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We are interested in the behaviour of the range of the Campanino and Pétritis random walk [2], namely a simple random walk on the lattice Z 2 with random orientations of the horizontal layers. We also study the range of random walks in random scenery, from which the asymptotic behaviour of the range of the first coordinate of the Campanino and Pétritis random walk can be deduced.

Introduction and main results

We consider the random walk on a randomly oriented lattice M = (M n ) n considered by Campanino and Pétritis [START_REF] Campanino | Random walks on randomly oriented lattices[END_REF]. It is a particular example of transient 2-dimensional random walk in random environment. We fix a p ∈ (0, 1) corresponding to the probability for M to stay on the same horizontal line. The environment is given by a sequence ǫ = (ǫ k ) k∈Z of i.i.d. (independent identically distributed) centered random variables with values in {±1} and defined on the probability space (Ω, T , P). Given ǫ, M is a closest-neighbourghs random walk on Z 2 starting from 0 (i.e. P ǫ (M 0 = 0) = 1) and with transition probabilities P ǫ (M n+1 = (x + ǫ y , y)|M n = (x, y)) = p, P ǫ (M n+1 = (x, y ± 1)|M n = (x, y)) = 1p 2 .

We will write P for the annealed expectation, that is the integration of P ǫ with respect to P.

In the papers [START_REF] Guillotin-Plantard | Ny A functional limit theorem for a 2d-random walk with dependent marginals Electronic[END_REF] and [START_REF] Castell | A local limit theorem for random walks in random scenery and on randomly oriented lattices[END_REF] respectively, a functional limit theorem and a local limit theorem were proved for the random walk M under the annealed measure P. In this note we are interested in the asymptotic behaviour of the range R n of M , i.e. of the number of sites visited by M before time n: R n := #{M 0 , . . . M n }.

Since we know (see [START_REF] Campanino | Random walks on randomly oriented lattices[END_REF][START_REF] Castell | A local limit theorem for random walks in random scenery and on randomly oriented lattices[END_REF]) that M is transient for almost every environment ǫ, it is not surprising that R n has order n. More precisely we prove the following result.

Proposition 1. The sequence (R n /n) n converges P-almost surely to P[M j = 0, ∀j ≥ 1].

We observe that the almost sure convergence result stated for the annealed probability P implies directly the same convergence result for the quenched probability P ǫ for P-almost every ǫ.

Since R n ≤ n + 1, due to the Lebesgue dominated convergence theorem, we directly obtain the next result.

Corollary 2. We have

E[R n ] ∼ nP[M j = 0, ∀j ≥ 1] and E ǫ [R n ] ∼ nP[M j = 0, ∀j ≥ 1] for P-almost every ǫ.
This last result contradicts the result expected by Le Ny in [START_REF] Ny | Range of a Transient 2d-Random Walk[END_REF] for the behaviour of the quenched expectation. The main difficulty of this model is that M has stationary increments under the annealed probability P and is a Markov chain under the quenched probability P ǫ for P-almost every ǫ but M is not a Markov chain with stationary increments (neither for P nor for P ǫ ). This complicates seriously our study.

Remark 3. For P-almost every ǫ, (M n ) n is a transient Markov chain with respect to P ǫ , hence

P ǫ [M j = 0, ∀j ≥ 1] = 1/ n≥0 P ε (M n = 0) and P[M j = 0, ∀j ≥ 1] = E 1/ n≥0 P ε (M n = 0) .
The Campanino and Pétritis random walk is closely related to Random Walks in Random Scenery (RWRS). This fact was first noticed in [START_REF] Guillotin-Plantard | Ny A functional limit theorem for a 2d-random walk with dependent marginals Electronic[END_REF]. More precisely the first coordinate of the Campanino and Pétritis random walk can be viewed as a generalized RWRS, the second coordinate being a lazy random walk on Z (see Section 5 of [START_REF] Castell | A local limit theorem for random walks in random scenery and on randomly oriented lattices[END_REF] for the details). The main point is that the range of the first coordinate of the Campanino and Pétritis random walk can easily be deduced from the following results about the range of random walks in random scenery. Let us recall the definition of the RWRS. Let ξ := (ξ y , y ∈ Z) and X := (X k , k ≥ 1) be two independent sequences of independent identically distributed random variables taking their values in Z. The sequence ξ is called the random scenery. The sequence X is the sequence of increments of the random walk (S n , n ≥ 0) defined by S 0 := 0 and S n := n i=1 X i , for n ≥ 1. The random walk in random scenery (RWRS) Z is then defined by

Z 0 := 0 and ∀n ≥ 1, Z n := n k=1 ξ S k .
Denoting by N n (y) the local time of the random walk S :

N n (y) := #{k = 1, ..., n : S k = y} ,
it is straightforward to see that Z n can be rewritten as Z n = y ξ y N n (y).

