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Abstract

This paper presents and compares different methodologies to create an adap-
tive stochastic space partitioning in polynomial chaos applications which use a
multi-element approach. To implement adaptive partitioning, Wan and Karni-
adakis first developed a criterion based on the relative error in local variance.
We propose here two different error criteria: one based on the residual error
and the other on the local variance discontinuity created by partitioning. The
methods are applied to classical differential equations with long-term integration
difficulties, including the Kraichnan-Orszag three-mode problem, and to simple
linear and nonlinear mechanical systems whose stochastic dynamic responses
are investigated. The efficiency and robustness of the approaches are investi-
gated by comparison with Monte-Carlo simulations. For the different examples
considered, they show significantly better convergence characteristics than the
original error criterion used.

Keywords: Polynomial Chaos, MEgPC, Uncertainty Modelling, Stochastic
Galerkin Method

1. Introduction

In various applications, engineers and researchers use complex modelling
techniques and simulations to predict behaviour of structures and optimise their
design process. However, in order to incorporate more realistic data into their
models, it is necessary to take uncertainties into account within the design stage5

and to predict their influence. Different stochastic or probabilistic procedures
are used for modelling these uncertainties. A review on the numerical methods
for stochastic prediction can be found for instance in [1], or more recently in [2,
3].
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The most straightforward statistical method based on Monte Carlo (MC)10

simulation [4] is often used as reference. It relies on the calculation of the direct
problem for a large sample. The main drawback is probably that its accuracy
relies heavily on the sample size and it is therefore computationally expensive.
To confront these difficulties and minimise the sampling size, dedicated meth-
ods have been developed such as Latin hypercube [5] or quasi-Monte Carlo15

SOBOL [6] sampling. On the other hand, non-statistical methods that are not
based on very large sampling, have also been developed. For instance, the per-
turbation methods [7] are based on a Taylor series expansion of the random
field around its mean value. However such methods cannot handle accurately
uncertainty with high discrepancy because the theory is based on assumed small20

perturbations. Furthermore it implies that the function derivative around its
mean is finite up to a given order, which may not be possible for not-smooth
functions.

The Homogeneous Chaos is another branch of non-statistical methods, ini-
tiated by Wiener [8] who used Hermite polynomials to model stochastic pro-25

cesses with Gaussian random variables. Ghanem and Spanos then introduced
polynomial chaos with a finite element method to model uncertainty in solid
mechanics [9]. They showed exponential convergence rate for Gaussian stochas-
tic processes. The non-intrusive stochastic collocation approach [10] uses direct
deterministic, but small, samplings at collocation points in the random space30

and recreates the stochastic response by constructing local polynomial inter-
polations. In order to deal with discontinuities in the probability or physical
space, it was later extended to the multi-element stochastic reduced basis meth-
ods [11], the multi-element probabilistic collocation method (MEPCM) [12, 13],
to an adaptive hierarchical sparse grid collocation method [14], or the sim-35

plex stochastic collocation [15]. The intrusive approach also makes use of poly-
nomials to model uncertainties. The main idea of the method is to expand
the random solution spectrally in the polynomial basis and subsequently use a
Galerkin projection scheme to transform the original stochastic problem into
a set of deterministic algebraic equations with more unknowns. Xiu and Kar-40

niadakis [16] introduced the concept of generalised Polynomial Chaos (gPC)
using different polynomial bases defined with the correspondence between the
probability density functions of random variables and the weight functions of
the scalar product that orthogonalises the basis. It is a generalisation of the
original Wiener’s Hermite-chaos and can deal with non-Gaussian random inputs45

efficiently. Soize and Ghanem later proposed a proper mathematical frame to
address the chaos representation of vector-valued random variables with arbi-
trary distributions [17]. More recently, Wan and Karniadakis [18] showed how
to create orthogonal polynomials on the fly to extend the procedure to arbitrary
random distributions.50

