
HAL Id: hal-01183781
https://hal.science/hal-01183781

Submitted on 11 Aug 2015

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Mesh-based overlay enhancing live video quality in
pull-based P2P systems

Houssein Wehbe, Gerard Babonneau, Bernard Cousin

To cite this version:
Houssein Wehbe, Gerard Babonneau, Bernard Cousin. Mesh-based overlay enhancing live video qual-
ity in pull-based P2P systems. 3rd IEEE International Conference on Communication Software and
Networks (ICCSN 2011), May 2011, Xi’an, China. pp.326 - 332, �10.1109/ICCSN.2011.6013604�.
�hal-01183781�

https://hal.science/hal-01183781
https://hal.archives-ouvertes.fr

Mesh-based Overlay Enhancing Live Video Quality

in Pull-based P2P Systems

Houssein Wehbe

Orange Labs

4, rue du Clos Courtel

Cesson Sévigné, France, 35512

Houssein.Wehbe@orange-ftgroup.com

 Gerard Babonneau Bernard Cousin

Orange Labs IRISA/Université de rennes 1

 4, rue du Clos Courtel Campus de Beaulieu

Cesson Sévigné, France, 35512 Rennes, France, 35042

Gerard.Babonneau@orange-ftgroup.com Bernard.Cousin@irisa.fr

Abstract— Nowadays, Peer-to-Peer (P2P) live streaming

applications have attracted great interest. Despite the fact that

numerous systems have been proposed in the past, there are still

problems concerning delay and quality requirements of live video

distribution. In this paper, we consider a pull-based P2P live

video streaming system where the video is disseminated over an

overlay network. We propose a mesh-based overlay construction

mechanism that enhances the received video quality while

minimizing, as much as possible, the play-out delay. The

principal feature provides each newcomer with a set of neighbors

holding almost the same video segments and enough available

transmission capacities to deal with its requests. A particular

algorithm has been designed to estimate the peer’s available

capacities. The results of simulations show our mechanism

efficiency in heterogeneous systems.

Keywords-Peer to peer networks; live video streaming; overlay

network; play-out delay.

I. INTRODUCTION

Live video distribution to a large number of clients over

the Internet is highly challenging. The main service

performance metrics are the start-up delay, the play-out delay

and good video quality. Start-up delay is the time lag between

the moment when the client requests to watch the video and
the moment when it starts the displaying. The start-up

buffering enables the absorption of the jitter and the

bandwidth variation. Play-out delay is the time lag between

the moment when a video segment is generated by the video

source and the moment it is displayed to the client. Low play-

out delay is desirable, and means that the displayed video is

almost „live‟.

Recently, live video distribution over peer-to-peer (P2P)

networks has developed massively [1][2][3]. As compared to

the client-server model, P2P systems allow the video

distribution to a large number of clients without requesting

additional resources in the network. The P2P principle is

based on the equivalence between the roles of all the system

entities, called peers. A peer may act as a client requesting the

video, and as a server offering their own upload bandwidth to

serve other peers. In most of these systems, the video is split

into pieces of data called chunks. Each chunk has a sequence
number and a video displaying deadline. The peers build an

overlay used for chunk transmission. The overlay is a P2P

network built on the basis of the Internet network. Peers in the

overlay are connected via logical links, each of which is over

paths in the underlying network. The overlay is constructed by

providing for each system peer a set of peers watching the

requested video, called neighbors. The peer can either pull the

required chunks from its neighbors or push the chunks it has to

them. In the pull approach [3] (respectively push [4]), the peer

applies a chunk-scheduling mechanism to choose the chunks

to be requested (resp. send) and its senders (resp. receivers)

among the neighbors. The challenges to ensure the live video

service performance metrics depend on some functioning

constraints. Firstly, the peer start-up delay depends on the

reception rate of the first chunks to be requested. It can be

reduced by efficiency selecting these chunk senders. Secondly,

the peer play-out delay depends on its neighbor‟s play-out

delay. It may be reduced by requesting the chunks from the
neighbor that has the lowest play-out delay. Thirdly, the video

quality depends on the percentage of chunks successfully

received before their displaying deadline. In P2P systems the

video quality can be disrupted for two reasons. Firstly, chunks

that are not received on time because either the jitter is

unbounded or the recovery processing of packet losses takes

too much time. Secondly, the unpredictable behavior of the

system peers. A peer can leave the system at any moment

which increases the chunk loss rate in the receiver peers. The

P2P live streaming systems challenge is thus to design an

efficient overlay construction and chunk-scheduling

mechanisms that ensure the three performance metrics

presented above.