As in [START_REF] Kesten | A limit theorem related to a new class of self-similar processes[END_REF], the distribution of ξ 0 is assumed to belong to the normal domain of attraction of a strictly stable distribution S β of index β ∈ (0, 2], with characteristic function φ given by φ(u) = e -|u| β (A 1 +iA 2 sgn(u)) u ∈ R,

where 0 < A 1 < ∞ and |A -1 1 A 2 | ≤ | tan(πβ/2)|. When β > 1, this implies that E[ξ 0 ] = 0. When β = 1,
we assume the symmetry condition sup t>0 E ξ 0 1I {|ξ 0 |≤t} < +∞ . Concerning the random walk, the distribution of X 1 is assumed to belong to the normal basin of attraction of a stable distribution S ′ α with index α ∈ (0, 2], with characteristic function ψ given by ψ(u) = e -|u| α (C 1 +iC 2 sgn(u)) u ∈ R,

where 0 < C 1 < ∞ and |C -1 1 C 2 | ≤ | tan(πα/2)|.
In the particular case where α = 1, we assume that C 2 = 0. Moreover we assume that the additive group Z is generated by the support of the distribution of X 1 .

Then the following weak convergences hold in the space of càdlàg real-valued functions defined on [0, ∞) endowed with the Skorohod J 1 -topology :

n -1 α S ⌊nt⌋ t≥0 L =⇒ n→∞ (Y (t)) t≥0 ,   n -1 β ⌊nx⌋ k=0 ξ k   x≥0 L =⇒ n→∞ (U (x)) x≥0 and   n -1 β 1 k=⌊-nx⌋ ξ k   x≥0 L =⇒ n→∞ (U (-x)) x≥0
where (U (x)) x≥0 , (U (-x)) x≥0 and (Y (t)) t≥0 are three independent Lévy processes such that

U (0) = 0, Y (0) = 0, Y (1) has distribution S ′ α , U (1) 
and U (-1) have distribution S β . We will denote by (L t (x)) x∈R,t≥0 a continuous version with compact support of the local time of the process (Y (t)) t≥0 . Let us define

δ := 1 - 1 α + 1 αβ .
In the case α ∈ (1, 2] and β ∈ (0, 2], Kesten and Spitzer [START_REF] Kesten | A limit theorem related to a new class of self-similar processes[END_REF] proved the convergence in distribution of (n -δ Z [nt] ) t≥0 , n ≥ 1 (with respect to the J 1 -metric), to a process ∆ = (∆ t ) t≥0 defined in this case by

∆ t := R L t (x) dU (x).
This process ∆ is called Kesten-Spitzer process in the literature.

When α ∈ (0, 1) (when the random walk S is transient) and β ∈ (0, 2] \ {1}, (n

-1 β Z [nt] ) t≥0 , n ≥ 1 converges in distribution (with respect to the M 1 -metric), to (∆ t := c 0 U t ) t≥0 for some c 0 > 0. When α = 1 and β ∈ (0, 2] \ {1}, (n -1 β (log n) 1 β -1 Z [nt] ) t≥0 , n ≥ 1 converges in distribution (with respect to the M 1 -metric), to (∆ t := c 1 U t ) t≥0 for some c 1 > 0.
Hence in any of the cases considered above, (Z ⌊nt⌋ /a n ) t≥0 converges in distribution (with respect to the M 1 -metric) to some process ∆, with

a n :=      n 1-1 α + 1 αβ if α ∈ (1, 2] n 1 β (log n) 1-1 β if α = 1 n 1 β if α ∈ (0, 1).
We are interested in the asymptotic behaviour of the range R n of the RWRS Z, i.e. of the number of sites visited by Z before time n: R n := #{Z 0 , . . . , Z n }.