Depending on the problem, one can be confronted with quantities whose
variations with respect to the random parameters are not continuous. gPC has
difficulties for converging for such discontinuous distributions in the stochastic
space. Increasing the maximum degree of the chosen basis (p-refinement) may
help but it cannot always overcome those convergence difficulties. It also en-55
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larges the size of the system to solve and makes the solution of the stochastic
problem more complex. It is known for instance that gPC fails to converge for
long-term integration (see the Kraichnan-Orszag Problem in [19]). The reason
is that a certain shape of solution is assumed at the initial time, but this does
not necessarily correspond to the real shape or distribution at later times. For60

long term integration, the method called time-dependent generalised polyno-
mial chaos (TDgPC) [20] recalculates the polynomial basis after a certain time,
which helps for convergence.
The regularity or irregularity of the solution with respect to the stochastic space
affects the convergence rate of gPC expansion and is usually not known a priori65

in many cases. One of the strategies to tackle this problem is to divide the
stochastic space (h-refinement) and use a relatively low degree of expansion on
each element of the partition, which corresponds to a piecewise polynomial ap-
proximation fitting. This has motivated Wan and Karniadakis to propose the
multi-element generalised polynomial chaos (MEgPC) method [19]. The space70

of random inputs is decomposed in small elements. In each element, a new ran-
dom variable is created and the standard gPC method is applied. Their mesh
adaptation scheme to decompose the space of random inputs is based on the
relative error in the variance prediction. The partitioning process is performed
by dividing each element which does not satisfy the criterion in two equal-size75

elements.
As far as the authors know, the error criterion proposed in [19] is the only

one that was used in MEgPC problems. It was for instance re-used later by
the same authors in [18] for solving differential equations, and more recently
in the field of robotics by Kewlani and Iagnemma [21], or to predict limit-80

cycle oscillations of an elastically mounted airfoil [22]. However, as it will be
discussed in further details in this manuscript, this error criterion has some
inherent drawbacks. Further developments in multi-element polynomial chaos
partitioning methodology are therefore needed and these are the main objec-
tives of the present manuscript. Two new error criteria are proposed here to85

enhance polynomial chaos capabilities for the solution of stochastic differential
or algebraic equations.

The manuscript is organised as follows. The mathematical formulation of
the generalised Polynomial Chaos (gPC) and its extension to multi-elements are
briefly presented in Section 2. Then, the proposed error criteria are described in90

Sections 3. Numerical results and comparison with reference studies provided
in [19] are discussed in details in Section 4.

2. Polynomial Chaos and its extension to Multi-Element approaches

This section briefly describes the principles of Polynomial Chaos expansion
and its extension to a multi-element approach when considering the uncertainty95

propagation in a problem initially defined by a set of deterministic governing
equations. It is assumed that uncertainty affects some parameters of these
governing equations and that the stochastic model of these input variables or
parameters is known. The Polynomial Chaos is then applied in order to obtain a
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stochastic description of some other quantities of interest which will be referred100

to as output variables.
In what follows, two types of governing equations are considered: sets of alge-
braic governing equations, denoted H(u) = 0 and ordinary differential equations
(ODE) denoted u̇ = f(u, t).

2.1. Probability space and notations105

Let define (Θ,A,P) a probability space with Θ the event space, A the σ-
algebra on Θ and P a probability measure. The probability density function
(pdf) associated to a random variable U is denoted pU . U expected value is
defined as:

µU = E[U ] =

∫
Θ

U(θ) dP(θ) =

∫
R
u pU (u) du. (1)

Finally, in the rest of the paper, a one-dimension stochastic space is considered110

to simplify the notations and developments. This means that a single random
variable is used to introduce uncertainty in the systems. Let denote ξ this
random variable whose distribution will be defined later:

ξ : Θ −→ R
θ 7−→ ξ(θ). (2)

2.2. Polynomial Chaos

The three main steps for the implementation of the polynomial chaos are115

briefly recalled below. For more detailed explanations, the reader in referred to
the references cited therein and the book [23].

Polynomial Chaos Expansion. In the polynomial chaos approach, a second-
order random process U is expressed as a polynomial series using a set of orthog-
onal polynomials ψk in the variable ξ. In numerical implementation, the sum is120

usually truncated to a polynomial order (or maximum total degree) p leading
to an approximation Û of the random process U . When the stochastic space
dimension is equal to 1, the number of polynomials considered is Np + 1 with
Np = p; general formulas for the multi-dimensional case can be found in [16].
p-convergence has been proved for any second-order process in the L2 sense [24].125

To simplify the notation, no distinction will be made between U and Û :

U(θ) = Û(ξ(θ)) :=

Np∑
k=0

uk ψk(ξ(θ)), (3)

where uk are the expansion (deterministic) coefficients and – in this one dimen-
sional case – ψk is the polynomial of degree k. In ODEs, the time dependence
is included in the uk coefficients.

