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MULTIPLE SAMPLING AND INTERPOLATION IN

THE CLASSICAL FOCK SPACE

A. BORICHEV, A. HARTMANN, K. KELLAY, X. MASSANEDA

Abstract. We study multiple sampling, interpolation and uni-

queness for the classical Fock space in the case of unbounded mul-

tiplicities.

Sampling and interpolating sequences in Fock spaces were character-
ized by Seip and Seip–Wallstén in [3, 4] by means of a certain Beurling–
type asymptotic uniform density. The case of uniformly bounded mul-
tiplicities was considered by Brekke and Seip [1] who gave a complete
description in this situation. Their conditions show that it is not pos-
sible that a sequence is simultaneously sampling and interpolating.
Brekke and Seip also asked whether there exist sequences which are

simultaneously sampling and interpolating when the multiplicities are
unbounded.
In this research note we formulate some conditions (of geometric

nature) for sampling and interpolation. They show that the answer to
this question is negative when the multiplicities tend to infinity.
The detailed version of this work will be published elsewhere.

We now introduce the necessary notation. For α > 0, define the
Fock space F2

α by

F2
α =

{

f ∈ Hol(C) : ‖f‖22 = ‖f‖2α,2 :=
α

π

∫

C

|f(z)|2e−α|z|2dm(z) < ∞
}

.

The space F2
α is a Hilbert space with the inner product

〈f, g〉 = α

π

∫

C

f(z)g(z)e−α|z|2dm(z).

The sequence

ek(z) =

√
αk

√
k!

zk, k ≥ 0,
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defines an orthonormal basis in F2
α.

Recall that the translations

Tzf(ζ) = T α
z f(ζ) := eαz̄ζ−

α

2
|z|2f(ζ − z), f ∈ F2

α.

act isometrically in F2
α.

Let us now define sampling and interpolation in the unbounded mul-
tiplicity case. Consider the divisor X = {(λ,mλ)}λ∈Λ, where Λ is a
sequence of points in C and mλ ∈ N is the multiplicity associated with
λ. The divisor X is called

• sampling for F2
α if

‖f‖22 ≍
∑

λ∈Λ

mλ−1
∑

k=0

|〈f, Tλek〉|2, f ∈ F2
α ,

• interpolating for F2
α if for every sequence

v = {v(k)λ }λ∈Λ, 0≤k<mλ

such that

‖v‖22 :=
∑

λ∈Λ

mλ−1
∑

k=0

|v(k)λ |2 < ∞,

there exists a function f ∈ F2
α satisfying

〈f, Tλek〉 = v
(k)
λ , 0 ≤ k < mλ, λ ∈ Λ.

As in the situation of classical interpolation and sampling, the sepa-
ration between points in Λ plays an important role. Denote by D(z, r)
the disc of radius r centered at z.

• A divisor X = {(λ,mλ)}λ∈Λ is said to satisfy the finite overlap
condition if

sup
z∈C

∑

λ∈Λ

χ
D(λ,

√
mλ/α)

(z) < ∞.

If Λ is a finite union of Λj such that the discs D(λ,
√

mλ/α), λ ∈ Λj,
are disjoint for every j, then X satisfies the finite overlap condition.

The following result gives geometric conditions for sampling in the
case of unbounded multiplicities.
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Theorem 1. (a) If X = {(λ,mλ)}λ∈Λ is a sampling divisor for F2
α,

then X satisfies the finite overlap condition and there exists C > 0 such
that

⋃

λ∈Λ

D(λ,
√

mλ/α+ C) = C.

(b) Conversely, if X = {(λ,mλ)}λ∈Λ satisfies the finite overlap con-
dition and for every C > 0 there is a compact subset K of C such
that

⋃

λ∈Λ, mλ>αC2

D(λ,
√

mλ/α− C) = C \K,

then X is a sampling divisor for F2
α.

Remark. Let X = {(λ,mλ)}λ∈Λ satisfy the conditions of Theorem 1
(b). Then we can find a subset Λ1 ⊂ Λ such that for every C > 0 there
is a compact subset K of C satisfying

⋃

λ∈Λ1,mλ>αC2

D(λ,
√

mλ/α− C) = C \K,

and

lim
λ∈Λ1, |λ|→∞

mλ = +∞.

The following result gives geometric conditions for interpolation in
the case of unbounded multiplicities.

Theorem 2. (a) If X = {(λ,mλ)}λ∈Λ is an interpolating divisor for

F2
α, then there exists C > 0 such that the discs {D(λ,

√

mλ/α −
C)}λ∈Λ,mλ>αC2 are pairwise disjoint.

(b) Conversely, if the disks {D(λ,
√

mλ/α + C)}λ∈Λ are pairwise dis-
joint for some C > 0, then X is an interpolating divisor for F2

α.

Remark. It is easily seen that if X is a divisor such that for some
C > 0 the discs {D(λ,

√

mλ/α− C)}λ∈Λ,mλ>αC2 are pairwise disjoint,
and if lim

|λ|→∞
mλ = +∞, then X satisfies the finite overlap condition.

Though our geometric conditions do not characterize interpolation
and sampling they allow us to deduce the following result, which gives
a partial answer to the question raised by Brekke and Seip.
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Corollary 3. Let the divisor X = {(λ,mλ)}λ∈Λ satisfy the condition
lim

|λ|→∞
mλ = +∞. Then X cannot be simultaneously interpolating and

sampling for F2
α.

The problems of sampling and interpolation are linked to that of
uniqueness, and thus to zero divisors, for which some conditions are
discussed in [2, 5].
We will formulate here a necessary condition for zero divisors which,

apparently, does not follow from those known so far.

Proposition 4. Let X = {(λ,mλ)}λ∈Λ. If there exists a compact subset
K of C such that

⋃

λ∈Λ

D(λ,
√

mλ/α) = C \K,

then X is not a zero divisor for F2
α.

As a matter of fact, this result holds more generally in the weighted
Fock space with uniform norm F∞

α defined by

F∞
α =

{

f ∈ Hol(C) : ‖f‖∞ = ‖f‖α,∞ := sup
z∈C

|f(z)|e−α

2
|z|2 < ∞

}

.
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