In this paper, we consider a pull-based P2P live streaming

system, and propose a new overlay construction mechanism.

Indeed, in the push approach, the chunk senders do not take

into account the receiver constraints. Received chunks can be
duplicated or lost by congestion if their global transmission

rate is larger than the receiver download bandwidth. However,

in the pull approach, the receiver can adopt the rate of the

requested chunks to its download capacity and thus, reduce the

chunk loss rate. In most of the current pull-based P2P live

streaming systems [3][5][6], the overlay construction

mechanism provides, for each new peer, a set of neighbors

randomly selected among peers watching the requested video.

This mechanism has two major drawbacks. Firstly, if the

available upload capacities of the selected neighbors are not

enough to send the requested chunks, the received video

quality can be disrupted. Secondly, the receiver suffers from a

high play-out delay when the selected neighbor‟s play-out

delay is high. We can also note that always requesting the

chunks from the peers with the lowest play-out delay leads to

heavy congestion of these peers, leaving the others rarely

made use of.

Our overlay construction mechanism aims to ensure the

video quality while minimizing, as much as possible, the play-

out delay. The key idea is the ability to select, for each new
peer, a set of neighbors that; 1) collectively have enough

transmission capacities to send the requested chunks; 2) hold

almost the same set of chunks and; 3) undergo the smallest

possible play-out delay. The receiver may then distribute its

requests amongst the neighbors in order to reduce the

probability of a bottleneck for the senders, and thus the

probability of chunk loss. An important property of our

mechanism is its ability to estimate the available transmission

capacities of the peers without using specific control

messages.

This paper is organized as follows. Section 2 presents the

state of the art overlay construction mechanisms used in

current P2P streaming systems. Section 3 presents our

solution. Section 4 introduces its performance evaluation.

Finally, Section 5 concludes our work.

II. STATE OF THE ART

Overlay construction mechanisms used today are classified

into two major categories: tree-based and mesh-based overlay.

The tree-based approach proposes to arrange all peers in a

tree in which the video source is the root. The peers can be

placed in the tree based on different metrics, for example the

available bandwidth and the end-to-end delay [7][8]. A peer

can directly push the received chunks to its child peers, which
reduces both the start-up delay and the play-out delay.

However, the main problem with this approach is that leaving

an internal node in the tree leads to a video quality disruption

in its child peers. The proposed recovery techniques are very

expensive and suffer from high maintenance duration [9]. To

deal with these problems, the multiple trees approach has been

proposed [10]. It consists of arranging the system peers in

different trees, where the video source is their common root. A

peer may be a leaf node in a tree and an internal node in

another tree. The video source splits the video into several

independent MDC (Multiple Description Coding) stripes [9],

allowing the receiver to always display the video even when

some stripes are lost. Then, the video source distributes each

stripe in a different tree. When a node fails, its child nodes

detect the loss of only one MDC stripe and therefore, can

continue to display the video. Multiple-tree building and

maintenance are ensured by a DHT substrate. However, the
continued study [11] has shown that DHT-based approaches

suffer from high control overhead and cannot easily support

heterogeneity and failure.

To deal with the tree-based overlay problems, the mesh-

based approach has been proposed [3][9]. It consists of

distributing the video chunks to all of the system peers without

any explicit structure. The overlay construction mechanism

provides each peer with a set of existing peers, called

neighbors, to exchange the chunks with them. The video

chunks can be either pushed to the neighbors or pulled from

them. In this paper, we focus on the pull-based P2P systems.

Most of the overlay construction mechanisms proposed in

these systems [3][5][6] consist in providing for each new peer

a list of neighbors randomly selected among the peers

watching the requested video. Specific chunk-scheduling
mechanisms are used to pull the chunks from the neighbors.

