the following inequality

h(y) + a ‖x− y‖2 ≤ h(x) , (17)

and such that there exists z ∈ ∂h(y) which satisfy

‖z‖ ≤ b ‖x− y‖ . (18)

Then, we have that

‖x− y‖ ≤ b

a
(φ(hx∗(y)) − φ(hx∗(x))) (19)

and y satisfy property B(U, η, ρ).

Proof : We first show that we can use the KL property at x∗ with y.
Using the fact that y satisfy Equation (17) and that h(x∗) < h(y) we obtain
successively that h(x∗) < h(y) < h(x∗) + η and

‖x− y‖ ≤
√

h(x) − h(x∗)

a
≤

√

η

a
. (20)

This last equation together with the fact that x satisfy B(U, η, ρ) gives us
that y ∈ B(x∗, γ(x) + δ(x)) ⊂ U . We can therefore apply the KL prop-
erty at x∗ with y. We proceed as follows, let z be in ∂h(y) and satisfying
Equation (18), we have that

dist(0, ∂h(y)) ≤ ‖z‖ ≤ b ‖x− y‖ .

which, combined with the fact that y is such that y ∈ U ∩ [h(x∗) < h <
h(x∗) + η] and Equation (14) gives

φ′(hx∗(y))−1 ≤ b ‖x− y‖ . (21)
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Now, using the concavity of the function φ we have

φ(hx∗(y)) − φ(hx∗(x)) ≥ φ′(hx∗(y))(hx∗(y) − hx∗(x)) . (22)

Using the fact that φ′ > 0, Equation (22) can be rewritten as

(hx∗(y) − hx∗(x)) ≤ (φ(hx∗(y)) − φ(hx∗(x)))φ′(hx∗(y))−1

(using Equation (21))

≤ (φ(hx∗(y)) − φ(hx∗(x)))b ‖x− y‖ . (23)

Using Equation (17), Equation (23) and the inequality
√
uv ≤ (u+ v)/2 we

successively obtain

‖x− y‖ ≤
(

hx∗(y) − hx∗(x)

a

)1/2

≤
(

(φ(hx∗(y)) − φ(hx∗(x)))
b

a
‖x− y‖

)1/2

≤ 1

2

(

b

a
(φ(hx∗(y)) − φ(hx∗(x))) + ‖x− y‖

)

. (24)

We finally rewrite Equation (24) as

‖x− y‖ ≤ b

a
(φ(hx∗(y)) − φ(hx∗(x))) . (25)

It remains to prove that y satisfy B(U, η, ρ). Using the fact that x ∈
B(x∗, γ(x)) and Equation (25) we obtain

‖x∗ − y‖ ≤ ‖x∗ − x‖ + ‖x− y‖

≤ ρ+
b

a
φ(hx∗(x)) +

b

a
(φ(hx∗(y)) − φ(hx∗(x)))

≤ ρ+
b

a
φ(hx∗(y)) = γ(y) ,

which gives y ∈ B(x∗, γ(y)). Moreover, the function φ is non-increasing
and hx∗(y) ≤ hx∗(x) we thus have γ(y) ≤ γ(x) and also δ(y) ≤ δ(x) which
ensures

B(x∗, γ(y) + δ(y)) ⊂ B(x∗, γ(x) + δ(x)) ⊂ U , (26)

and we conclude that y satisfy B(U, η, ρ). �
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Remark 4 Suppose that z = (1 − λ)x+ λy with λ ∈)0, 1] and (x, y) ∈ R
2m

satisfy the assumption of Lemma 4. Then, using the fact that ‖z − x‖ =
λ ‖y − x‖, we obtain that z satisfy property B(U, η, ρ).

Assumption 2 We assume that the sequence (xn)n∈N satisfies the following
conditions:

(i) (Sufficient decrease condition). For each n ∈ N,

h(xn+1) + a ‖xn+1 − xn‖2 ≤ h(xn); (27)

(ii) (Relative error condition). For each n ∈ N, there exists wn+1 ∈ ∂h(xn+1)
such that

‖wn+1‖ ≤ b ‖xn+1 − xn‖ ; (28)

(iii) (Continuity condition). There exists a subsequence (xσ(n))n∈N and x∗

such that

xσ(n) → x∗ and h(xσ(n)) → h(x∗), as j → ∞ . (29)

Theorem 5 (Convergence to a critical point [3, Theorem 2.9]) Let h :
R
m → R ∪ {+∞} be a proper lower semicontinuous function. Consider

a sequence (xn)n∈N that satisfies Assumption 2. If h has the Kurdyka-
 Lojasiewicz property at the cluster point x∗ specified in Assumption 2-(iii),
then the sequence (xn)n∈N converges to x∗ as k goes to infinity, and x∗ is a
critical point of h. Moreover the sequence (xn)n∈N has a finite length, i.e.