4



Choice of a polynomial basis. The choice of the polynomial basis ψk used for the130

expansion of output variables is not obvious. If one considers that the output
(unknown) distribution will be close to the input (known) distribution, then
an optimal polynomial basis can be chosen according to the input distribution.
This is the main idea of the generalised Polynomial Chaos (gPC), based on the
Wiener-Askey scheme, as demonstrated by Xiu and Karniadakis [16]. However,135

if the output variable distribution is very different from the input distribution,
there is no obvious reason to make such a choice, except for the sake of simplicity.
Recent studies have addressed this issue for time-dependent problems [20]: the
random variable ξ used in (3) as well as the polynomial basis ψk are regularly
updated in order to keep a low degree of expansion.140

Expansion coefficients evaluation. The last step is to choose a method to eval-
uate uk coefficients. To this end, two families of methods are to be found in the
literature: the family of intrusive methods and that of non-intrusive methods.

The intrusive method follows a Galerkin approach: the expressions of the
variables expanded on the polynomial basis are re-inserted in the general gov-145

erning equations of motion; then a scalar product is taken between each of the
neq governing equations and each of the Np + 1 polynomials constructing the
p order polynomials basis. This leads to a larger system of equations to solve
whose size is neq × (Np + 1) but does not require any direct evaluation of a
realisation of the output variable U .150

On the other hand, the non-intrusive methods rely on the vast family of
collocation methods; they are generally referred to as Probabilistic Collocation
Methods (PCM). Among theses methods, is the cubature based method [22].
It uses the orthogonality between the polynomials forming the basis of expan-
sion with respect to a given scalar product denoted < •, • >. The unknown155

coefficients uk are then found with

uk =
< U,ψk >

< ψk, ψk >
=

1

< ψk, ψk >

∫
R
U(ξ)ψk(ξ)w(ξ) dξ, (4)

where w(ξ) is the weight associated with the scalar product orthogonalising
the basis. In this latter expression, the integral is generally evaluated via a
quadrature rule. This implies evaluating several realisations of U for determined
ξ values [25].160

A discussion on the choice of the method depending on the problem under
consideration is provided in [23, Sec. 7.4].

2.3. Multi-Element Polynomial Chaos

From what precedes, generalised Polynomial Chaos can be interpreted as a
polynomial approximation of a function U depending on ξ. In the case when165

U has singularities or is discontinuous (see for instance in [26]) or when high
polynomial orders are required, a natural solution is to split the range in ξ into
a collection of elements and to use a low order polynomial approximation on
each element. That is basically what MEgPC and MEPCM rely on.
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Finally, it is now assumed that the random variable ξ used to introduce un-170

certainty in the system as well as to expand random processes follows a uniform
distribution:

ξ ∼ U(−1; 1) ; ∀x ∈ [−1, 1], pξ(x) =
1

2
(5)

The detailed procedures of multi-element approaches for the uniform distribu-
tion case as well as for a more general case can be found in [19, 18] (MEgPC)
and [12] (MEPCM).175

The basic principle of the multi-element methods is to split ξ definition
domain I = [−1, 1] in Ne ad-joint elements In = [ξn, ξn+1], n ∈ [[1, Ne]], with
ξ1 = −1 and ξNe+1 = 1. Over each element In, a change of variable is applied:

∀n ∈ [[1, Ne]], ξ ∈ In ⇒ ξ = αn + βnζn, ζn ∈ [−1, 1], (6)

with αn =
ξn + ξn+1

2
the element middle point and βn =

ξn+1 − ξn
2

the element

half-length. The new variable ζn varies on [−1, 1] as one has ζn = −1 for ξ = ξn,180

and ζn = 1 for ξ = ξn+1. Assuming a uniform distribution of ξ on [−1, 1] implies
a uniform distribution of ζn also on [−1, 1].