For example, Coolstreaming [3] proposes to request only the

rarest chunks and selects their senders based on an estimation

of the neighbors upload capacities. However, this mechanism,

and most of the existing ones, cannot deal with the drawbacks

of the random overlay construction mechanism. Moreover, if

the available upload capacities of the selected neighbors

holding some rare chunks are not enough to send all the

requested chunks, the receiver peer suffers from a quality

disruption however efficient the chunk-scheduling mechanism

is. Furthermore, the peer suffers from a high play-out delay if

the selected neighbors do not have a low play-out delay. Note

that in [12] the overlay construction problem has been

formulated as an optimization problem. The proposed

approach assumes a global knowledge of the overlay edge

costs, which appears impracticable for P2P live streaming

systems. A peer cannot obtain a global knowledge since the
number of peers is very large and the channel bandwidths are

heterogeneous and may change over time. Besides, [12]

assumes that the chunk delivery delay is mainly due to the

transport network latency. This is different from the scenario

considered in this paper and many studies in the state of the

art, as in [3][4][13], where the P2P system performance

depends especially on the peers upload bandwidth.

III. THE PROPOSED SOLUTION

We consider a pull-based P2P live streaming system where

the video source splits the video into chunks. Each chunk is

marked with a sequence number and its original timestamp,

i.e. the video moment matching to this chunk. When a new

peer joins the system, it first contacts an entity, called tracker,

to get information about the peers watching the requested

video, also called neighbors. It then applies a chunk-

scheduling mechanism to pull the video chunks from its

neighbors.

We propose an optimized mesh-based overlay construction

mechanism that aims to ensure the received video quality

whilst minimizing, as much as possible, the play-out delay.

The key idea consists of selecting for each new receiver peer

an optimized set of neighbors that verify the following criteria:

1) Collectively have enough available transmission

capacities to send the requested chunks,

2) undergo the same play-out delay,

3) undergo the smallest possible play-out delay.

The first criterion increases the probability of receiving the
requested chunks before their displaying deadline. The second
selection criterion means that the neighbors display the same

Figure1. Example of the initialization process of P

chunk and thus hold almost the same buffered chunks. The
receiver peer can distribute its chunk requests among its
neighbors, which reduces the probability for the sender
overloading and thus, the probability of chunk loss. The third
selection criterion selects the peers that have the smallest play-
out delay among the peers that fulfill the first two criteria. This
enables the new peer to receive good video quality while
minimizing as much as possible its play-out delay. In the rest
of this Section, we will explain the algorithms used by the peer
and the tracker.

A. Peer Algorithms

A peer P maintains a parameter called TVt
P
 that represents,

instantly t, the timestamp of the chunk that is being displayed

on the screen. P increases it over time in order to ensure a

smooth display of the chunks. Used in this parameter, P

defines both the chunks reception condition and its play-out

delay. Firstly, a chunk Ck, where k is its timestamp, must be

fully received instantly t; TVt
P
 <k. Otherwise, P considers Ck

as missing and cannot display it on the screen. Secondly, the P

play-out delay is defined as follows: play-outt
P
 = t - TVt

P
, i.e.

the time lag between the timestamp of the chunk that is being
generated on the source and the timestamp of the chunk that is

in being display on P. Once fixed, play-out
P
 remains constant

over time since t and TVt
P

increase continuously over time.

The P play-out delay depends thus on the initial value of TV
P
.

In our mechanism, P applies three algorithms. (1) Chunks-
discovery algorithm discovers the available chunks in the
neighbors, (2) peer bootstrap algorithm initiates the TVP value
and computes the play-outP, and (3) chunk-scheduling
algorithm requests the required chunks from the neighbors.

1) Chunks-discovery Algorithm
Periodically, P sends a control message to its neighbors to

discover their available chunks. They respond by another
message that contains a description of the buffered chunks it
owns. The format of the exchanged control messages is similar
to any pull-based P2P system, for example [13].