+∞
∑

n=0

‖xn+1 − xn‖ < +∞. (30)

Proof : We first show that we can find n0 ∈ N for which xn0
satisfy

assumption B(U, η, ρ) where (φ,U, η) are the parameters associated with
the KL property of h at x∗ given in Assumption 2-(iii). Let x∗ be the
cluster point of (xn)n∈N given by Assumption 2-(iii), since (h(xn))n∈N is
a nonincreasing sequence (as a direct consequence of Assumption 2-(i)),
we deduce that h(xn) → h(x∗) and h(xn) ≥ h(x∗) for all integers k. Then,
since φ is continuous and such that φ(0) = 0 we also have that the sequences
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γ(xn)n∈N ↓ ρ and δ(xn)n∈N ↓ 0. We choose ρ′ > 0 such that B(x∗, ρ′) ⊂ U ,
and fix ρ = ρ′/3. Let n1 ∈ N be such that

∀n ≥ n1 γ(xn) ≤ ρ′

2
and γ(xn) ≤ min(

ρ′

2
, aη2) . (31)

Now, since x∗ is a cluster point of the sequence (xn)n∈N, we can find n0 ≥ n1
such that xn0

∈ B(x∗, γ(xn0
)). For xn0

we have

h(xn0
) ∈ B(h(x∗), η), and B(x∗, γ(xn0

)+δ(xn0
)) ⊂ B(x∗, ρ′) ⊂ U , (32)

and thus xn0
satisfy B(U, η, ρ).

Now suppose that the sequence (xn)n∈N is such that h(xn) > h(x∗) for
all n ∈ N. Then, is now possible to apply recursively Lemma 4 for k ≥ n0,
to obtain that the sequence (xn)n≥n0

has a finite length and thus converges
to x. Since h is lower semicontinuous we obtain h(x) ≤ h(x∗). If is happens
that h(xn1

) = h(x∗), then we have h(xn) = h(x∗) for all n ≥ n1 and using
Assumption 2-(i)we also have that xn = xn1

for n ≥ n1 and the sequence
thus converges to x∗. �

Assumption 3 We assume that the sequences (xn)n∈N and (yn)n∈N satisfy
the following conditions:

(i) (Sufficient decrease condition). For each n ∈ N,

h(yn) + a ‖yn − xn‖2 ≤ h(xn);

h(xn+1) + a′ ‖xn+1 − xn‖2 ≤ h(xn);

(ii) (Relative error condition). For each n ∈ N, there exists wn ∈ ∂h(yn)
such that

‖wn‖ ≤ b ‖yn − xn‖ ; (33)

(iii) (Continuity condition). There exists a subsequence (xσ(n))n∈N and x∗

such that

xσ(n) → x∗ and h(xσ(n)) → h(x∗), as j → ∞ . (34)

(iv) (λ-Relaxation condition). The two sequences (xn)n∈N and (yn)n∈N are
linked by

xn+1 = (1 − λn)xn + λnyn , (35)

where (λn)n∈N is a given sequence of reals such that for all n ∈ N,
λn ∈ [λ, 1] and λ > 0.
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Corollary 6 (Convergence to a critical point in the under-relaxation case)
Let h : Rm → R ∪ {+∞} be a proper lower semicontinuous function. Con-
sider two sequences (xn)n∈N and (yn)n∈N that satisfies Assumption 3. If
h has the Kurdyka- Lojasiewicz property at the cluster point x∗ specified in
Assumption Assumption 3-(iii), then the sequence (xn)n∈N and (yn)n∈N con-
verge to x∗ as k goes to infinity, and x∗ is a critical point of h. Moreover
the sequence (xn)n∈N and (yn)n∈N have a finite length, i.e.