The random process U is then approximated on each element In by gPC
and is written as:

Un =

Npn∑
k=0

ũk,n ψk(ζn), (7)

where ũk,n is the (k+1)th coefficient of U expansion on In, pn is the polynomial185

order used on In, and Npn + 1 is the size of the polynomial basis used for the
expansion over In. The ũk,n coefficients can be evaluated using an intrusive
(MEgPC) or non-intrusive (MEPCM) approach.

In this multi-element approach, there are two main choices to make: the
choice of the expansion order pn over each element (defining Npn) and the190

choice of the partition In, n ∈ [[1, Ne]]. In what follows, as the main focus is on
the partition creation, a constant pn order, pn = p, n ∈ [[1, Ne]] is considered,
which means that the polynomial approximation is assumed to have the same
order on every element. As an a priori optimal partition is almost impossible
to determine for the general case, an adaptive partition scheme has to be im-195

plemented. Hence, a distinction is made between two important characteristics
of such a scheme:

• the error criterion : Numerical value or property that each element
must satisfy to be kept for the final partition. Different error criteria are
presented in Section 3.200

• the partitioning process : Methodology that defines how elements are
divided (or created) in order to converge towards a final partition in which
every element satisfies the error criterion. This point is not addressed in
this paper and only standard methods are used (see Section 3.3).
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3. Adaptive error criterion205

Two error criteria are proposed and compared to the one initially proposed
by Wan and Karniadakis [19] - referred to as criterion I – which is exposed
first and considers the variance decay rate. The first alternative, referred to as
criterion II, draws a parallel with refinement methods used in finite element
meshing and relies on the variance continuity. The second alternative, referred210

to as criterion III, proposes a change in the quantity of interest and takes
account of the residual error on the initial governing equations.

As the random variable ξ is assumed to have a uniform distribution, ψk poly-
nomials will henceforth denote Legendre polynomials [16] with the conventional
notations recalled in Appendix A.215

3.1. Error on the variance convergence

As criteria I and II rely on the variance convergence, the expressions of local
and global mean and variance in a multi-element frame are developed here.

The local mean µUn and variance σ2
Un

, on a particular element In approxi-
mated by polynomial chaos (order p, number of polynomials Np+1), are defined
as:

µUn = ũ0,n , (8)

σ2
Un

=

Np∑
k=1

ũ2
k,n < ψk, ψk > . (9)

The approximate global mean µU and variance σ2
U are then given by [19]:

µU =

Ne∑
n=1

ũ0,n βn , (10)

σ2
U =

Ne∑
n=1

(
σ2
Un

+ (ũ0,n − µU )2
)
βn. (11)

Hence, the global mean, or variance, can be seen as the weighted sum of the
mean, or variance respectively, of each element.220

3.1.1. Criterion I : use of the local decay rate

The original error criterion proposed by Wan and Karniadakis [19] is based
on the variance convergence when either the polynomial order of approximation
or the number of elements in the partition increases. It is used for comparison in
the numerical simulations presented in Section 4, and will be recalled thereafter225

as “criterion I”.
Wan and Karniadakis define the local decay rate of relative error of the PC

approximation on the variance in In as [19]:

ηIn =
ũ2
Np,n

< ψNp
, ψNp

>

σ2
Un

=
ũ2
Np,n

< ψNp
, ψNp

>∑Np

k=1 ũ
2
k,n < ψk, ψk >

. (12)
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This local decay rate shows the influence of the last term (in degree p) of the
polynomial expansion on the local variance. It seems intuitive to think that the230

approximation is close to its converged limit (and therefore to the exact value)
when this extra term does not have a significant influence on the local variance.

The n-th element is then refined when the following condition is satisfied:

βn (ηIn)α > θ1, 0 < α < 1, (13)

where θ1 is a constant of accuracy required, and α is usually set at 1/2 [19, 21].
The decay rate of relative error is multiplied by the factor of βn in Eq. (13)235

with the idea that an error on the local variance on a small element should
contribute only little to the global error. This weighting relaxes the restriction
on the accuracy of the local variance for smaller elements.

For further use, let us define the error on the n-th element In for criterion I

as follows:240

εIn = βn (ηIn)α, (14)

and the global error as εI =
∑Ne

n=1 ε
I
n.

The following limitations of the proposed criterion have motivated the au-
thors to offer some new alternatives:

• It is not relevant to use simple piecewise linear regression (p = 1) with
this error indicator. With an approximation of degree p = 1, the term245

ηIn is constant for all elements and equal to 1. This means that the error
criterion εIn becomes only function of the length of the elements, and no
difference is seen between equal-length elements.