2) Peer Bootstrap Algorithm
Given the available chunks in the neighbors, P considers

the chunk having the largest sequence number, noted Ck, as the
first chunk to be requested. This enables P to receive the more
recent chunks from the neighbors and then, reduce its play-out
delay. Assume that, instantly t0, P has requested Ck from the
neighbor N; TVt0

N
 =k (see Figure 1). To absorb the jitter and

guarantee the reception of Ck, P delays, called start-up, before

starting the display of Ck. As shown in Figure 1, at instant
t=t0+start-up, P displays the chunk Ck; TVt

P
=k, and N displays

a new chunk; TVt
N
=k+start-up. P thus displays the video with

a delay equal to start-up relative to N. Consequently, the initial
value of TV

P
 is equal to k, and play-out

P
 = play-out

N
 + start-

up. In our mechanism, start-up is a fixed configuration
parameter. In Section IV, we will evaluate its affects on the
system performance. The P play-out delay depends therefore
on its neighbors play-out delay.

3) Chunk- scheduling Algorithm
This consists of selecting the chunks to be requested and

their senders. As written previously, P requests the more recent
chunks from the neighbors in order to reduce its play-out delay.
It applies a Round Robin algorithm over the neighbors to select
the chunk sender. Note that the neighbors hold almost the same
buffered chunks since they have the same play-out delay.
Additionally, we will show in Section III.B.1.b that they have
almost the same available transmission capacity. This sender
selection algorithm reduces the probability of a bottleneck for
the neighbors, and increases the probability of receiving the
requested chunks before their displaying deadline, which
improves the video quality.

B. Tracker Algorithms

The tracker maintains the following global parameters.

Firstly, video_rate represents the rate of the video generated

by the source. When the video is encoded with a variable bit

rate (VBR), video_rate represents the maximum rate used by

the video encoder. Secondly, control_rate that is a constant

parameter represents an estimation of the upload portion that a
peer will use to exchange the control messages.

For each peer pj, the tracker maintains an entry containing

its identifier (for instance its IP address) and a coefficient,

called capt
j
. It represents, at instant t, an estimation of the

available transmission capacity of pj, i.e. the number of chunks

that pj is able to send simultaneously. After receiving a video

request from pj, the tracker initializes the cap
j
 value to:

cap
j
 = (upload_pj – control_rate)/video_rate.

Upload_pj is the upload bandwidth reserved by pj when it

has initially participated to the P2P session. (upload_pj –

control_rate) represents an estimation of the portion of the

upload bandwidth that pj will use to send the chunks. Note

that, the estimated capacity may be larger than the real one

when pj exchanges the control messages with a rate larger than

control_rate. We will show in Section IV the affects of the

control_rate value on the system performance. Moreover, the

tracker reduces the cap
j

value when pj is considered as a

neighbor for receiver peers, i.e. as a potential chunk sender.
When one of these receivers fails, the tracker increases the

capt
j
 value. We will detail in Sections III.B.1.b and 3.B.2 how

the tracker evaluates this coefficient over time.
The tracker runs two principal algorithms: (1) the overlay

creation algorithm which selects the new peer neighbors; (2)
the overlay maintenance algorithm which sends a new list of
peers to the peer that detected a failure in its overlay.

Figure 2. The group organization

Figure 3. The group buffer contents

1) O verlay Creation Algorithm
To simplify the identification of the system peers which

have the three selection criteria presented above, the tracker

organizes the peers watching the same video into groups. It

identifies a particular group, called current_group, whose

members meet our selection criteria. Each group Gi is

designed by a coefficient called capGi which represents, at

instant t, the sum of the available transmission capacities of

the Gi members.





iGj

ji capcapG

After receiving a video request from pj, the tracker applies
two algorithms: (1) peer organization algorithm inserts pj in its
own group and identifies the current_group; (2) neighbor
selection algorithm selects a set of neighbors from the
current_group members.

a) Peer Organization Algorithm

The algorithm is as follows. Initially, the tracker considers

the video source as the current_group. If capG value of the

current_group is larger than or equal to one, the tracker inserts

pj in a new group following the current_group, called

“under_construction”. When all the transmission capacities of

the current_group are in use, the tracker considers the

“under_construction” group as the new current_group and

creates a new “under_construction” group in which to insert

the new peers. Figure 2 presents an example of the group‟s

organization. The current_group is the group number 3 (G3)

since its capacity is larger than one. The tracker selects the

neighbors of the new peer from G3, and inserts it in the

“under_construction” group (G4). We will explain in Section

III.B.2.b how the tracker updates the capG value of the

current_group.