+∞
∑

n=0

‖xn+1 − xn‖ < +∞ and

+∞
∑

n=0

‖yn+1 − yn‖ < +∞. (36)

Proof : The proof is very similar to the proof of Theorem 5. Proceed-
ing as in Theorem 5, it is possible to find n0 ∈ N for which xn0

satisfy
assumption B(U, η, ρ) where (φ,U, η) are the parameters associated with
the KL property of h at x∗ given in Assumption 2-(iii). Then to proceed
as in Theorem 5 we just have to show that the iterates satisfy assump-
tion B(U, η, ρ) which is the case using Remark 4. We thus obtain that the
(xn)n∈N has a finite length and converges to x∗ a critical point of h. We now
prove the result for the sequence (yn)n∈N. Using Equation (35) we have that
‖yn − xn‖ ≤ (1/λ) ‖xn+1 − xn‖ which gives the convergence of the sequence
(yn)n∈N to x∗ when n goes to infinity. Then, the inequality

‖yn+1 − yn‖ ≤ ‖yn+1 − xn+1‖ + ‖xn+1 − xn‖ + ‖yn − xn‖

≤ 1

λ
‖xn+2 − xn+1‖ + (

1

λ
+ 1) ‖xn+1 − xn‖ (37)

gives the finite length property for the sequence (yn)n∈N. �

5 Inexact variable metric forward-backward algo-

rithm

We turn now to the Inexact Variable Metric Forward-Backward (Inexact
V.M.F.B.) algorithm studied in [5, 7]. We want to minimize a function
h : Rm →]−∞,+∞] and assume that h can be split as h = f + g where f is
a differentiable function and g is a proper lower semicontinuous and convex
function. More precisely, we use the same assumptions as in [5].
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Assumption 4 The function h = f+g, where the functions f and g satisfy
the following assumptions:

(i) The function g : RN →] −∞,+∞] is proper, lower semicontinuous and
convex, and its restriction to its domain is continuous.

(ii) The function f : R
N → R is differentiable and its derivative is L-

Lipschitz (L > 0) on dom g:

∀(x, y) ∈ (dom g)2 ‖∇f(x) −∇f(y)‖ ≤ L ‖x− y‖ .

(iii) The function h = f + g is coercive (i.e., lim‖x‖→+∞ h(x) = +∞).

(iv) The function h satisfies the Kurdyka- Lojasiewicz inequality (Defini-
tion 3).

Remark 7 As pointed out in [5], according to Assumption 4, the func-
tion h is proper and lower semicontinuous and its restriction to its domain
(domh = dom g a nonempty convex set) is continous. Thus, combines with
the coecivity of h, the level sets of h are compact sets.

We consider the sequence of A.P.P problems given by

T nx (y)
def
= 〈∇f(x), y − x〉 +DKn

(y, x) + g(y) − g(x). (38)

where (An)n∈N is a given sequence of symmetric positive matrices and for
all x ∈ R

m, Kn(x) = 1
2γn

‖x‖2An
with (γn)n∈N a given sequence of reals such

that γn ∈]0,+∞).
Starting with x0 ∈ dom g, the Exact V.M.F.B. algorithm consists in

building the sequences (xn)n∈N and (yn)n∈N as follows:

yn ∈ argmin
y

T nxn(y) and xn+1 = (1 − λn)xn + λnyn , (39)

where (λn)n∈N is a sequence of reals such that for all n ∈ N, λn ∈ [λ, 1] with
λ > 0. As such the Exact V.M.F.B. is obtained by applying the A.P.P with
weighted metrics and under-relaxation.

Let now τ ∈]0,+∞[ be given, the Inexact V.M.F.B. Algorithm (as for-
mulated in [5]) iterates starting with x0 ∈ dom g as follows:

yn ∈
{

y ∈ R
m : T nxn(y) ≤ 0

}

∩ ΓAn
(xn) (40)

xn+1 = (1 − λn)xn + λnyn , (41)
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where ΓA(x) is defined by

ΓA(x)
def
= {y ∈ R

m : ∃r ∈ ∂g(y) s.t ‖∇f(x) + r‖ ≤ τ ‖y − x‖A}

Using previous results we obtain a simple proof of the convergence of
the Inexact V.M.F.B algorithm as described by Theorem 8. The proof is
simplified when compared to the proof of [5, Theorem 7] and [5, Assumption
3.5] is not needed here. The fact that the Exact V.M.F.B algorithm is a
special case of the Inexact V.M.F.B can be found in [5].