In the case when the RWRS is transient, we use the same argument as for (M n ) n and obtain the same kind of result. Proposition 4. Let α ∈ (0, 2] and β ∈ (0, 1). Then, (R n /n) n converges P-almost surely to

P[Z j = 0, ∀j ≥ 1].
For recurrent random walks in random scenery, we distinguish the easiest case when ξ 1 takes its values in {-1, 0, 1}. In that case, β = 2, U is the standard real Brownian motion,

a n =    n 1-1 2α if α ∈ (1, 2] √ n log n if α = 1 √ n if α ∈ (0, 1)
and the limiting process ∆ is either the Kesten-Spitzer process (case α ∈ (1, 2]) or the real Brownian motion (case α ∈ (0, 1]). Remark that in any case the limiting process is symmetric.

Proposition 5. If α ∈ (0, 2] and if ξ 1 takes its values in {-1, 0, 1}. Then R n a n = sup t∈[0,1] Z ⌊nt⌋ -inf t∈[0,1] Z ⌊nt⌋ + 1 a n L -→ sup t∈[0,1] ∆ t -inf t∈[0,1] ∆ t and lim n→+∞ E[R n ] a n = 2 E sup t∈[0,1] ∆ t .
We also study the asymptotic behaviour of the range of the first coordinate of the Campanino and Pétritis random walk. Let R

n be the number of vertical lines visited by (M k ) k up to time n, i.e.

R (1) n := #{x ∈ Z : ∃k = 0, ..., n, ∃y ∈ Z : M k = (x, y)}. Let us recall that it has been shown in [START_REF] Guillotin-Plantard | Ny A functional limit theorem for a 2d-random walk with dependent marginals Electronic[END_REF] that the first coordinate of M ⌊nt⌋ normalized by n 

n /n 3 4 ) n converges in distribution to K p sup t∈[0,1] ∆ (0) t -inf t∈[0,1] ∆ (0) t . Moreover lim n→+∞ E[R (1) n ] n 3 4 2K p E sup t∈[0,1] ∆ (0) t .
Since the second coordinate of the Campanino and Pétritis random walk is a true random walk, the asymptotic behaviour of its range is well known [START_REF] Le Gall | The range of stable random walks[END_REF]. The range of RWRS in the general case β ∈ (1, 2] is much more delicate. Indeed, the fact that R n is less than sup t∈[0,1] Z ⌊nt⌋inf s∈[0,1] Z ⌊ns⌋ + 1 will only provide an upper bound; we use a separate argument to obtain the lower bound insuring that R n has order a n .

Proposition 7. Let α ∈ (0, 2] and β ∈ (1, 2]. Then 0 < lim inf n→+∞ E[R n ] a n ≤ lim sup n→+∞ E[R n ] a n < ∞.
We actually prove that lim sup n→+∞

E[Rn] an ≤ E[sup t∈[0,1] ∆ t -inf t∈[0,1] ∆ t ].
The question wether lim n→+∞

E[Rn] an = E[sup t∈[0,1] ∆ t -inf t∈[0,1] ∆ t ] or not is still open.
The paper is organized as follows. Section 2 provides the proof of Propositions 1 and 4. Section 3 is devoted to the proof of Propositions 5, 6 and 7.

Behaviour of the range in transient cases

Let (Ω, µ, T ) be an ergodic probability dynamical system and let f : Ω → Z d be a measurable function. We consider the process (M n ) n≥0 defined by M n = n-1 k=0 f • T k for n ≥ 1 and M 0 = 0. Now we assume that n≥0 P(

M n = 0) < +∞, so (M n ) n is transient. Let R n be the range of (M n ) n , that is R n := #{M 0 , ..., M n }. Proposition 8. Assume that P(M n = 0) = O(n -θ ) for some θ > 1. Then lim n→+∞ R n /n = µ(M j = 0, ∀j ≥ 1), µ-almost surely. Proof. It is worth noting that R n = 1 + n-1 k=0 1 {M k+j =M k , ∀j=1,...,n-k} .
Indeed M k+j = M k , ∀j = 1, ..., nk means that the site M k visited at time k is not visited again before time n. We define now

R ′ n := 1 + n-1 k=0 1 {M k+j -M k =0, ∀j≥1} .
We first prove the almost sure convergence of (R ′ n /n) n . To this end, we observe that R ′ n can be rewritten