This algorithm ensures that the current_group members

have the capacity to serve a new peer as long as the capG of

this group value is larger than one. Therefore, they verify thus

the first selection criterion. Additionally, this algorithm

ensures that the members of a given group Gi undergo the

same play-out delay. Note that the play-out delay of a given

peer is equal to the start-up delay plus its neighbor‟s play-out

delay (see section III.A.2). G0 contains only the video source

and it does not have a play-out delay. The G1 members

undergo a play-out delay equal to start-up delay since they

have only the video source as neighbor. The G2 (respectively

Gi) group members undergo the same play-out delay since the

start-up delay is constant and the G1 (resp. Gi-1) group

members have the same play-out delay. As shown in Figure 2,

the G2 group member‟s play-out delay is equal 2×start-up

where start-up is the play-out of the G1 group members.

Consequently, the current_group members undergo the same

play-out delay and thus verify the second selection criterion.

Moreover, Figure 2 shows that the available peers of the

system exist both in the current_group and the

under_construction group since the capG of these groups is

larger than zero. The current_group members have thus the

smallest play-out delay among the available peers of the

system. Consequently, they verify the third selection criterion.

Additionally, this peer organization algorithm ensures that
the Gi group members have the chunks requested by the Gi+1
group members. Consequently, the Gi+1 group members
display the video with a delay equal to start-up relative to the
Gi group members. Figure 3 presents an illustration of the
buffer components of these groups at instant t. Without loss of
generality, assume that the Gi group members display the
chunk Cn and the Gi+1 group members display the chunk Ck
;n>k. In order to ensure a smooth display of the chunks, the
Gi+1 members need to request the chunk Cl; l>k. Figure 3
shows that this chunk is available the Gi group members.
Consequently, the current_group members have the chunks
requested by the under_construction group members.

b) Neighbors Selection Algorithm

This algorithm results in a selection from the

current_group members, a list of peers to be sent to pj. The

sum of the cap value of the selected peers must be larger than

one, i.e. they have enough transmission capacities to send the

video to at least one peer. Furthermore, their number must be

limited in order to minimize quantity of control traffic

exchanged periodically between the peers, thus minimizing

the probability of network congestion.

The tracker defines L_max as the maximum number of

peers to be selected, and L as the expected number of selected

peers. For each new peer, the tracker applies the following

algorithm composed in three steps. Step 1, it considers that

L=L_max. Step 2, if the number of the current_group

members having cap larger than or equal to 1/L is larger than

or equal to L, then the tracker selects L peers randomly among

them and runs Step3. Otherwise, it reduces the list size to L=L-

1, and repeat Step2. Step 3, the tracker reduces 1/L the cap

value of the selected peers. As previously written, these peers

Figure 4. Neighbor selection and capi evaluation

have the same play-out delay, and almost the same buffered

chunks. The probability that a peer among them will be chosen

by the receiver to send a chunk C is 1/L since C is available in

the L neighbors and the receiver selects the sender based on a

Round Robin algorithm.

Figure 4 gives an example of the neighbor selection
algorithm where L_max=4. When peer P10 joins the system, the
tracker selects the peers P1, P2, P3, P4 for it and reduces their
cap values by 1/4When peer P11 joins the system, the tracker
considers L=3, since 4 peers each having a capj>=1/4 do not
exist. The tracker selects P1, P3, P4, and reduces their cap value
by 1/3. When a new peer joins the system, the tracker must
change the current_group since its capG is smaller than one.
However, it uses the peers that have a cap larger than zero, P1,
P2, P3, P4, P5, to deals with the failure problems (see the next
section).

2) O verlay Maintenance Algorithm
This algorithm aims to ensure the overlay resilience in the

event of failure. In general, the failure of P has two

consequences. Firstly, the peer neighbors that feed P become

more available, and their available transmission capacity will

be increased by 1/L, and the available sending rate in their

group becomes larger than or equal to one. Secondly, peer Q

that had P as sender, detects a lack in the available

transmission capacity of its overlay that is equal to 1/L. The

overlay maintenance algorithm has to provide Q

supplementary sender peers who :(1) the sum of their available

transmission capacity is equal to the loss that Q suffers, i.e.