Theorem 8 (Convergence of the Inexact V.M.F.B algorithm) We consider
the sequences (xn)n∈N and (yn)n∈N obtained using Equations (40) and (41).
We assume that

ν

2
‖x‖2 ≤ Kn(x) ≤ ν

2
‖x‖2 (42)

with λν > L. Then, under assumptions Assumption 4 the sequences (xn)n∈N
and (yn)n∈N satisfy Assumption 3 and the sequence (xn)n∈N converges to x∗

(Assumption 3-(iii)) and x∗ is a critical point of h.

Proof : We prove that the sequence (xn)n∈N generated by (40) and (41)
satisfy Assumption 3. Using Lemma 2 combined with Equation (5) and the
choice of Kn we obtain

h(yn) +
1

2
(ν − L) ‖yn − xn‖2 ≤ h(xn) . (43)

Using Lemma 3 with c = ν and using the fact that λn ∈ [λ, 1], we obtain

h(xn+1) +
1

2
(λν − L) ‖xn+1 − xn‖2 ≤ h(xn) . (44)

Assumption 3-(i) is fulfilled with a = (ν − L)/2 and a′ = (λν −L)/2 which
are both positive since λν > L and λ ∈)0, 1]. Now, using the fact that
yn ∈ ΓAn

(xn) we obtain rn ∈ ∂g(yn) which is such that

‖∇f(xn) + rn‖ ≤ τ ‖yn − xn‖An
(45)

We thus obtain wn+1 = ∇f(yn) + rn ∈ ∂h(yn)such that

‖wn+1‖ ≤ ‖∇f(yn) −∇f(xn)‖ + τ ‖yn − xn‖An

≤ L ‖yn − xn‖ + τ ‖yn − xn‖An
≤ (L+

√
ντ) ‖yn − xn‖ . (46)

Assumption 3-(ii)is thus satisfied. It only remains to prove that Assump-
tion 3-(iii)is satisfied, since Assumption 3-(iv)is given by construction.
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For Assumption 3-(iii)we first use the fact that the sequence (xn)n∈N is
bounded as the level sets of h are compact sets (see Remark 7) and h(xn)n∈N
is decreasing. Using the fact that the h is continuous when restricted to its
domain we can conclude that Assumption 3-(iii)is satisfied by proceeding as
in [3, Theorem 4.2]. �

When g ≡ 0, we can reformulate the Inexact V.M.F.B algorithm in order
to write yn as the sum of the solution of the exact algorithm solution and an
error ǫn. The next Lemma gives the constraint on ǫn which can be deduced
from the constraint on yn given by T nx (yn) ≤ 0.

Lemma 5 Suppose that g ≡ 0, and for x ∈ R
m consider the operator T nx

given by Equation (38). The the set T≤0
x

def
= {y ∈ R

m : T nx (y) ≤ 0} has the
following equivalent representation

T≤0
x =

{

x− γnA
−1
n ∇f(x) + ǫ with ‖ǫ‖An

≤ γn ‖∇f(x)‖A−1
n

}

(47)

Proof : The proof is straightforward and left to the reader. Note that x −
γnA

−1
n ∇f(x) is the unique element in argminy′ T

n
x (y′). �

Remark 9 Using Lemma 5 we can reformulate Equations (40) and (41) as
follows. xn ∈ R

m being given, choose ǫn ∈ R
m such that

‖ǫn‖An
≤ γn ‖∇f(xn)‖A−1

n

and ‖∇f(xn)‖ ≤ τ
∥

∥ǫn − γnA
−1
n ∇f(xn)

∥

∥

An
,

and update yn and xn+1 with

yn = xn − γnA
−1
n ∇f(xn) + ǫn

xn+1 = (1 − λn)xn + λnyn .

5.1 An application to the inexact averaged projection algo-

rithm

In [3, Theorem 3.5] an algorithm is proposed in order to solve a nonconvex
feasibility problem and our aim in this section is to derive from Theorem 5
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a similar algorithm and its convergence proof. We recall form [3] the con-
text and properties which are used in the algorithm presentation. A closed
subset F of Rm is called prox-regular if its projection operator PF is single-
valued around each point x in F (see [13, 3] and references therein). Now,
let F1, . . . Fp be nonempty closed semi-algebraic (See [3] and below), prox-
regular subsets of R

m such that ∩pi=1Fi 6= ∅. A classical approach to the
problem of finding a common point to the sets F1, . . . Fp is to find a global
minimizer of the function f : Rm → [0,+∞) defined by

f(x)
def
=

1

2

p
∑

i=1

dist(x, Fi)
2 (48)

where dist(·, Fi) is the distance function to the set Fi. When F is prox-
regular the function g(x) = 1

2 dist(x, F )2 have the following properties [13, 9].