R ′ n = 1 + n-1 k=0 1 {M j =0, ∀j≥1} • T k . By ergodicity of T , (R ′ n /n) n converges almost surely to P[M j = 0, ∀j ≥ 1]. Now let us estimate R n -R ′ n . We have R n -R ′ n 1 = E[R n -R ′ n ] ≤ n-1 k=0 P(∃j ≥ n -k, M k+j -M k = 0) ≤ n-1 k=0 P(∃j ≥ n -k, M j = 0) ≤ n k=1 j≥k P(M j = 0) ≤ n k=1 j≥k Cj -θ =    O(n 2-θ ) when 1 < θ < 2 O(log n) when θ = 2 O(1)
when θ > 2 using the stationarity of the increments of (M n ) n . Hence, when 1

< θ < 2, (R n -R ′ n )/n 1 = O(n 1-θ ). Let γ > 0 be such that γ(θ -1) > 1. Due to the Borel-Cantelli Lemma, ((R k γ - R ′ k γ )/k γ ) k
to 0, and so (R k γ /k γ ) k converges almost surely to P[M j = 0, ∀j ≥ 1]. To conclude, we use the increase of (R n ) n which gives that

R ⌊n 1 γ ⌋ γ n ≤ R n n ≤ R ⌈n 1 γ ⌉ γ n .
We conclude by noticing that ⌈n

1 γ ⌉ γ ∼ n and ⌊n 1 γ ⌋ γ ∼ n.
The cases θ = 2 and θ > 2 can be handled in a similar way.

Proof of Proposition 1. Let us consider Ω := {-1, 1} Z ×{-1, 0, 1} Z and the transformation T on Ω given by T ((

ǫ k ) k , (ω k ) k ) = ((ǫ k+ω 0 ) k , (ω k+1 ) k ). This transformation preserves the probability measure µ := ( δ 1 +δ -1 2 ) ⊗Z ⊗ (pδ 0 + 1-p 2 δ 1 + 1-p 2 δ -1
) ⊗Z and is ergodic (see for instance [START_REF] Kalikow | An outline of ergodic theory[END_REF], p.162). We also set f

((ǫ k ) k , (ω k ) k ) = (ǫ 0 , 0) if ω 0 = 0, f ((ǫ k ) k , (ω k ) k ) = (0, ω 0 ) otherwise.
We observe that (M j ) j≥1 has the same distribution under P as ( j-1 k=0 f • T j ) j≥1 under µ. We conclude by Proposition 8 since we know from [START_REF] Castell | A local limit theorem for random walks in random scenery and on randomly oriented lattices[END_REF] that

P(M n = 0) = O(n -θ ) with θ = 5/4.
Proof of Proposition 4. We consider Ω := Z Z × Z Z and the transformation T on Ω given by T ((α k ) k , (ǫ k ) k ) = ((α k+1 ) k , (ǫ k+α 0 ) k ). This transformation preserves the probability measure µ := (P S 1 ) ⊗Z ⊗ (P ξ 1 ) ⊗Z . This time we set f ((α k ) k , (ǫ k ) k ) = ǫ 0 . With these choices, (Z j ) j≥1 has the same distribution under P as ( j k=1 f • T j ) j≥1 under µ. Again we conclude thanks to Proposition 8, to the ergodicity of T (see for instance [START_REF] Kalikow | An outline of ergodic theory[END_REF], p.162) and to the local limit theorems established in [START_REF] Castell | A local limit theorem for random walks in random scenery and on randomly oriented lattices[END_REF] (Theorems 1 and 2) and [START_REF] Castell | Limit theorems for one and two-dimensional random walks in random scenery[END_REF] (Theorem 3).

Range of recurrent random walks in random scenery

In this section we prove Propositions 5, 6 and 7. We write M [START_REF] Bolthausen | A central limit theorem for two-dimensional random walks in random sceneries[END_REF] n for the first coordinate of the Campanino and Pétritis random walk M n . For Propositions 5, 6, we observe that

R n = max 0≤k≤n Z k -min 0≤k≤n Z k + 1 and R (1) n = max 0≤k≤n M (1) k -min 0≤k≤n M (1)
k +1 whereas for Proposition 7, we only have R n ≤ max 0≤k≤n Z kmin 0≤k≤n Z k + 1. Hence the convergence of the means in Propositions 5 and 6 and the upper bound in Proposition 7 will come from lemmas 9 and 10 below. Let us start by the convergence in distribution.