1/L, and (2) have the chunks requested by Q.

Q can detect the failure of P based on the control messages
exchanged periodically between them. After receiving failure
detection message from Q, the tracker increases by 1/L the capi
of each sender Ni of P. Then, it selects from the groups that are
ancestor of Q, a set of peers whose sum of their cap value is
larger than 1/L. They may be the senders of P or other peers
having cap larger than zero. They hold the chunks requested by
Q since their play-out delay is smaller than the one of Q.

IV. PERFORMANCE EVALUATION

In order to show our mechanism efficiency, we evaluated
its performance through extensive simulations. We
implemented in OPNET Modeler a packet-level simulator that
takes into account network latencies and the load of parallel
connections.

A. The Similator

Without lack of generality, the simulations were performed

with a single video since the videos are independent. To

simplify the model, we used a constant bit rate video divided

into chunks. A chunk is transmitted on the network in several

IP packets. The same assumptions are considered in

[3][4][13]. Note that there is no affect of the variable bit rate

video since the tracker computes the peer‟s capacities in

function of the maximum rate used by the video encoder.

The simulated network is a star topology with a router. Its

advantages are simplicity and flexibility. It is possible to

attribute different bandwidth and latency according to the

scenario to simulate. As in most papers that evaluate the P2P

live streaming systems performance [4][13][14], we assume

that the bandwidth bottleneck happens only at the end host.
The used heterogeneous scenario is presented in Table 1. The

ratio of the total upload bandwidth to the minimum bandwidth

required for the complete video distribution is 1.4. This

scenario allows us to approximate the heterogeneous

bandwidth distribution observed by real studies on the

resources availability in P2P networks [15]. End-to-end

latency, on average equal to 79 ms, randomly distributed

among the nodes allows us to approximate the real-world

node-to-node latency measured on Internet [16]. We set the

control_rate value to 63 Kbps and start-up to 3s. We will later

show the affects of these two parameters on the system

performance.

TABLE I. SIMULATION PARAMETERS

B. The Simulation Results

Three basic results give us information about the system

performance, the video quality and the play-out delay.

System overhead rate (%): This is the percentage of

bytes of the control messages (see section III.A.1) in relation
to the total number of data bytes sent by the all system peers

(chunks + control messages). Figure 5 shows the system

overhead as function of the control_period, i.e. the period of

exchange of the control messages. Results are presented for

different network size (from 100 to 500 peers in the network).

We noted that the system overhead decreases when

control_period increases, since the control traffic quantity sent

by the system peers during the simulation is decreasing.

Moreover, this figure shows that the system overhead is

almost independent of the network size. This is because the

control messages are only exchanged between the peers and

their neighbors. Based on these results we can assume that for

a large network size our mechanism overhead remains low.

Missing chunk rate (%): As written in Section III.A, a

peer P considers a chunk Ck as missing if it does not receive

all its packets before than TVt
P
 becomes equal to k. To

Video rate 300 Kbps [13]

L_max 15 peers [13]

Video Source Bandwidth 2Mbps

Peer Upload Bandwidth 300 Kbps 4500 Kbps 600 Kbps

Peer Download Bandwidth 1 Mbps 1.5 Mbps 2 Mbps

Peer Distribution 40% 40% 20%

Figure 5. System overhead as function of control_period

Figure 6. Chunk missing rate as function of control_period

Figure 7. Comparison between the estimated control_rate and the real one

measure this metric, during the simulation, each peer

computes the number of the required chunks and the number

of chunks considered as missing. At the end of the simulation,

we compute the percentage of missing chunks for all video

chunks during the simulation. If it is at 0%, it means that all

peers have received a perfect video.