Theorem 10 ([13]) Let F be a closed prox-regular set. Then, for each x in
F there exists r > 0 such that:

(a) The projection PF is single-valued on B(x, r),

(b) the function g is C1 on B(x, r) and ∇g(x) = x− PF (x),

(c) the gradient mapping ∇g is 1-Lipschitz continuous on B(x, r).

The function f given by Equation (48) is semi-algebraic, because the
distance function to any nonempty semi-algebraic set is semi-algebraic. This
implies in particular that f is a KL function.

We are thus in a situation where the function f has a 1-Lipschitz con-
tinuous gradient in a neighborhood of x ∈ ∩pi=1Fi and is a KL function.
Moreover we know that sequences which satisfy Assumption 2 will stay in a
neighborhood of x∗ specified in Assumption 2-(iii). Then, using Theorem 5,
applied to h = f + g with g ≡ 0 will ensure the convergence of sequences
satisfying Assumption 2 when x0 is sufficiently close to ∩pi=1Fi and

Theorem 11 the sequences (xn)n∈N, (yn)n∈N and (ǫn)n∈N generated by the
following iterates

yn = xn − γnA
−1
n R(xn) + ǫn

xn+1 = (1 − λn)xn + λnyn . (λn ∈ [λ, 1], λ > 0)
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where ǫn ∈ R
m is chosen such that ‖ǫn‖An

≤ γn ‖R(xn)‖A−1
n

and ‖∇R(xn)‖ ≤
τ
∥

∥ǫn − γnA
−1
n ∇R(xn)

∥

∥

An
with R : Rm ⇉ R defined by:

R(x)
def
=

p
∑

i=1

(x− PFi
(x)) .

are such that the sequence (xn)n∈N converges to an element x∗ ∈ ∩pi=1Fi if
x0 is sufficiently close to ∩pi=1Fi and if the sequences (Kn)n∈N is such that
ν
2 ‖x‖

2 ≤ Kn(x) ≤ ν
2 ‖x‖

2 and λν > p.

Proof : Using Remark 9, the iterates considered in Theorem 11 are similar
to the iterates of the inexact V.M.F.B algorithm (Equations (40) and (41))
applied to h = f + g with g ≡ 0 and where ∇f is replaced by R. Note that
R is not uniquely defined, but it will be when restricted to a neighborhood
of ∩pi=1Fi. The conclusion of Theorem 11 will follow from Theorem 8 if we
can prove that Assumptions 4 are fulfilled. In fact we only need to have
Assumptions 4 in a closed subset of R

m as noted in [3, Remark 3.3]. We
proceed as follows, as it was shown in the proof of Theorem 5 or Lemma 4,
if xn is in a neighborhood of a point x then the iterates will stay in the same
neighborhood. Using Theorem 10 we can shrink the neighborhood to obtain
that R is single-valued and coincide with ∇f which is p-Lipschitz continuous
on the selected neighborhood of x. Thus in neighborhood of x the iterates
considered in Theorem 11 coincide with the iterates of the inexact V.M.F.B
for a function h = f which satisfy Assumptions 4 in a neighborhood of
x except the coercivity assumption. But since the sequence will stay in a
neighborhood of x the coercivity assumption is not necessary and we can
conclude using Theorem 8. �

Remark 12 Even if we chose λ = 1 and Kn(x) = ‖x‖2 /(2γ) we do not
exactly recover the same algorithm as in [3, Theorem 3.5]

6 Conclusion

In this paper we have recalled the Auxiliary Problem Principle (A.P.P.). It
allows to find the solution of an optimization problem by solving a sequence
of problems called auxiliary problems and as such gives a general framework
which can describe a large class of optimization algorithms. Being able to
solve the auxiliary problems not exactly without breakdown in the global
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algorithm is an important issue. Assuming that the global function to be
minimized satisfies the Kurdyka- Lojasiewicz (KL) inequality open the door
to such inexact auxiliary problems. Inexact algorithms were developed in [3].
In this paper we have studied the inexact variable metric Forward-Backward
algorithm of [5] and proved its convergence under weaker assumptions than
in the original work. We have given an application of this algorithm to the
inexact averaged projection algorithm [3].
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