Proof of the convergences in distribution. Due to the convergence for the M 1 -topology of ((a -1 n Z ⌊nt⌋ ) t ) n to (∆ t ) t as n goes to infinity, we know (see Section 12.3 in [START_REF] Whitt | Stochastic process limits[END_REF]) that (a

-1 n (max 0≤k≤n Z k - min 0≤ℓ≤n Z ℓ )) n converges in distribution to sup t∈[0,1] ∆ t -inf s∈[0,1] ∆ s as n goes to infinity.
Due to [START_REF] Guillotin-Plantard | Ny A functional limit theorem for a 2d-random walk with dependent marginals Electronic[END_REF], ((M

(1) ⌊nt⌋ /n 3 4 ) t ) n converges in distribution to (K p ∆ (0)
t ) t in the Skorohod space endowed with the J 1 -metric. Hence (n -3 4 (max k=0,...,n M

kmin ℓ=0,...,n M

(1)

ℓ )) n converges in distribution to K p (sup t∈[0,1] ∆ (0) t -inf s∈[0,1] ∆ (0) s ). Lemma 9 (RWRS). Assume β > 1, then lim n→+∞ E [max k=0,...,n Z k ] a n = E sup t∈[0,1] ∆ t .
Lemma 10 (First coordinate of the Campanino and Pétritis random walk).

lim n→+∞ E max k=0,...,n M (1) k 
n 3 4 = K p E sup t∈[0,1] ∆ (0) t . 
Proof of Lemma 9. As explained above, we know that (a -1 n max 0≤k≤n Z k ) n converges in distribution to sup t∈[0,1] ∆ t as n goes to infinity. Now let us prove that this sequence is uniformly integrable. To this end we will use the fact that, conditionally to the walk S, the increments of (Z n ) n are centered and positively associated. Let β ′ ∈ (1, β) be fixed. Due to Theorem 2.1 of [START_REF] Gong | Maximal φ-inequalities for demimartingales[END_REF], there exists some constant c β ′ > 0 such that E max j=0,...,n

Z j β ′ |S ≤ E max j=0,...,n |Z j | β ′ |S ≤ c β ′ E |Z n | β ′ |S so E max j=0,...,n Z j β ′ = E E max j=0,...,n Z j β ′ |S ≤ c β ′ E |Z n | β ′ . It remains now to prove that E[|Z n | β ′ ] = O(a β ′ n ).
Let us first consider the easiest case when the random scenery is square integrable that is β = 2, then we take β ′ = 2 in the above computations and observe that

E |Z n | 2 = E[ξ 2 0 ]E[V n ]
, where V n is the number of self-intersections up to time n of the random walk S, i.e.

V n = x (N n (x)) 2 = n i,j=1 1 S i =S j . Usual computations (see Lemma 2.3 in [1]) give that E[V n ] = n i,j=1 P(S i-j = 0) ∼ c ′ (a n ) 2
and the result follows.

When β ∈ (1, 2), let us define V n (β) as follows

V n (β) := y∈Z (N n (y)) β .
Due to Lemma 2 of [START_REF] Bahr | Inequalities for the rth Absolute Moment of a Sum of Random Variables, 1 ≤ r ≤ 2[END_REF],

(1)

E |Z n | β ′ = Γ(β ′ + 1) π sin πβ ′ 2 R 1 -Re(ϕ Zn (t)) |t| β ′ +1 dt,
where ϕ Zn stands for the characteristic function of Z n , which is given by

(2) ∀t ∈ R, ϕ Zn (t) := E[e itZn ] = E E e itZn |(S k ) k = E   y∈Z ϕ ξ (tN n (y))   .
Due to our assumptions on ξ, we know that 1ϕ ξ (u) = |u| β (A 1 + iA 2 sgn(u))(1 + o( 1)) as u goes to 0. Let A, B > 0 be such that |1ϕ ξ (u)| < B|u| β for every real number u satisfying |u| < A.