Figure 6 depicts the missing chunk rate as function of

control_period. When the control_period is smaller than 1.5 s,

we note that the missing chunk rate is larger than zero and

decreases with the increasing of control_period. In this case,

as shown Figure 5, the peers exchange between themselves a

large quantity of control messages. The absence of chunks is

mainly due to the parameter control_rate. Indeed, as written in

Section III.B, the estimated chunk transmission capacity of a

peer P may be larger than the real one when P exchanges the

control messages with a rate larger than control_rate. In this

case, P may be considered as a sender for different receivers

and may receive a number of chunk requests that are larger

than its available transmission capacity. The transmitted

chunks can be delayed or lost, which increases the probability

of missing chunks in the system. In our simulations, some

peers have suffered from this problem when the

control_period was smaller than 1.5s. Figure 7 give us

verification when control_period is equal to 0.5 s. The

presented measure is carried on the peers that belong to the

group G1 whose the number is equal to 6. These peers send

chunks and control messages to the G2 group members, and

only control messages to the video source (the group G0). The

blue curve represents the control_rate value used to estimate

the transmission capacities of these peers. It is constant and

equal to 6×control_rate=78000 bps. The red line represents

the sum of the real upload rate used by these peers to

exchange the control messages. Figure 7 shows that with

control_period equal to 0.5, the control_rate used to estimate

the capacities of the G1 group members was smaller than the

real rate used by these peers to exchange the control messages.

This explains the missing chunks in Figure 6 when the

exchange period is smaller than 1.5s.

Moreover, Figure 6 shows that the chunk missing rate

increases according to the increase of control_period when

this period is larger than 3 s. The reason is that for a long

control_period, receiver must wait some time before locating

the new chunks within its neighbors. This can delay the chunk

requests and reduces thus the chunk_reception_time, i.e. the

time lag between the chunk requesting moment and its

displaying deadline. The probability of receiving chunks with

a delay will be high. This explains the existence of missing

chunks with a large control_period. Additionally, Figure 6

shows when the control_period is smaller than 3 s, the missing

chunk rate is independent from the network size. It is always

equal to zero. This is due to our algorithms that ensure the

availability of the neighbors whatever the network size is.

Figure 8. Peer‟s play-out delay

Play-out delay (s): This metric is local and different for

each peer. As we explained previously (see Section III.A), the

peer play-out delay is equal to the play-out delay of its

neighbors plus start-up delay. Figure 8 depicts the play-out

delay as function of different start-up values and the number

of peers. We used the same parameters presented previously

with control_period equal to 3s. Note that the play-out delay

of a peer P is independent from the control_period since P
computes it initially and keeps it constant during the video

session (see Section III.A). We remark that the play-out delay

increases with the increasing of start-up since the peer

undergoes an additional play-out delay relative to its

neighbors. The first peers have a very low play-out delay since

they belong to the first groups which are close to the source.

Note that the maximum play-out delay observed with start-up

equal to 3 s is 55 s for 500 peers which matches to the mean

value observed in a real measurement of the current P2P

systems [17]. However, as compared to these systems, our

overlay construction mechanism ensures a chunk missing rate

equal to 0. Furthermore, we used start-up equal to 3s. It is

smaller than 5s which is the start-up made one by the P2P

clients requesting the most popular channels, as observed in a

real study [6].

V. CONCLUSION

In this paper, we have presented and evaluated a new

mesh-based overlay construction mechanism for a pull-based

P2P live streaming system. It consists of providing an overlay

for each new peer, in which members are selected according to

both their available transmission capacities and their play-out

delay. We showed through simulations that our mechanism

allows all the system peers to ensure a good video quality with
a small play-out delay. The missing chunk rate and the system

overhead remain almost constant in different network sizes.

This explains the ability of our mechanism to provide good

video quality for a large population. We currently perform

extensive simulations to show the efficiency in high dynamic

scenarios. In future work, we will implement a prototype of

our mechanism in a real network, and compare it with the

existing pull-based systems.

REFERENCES

[1] Sopcast, http://www.sopcast.com/.

[2] X. Hei, C. Liang, J. Liang, Y. Liu, and K. W. Ross. Insights into PPLive,

“A measurement study of a large-scale P2P IPTV system,” In Proc. of
IPTV Workshop, 2006.

[3] X. Zhang, J. Liu, B. Li, and T.-S. P. Yum, “Coolstreaming/donet: A

data-driven overlay network for efficent media streaming,” In Proc. of
IEEE INFOCOM, USA, 2005.

[4] T. Bonald, L. Massoulie, F. Mathieu, D. Perino, A. Twigg, “Epidemic

live streaming: optimal performance trade-offs,” In Proc. of ACM

SIGMETRICS international conference on Measurement and modeling
of computer systems, USA, 2008.

[5] N. Magharei and R. Rejaie, “Prime: Peer-to-peer receiver-driven mesh-
based streaming,” In Proc. of IEEE INFOCOM, USA, 2007.

[6] L. Vu, I. Gupta, J. Liang and K. Nahrstedt, “Measurement and modeling

of a large-scale overlay for multimedia streaming,” In Proc. of the

Fourth international Conference on Heterogeneous Networking For

Quality, Reliability, Security and Robustness & Workshops, Vancouver,
Canada, 2007.

[7] S.Banerjee, B. Bhattacharjee, C. Kommareddy, “Scalable Application
Layer Multicast,” Technical report, UMIACS TR-2002.

[8] D. Tran, K. Hua, T. Do, “ZIGZAG: An Efficient Peer-to-Peer Scheme
for Media Streaming,” In Proc. of IEEE INFOCOM, USA, 2003.

[9] H. Magharei, R. Rejaie, and Y. Guo, “Mesh or multiple-tree: A

comparative study of live p2p streaming approaches,” In Proc. of IEEE
INFOCOM, USA, 2007.

[10] M. Castro, P. Druschel, A. Kermarrec, A. Nandi, A. Rowstron and A.

Singh, “SplitStream: High-Bandwidth Multicast in Cooperative

Environments,” In 19th ACM Symposium on Operating Systems
Principles, 2003.

[11] A. R. Bharambe, S. G. Rao, V. N. Padmanabhan, S. Seshan, and H.

Zhang, “The Impact of Heterogeneous Bandwidth Constraints on DHT-

Based Multicast Protocols,” In Proc. of the 4th International Workshop
on Peer-to-Peer Systems, 2005.

[12] R. Dongni, Y. Hillman Li, S. Gary Chan, “On Reducing Mesh Delay for
Peer-to-Peer Live Streaming,” In Proc. of IEEE INFOCOM, AZ, 2008.

[13] M. Zhang, Q. Zhang, L. Sun, S. Yang, “Understanding the Power of

Pull-Based Streaming Protocol: Can We Do Better?,” In IEEE Journal
on Selected Areas in Communications 25, 1678-1694, 2007.

[14] R. Kumar, Y. Liu, and K. Ross, “Stochastic fluid theory for p2p
streaming systems,” In Proc. of IEEE INFOCOM, USA, 2007.

[15] M. Zhang, Y. Xiong, Q. Zhang, L. Sun, S. Yang, “Optimizing the

Throughput of Data-Driven Peer-to-Peer Streaming,” IEEE Transactions
on Parallel and Distributed Systems, vol 20 pp 97-110, 2009.

[16] “Meridian node to node latency matrix (2500×2500),” 2005, meridian
project.:http://www.cs.cornell.edu/People/egs/meridian/data.

[17] X. Hei, C. Liang, J. Liang, Y. Liu, and K. W. Ross, “A measurement

study of a large-scale P2P IPTV system,” IEEE Transactions on
Multimedia, 2007.

[18] R. Lobb, A. Couto da Silva, E. Leonardi, M. Mellia, and M. Meo,

“Adaptive overlay topology for mesh-based P2P-TV systems,” In Proc.
of NOSSDAV '09. ACM, New York, 2009.

[19] J. Chakareski and P. Frossard, “Delay-based overlay construction in P2P

video broadcast,” in Proc. of IEEE International Conference on
Acoustics, Speech and Signal Processing, USA, 2009.

[20] Y. Liu, “On the minimum delay peer-to-peer video streaming: how
realtime can it be?,” ACM Multimedia, Augsburn, DE, Septembre 2008.

[21] L. Massoulie, A. Twigg, C. Gkantsidis, and P. Rodriguez, “Randomized

decentralized broadcasting algorithms,” In Proc. of IEEE INFOCOM,
USA, 2007.