Hence, for every

t such that |t| < A(V n (β)) -1 β , we have |tN n (y)| ≤ A and so |1 -ϕ ξ (tN n (y))| ≤ B|t| β (N n (y)) β and 1 -Re   y∈Z ϕ ξ (tN n (y))   ≤ 1 -   y∈Z ϕ ξ (tN n (y))   ≤ y∈Z |1 -ϕ ξ (tN n (y))| ≤ B|t| β V n (β). Hence |t|<A(Vn(β)) -1 β 1 -Re y∈Z ϕ ξ (tN n (y)) |t| β ′ +1 dt ≤ |t|<A(Vn(β)) -1 β B|t| β V n (β) |t| β ′ +1 dt ≤ BV n (β) |t|<A(Vn(β)) -1 β |t| β-β ′ -1 dt ≤ 2 A β-β ′ B β -β ′ (V n (β)) β ′ β . (3) Moreover |t|≥A(Vn(β)) -1 β 1 -Re y∈Z ϕ ξ (tN n (y)) |t| β ′ +1 dt ≤ 2 |t|≥A(Vn(β)) -1 β |t| -β ′ -1 dt ≤ 4β ′ A -β ′ (V n (β)) β ′ β . (4) 
Putting together (1), ( 2), ( 3) and (4), we obtain that there exists some constant C > 0 such that for every n

E[|Z n | β ′ ] ≤ CE (V n (β)) β ′ β . If α > 1, due to Lemma 3.3 of [5], we know that E[V n (β)] = O a β n and so (5) E (V n (β)) β ′ β = O a β ′ n .
If α ∈ (0, 1], using Hölder's inequality, we have

E[V n (β)] ≤ E[R n ] 1-β 2 E[V n ] β 2 .
Now if α = 1, we know that E[R n ] ∼ c n log n (see for instance Theorem 6.9, page 398 in [START_REF] Le Gall | The range of stable random walks[END_REF]) and

E[V n ] ∼ cn log n so E[V n (β)] = O a β n with a n = n 1 β (log n) 1-1 β .
In the case α ∈ (0, 1),the random walk is transient and the expectations of R n and V n behaves as n, we deduce that

E[V n (β)] = O a β n with a n = n 1 β . We conclude that lim n→+∞ E max j=0,...,n Z j a n = E max t∈[0,1] ∆ t .
Proof of Lemma 10. We know that (n -3 4 max k=0,...,n M

k ) n converges in distribution to K p sup t∈[0,1] ∆ (0) t . To conclude, it is enough to prove that this sequence is uniformly integrable. To this end we will prove that it is bounded in L 2 . Recall that the second coordinate of the Campanino and Pétritis random walk is a random walk. Let us write it (S n ) n . Observe that M (1) n := x (N n (x)) 2 = R n V n , with V n = x (N n (x)) 2 = n i,j=1 1 {Z i =Z j } the number of self-intersections of Z up to time n and so using Jensen's inequality,

E[R n ] a n ≥ n 2 a n E[(V n ) -1 ] ≥ n 2 a n E[V n ] -1 .
Moreover, using the local limit theorems for the RWRS proved in [START_REF] Castell | A local limit theorem for random walks in random scenery and on randomly oriented lattices[END_REF][START_REF] Castell | Limit theorems for one and two-dimensional random walks in random scenery[END_REF],

E[V n ] = n + 2 1≤i<j≤n P(Z j-i = 0) ∼ C ′ n 2 a n . Hence lim inf n→+∞ E[R n ] a n ≥ 1 C ′ > 0.

  and where ∆ (0) is the Kesten-Spitzer process ∆ with U and Y two independent standard Brownian motions.Proposition 6 (Range of the first coordinate of the Campanino and Pétritis random walk).

εM ( 1 ) j 2 |S ≤ c 2 E 2 |S ≤ c 2 y∈Z( 2 ≤ c 2 E 2 .

 12222222 S k 1I {S k =S k-1 } = y∈Z ε y Ñn (y),with Ñn (y) := #{k = 1, ..., n : S k = S k-1 = y}. Observe that Ñ is measurable with respect to the random walk S and that 0 ≤ Ñn (y) ≤ N n (y). Conditionally to the walk S, the increments of (M (1) n ) n are centered and positively associated. It follows from Theorem 2.1 of[START_REF] Gong | Maximal φ-inequalities for demimartingales[END_REF] thatE max j=0,...,n |M (1) n | Ñn (y)) 2 ≤ c 2 V n ,where againV n = y∈Z (N n (y)) [V n ].Again the result follows from the fact thatE[V n ] ∼ c ′ n 3 Proofof the lower bound of Proposition 7. Let N n (x) := #{k = 1, ..., n : Z k = x}. Applying the Cauchy-Schwarz inequality to n = x N n (x)1 {Nn(x)>0} , we obtain n 2 ≤ y 1 {Nn(y)>0}