• If the stochastic response function is odd with respect to the random pa-
rameter, then the coefficients in ũk,n with k even are very small compared250

to the coefficients with k odd. In the intrusive approach, they are not
exactly equal to 0 because the coefficients are all coupled in the equations;
whereas they are null if the non-intrusive approach is used. This means
that if the maximum order of expansion is even, the error criterion will
always be very small and will probably never satisfy Eq. (13). Similar255

reasoning can be used if the order of expansion is odd for an even function
with respect to the random parameter.

• For particular problems such as the ODE presented in Section 4.3.1, this
criterion associated with dichotomy partitioning, as in the reference pa-
per [19], does not seem very efficient as it creates only uniform meshes260

whatever the order of expansion (see for instance Fig. 9.(a.2)).

• It may be delicate to find an appropriate θ1 value because the physical
sense of variance convergence is somehow difficult to quantify. The devel-
opment of another criterion with more meaningful sense would be inter-
esting and this is the meaning of the authors development in Section 3.2.265
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3.1.2. Criterion II : use of the variance discontinuity

This section shows a new way to calculate a local error for each of the ele-
ments segmenting the stochastic space. It is based on the error in the continuity
of a parameter linked to the variance over the stochastic space. It will be used
in numerical applications in Section 4 in which it is referred to as “criterion II”.270

In the multi-element methods, one wants to approximate U(ξ) by the use
of several polynomial functions, each of them defined on ad-joint elements, see
Section 2. Let us assume that the function U(ξ) is at least C1 over [−1, 1]
and its derivative with respect to ξ is denoted U ′(ξ). Then over each In =
[αn − βn, αn + βn] element, the variance of Un can be written as275

σ2
Un

=

∫ 1

−1

(Un(ζn)− µUn)2 1

2
dζn =

1

12
(U ′(αn))

2
(2βn)2 + o(β2

n), (15)

and so

lim
βn→0

σUn

2βn
= g(αn) with g(ξ) :=

√
3

6
|U ′(ξ)|. (16)

Hence, the ratio

ĝn =
σUn

2βn
(17)

can be considered as a zeroth-order approximation over In of the continuous
function g defined in Eq. (16).

As g cannot be evaluated in its current definition, it is reconstructed from280

the known values ĝn. This reconstruction is similar to what is used in stress
smoothing for finite element calculation [27] where predicted stresses show dis-
continuities at the element edges. The solution ĝ(ξ) is the junction of the solu-
tions ĝn defined on each element In. ĝ(ξ) shows discontinuities at each element
break, similar to the stresses in classical finite element methods. With a smooth-285

ing technique, a solution g̃(ξ) continuous on the whole stochastic space is then
built.

This method is somehow similar to the derivative recovery technique devel-
oped by Zienkiewicz and Zhu [28, 29, 30] and is illustrated in Fig. 1. Basically,
it consists in finding g̃ as a linear regression by part between the different ĝn,290

without imposing slope continuity:

• On each element centre αn, the value of g̃ is taken equal to ĝn:

g̃(αn) = ĝn, n ∈ [[1, Ne]]. (18)

Linear segments are used between g̃(αn) and g̃(αn+1). This defines g̃ over
[α1, αNe

].

• For the last pieces [−1, α1] and [αNe
, 1], g̃ is defined as an extrapolation295

of g̃ over [α1, α2] and [αNe−1, αNe ] respectively. In the case when these
extrapolations would induce a negative value for g̃(ξ1) or g̃(ξNe+1), this
value is set to zero, as illustrated in Fig. 1.
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ξ

−1 = ξ1

0

ξ2 ξ3 ξn−1 ξn ξn+1 ξn+2 ξNe−1 ξNe = 1

Figure 1: Smoothing technique to create g̃ from ĝ. Thick (black) lines: ĝ; thin (red) lines: g̃.

The error on an element is then evaluated using the absolute value of the
difference between g̃ and ĝn. This difference is adimensioned by dividing it by300

ĝav. defined as:

ĝav. =

Ne∑
n=1

βnĝn =
1

2

Ne∑
n=1

σUn
. (19)

This leads to:

εIIn =

∫ ξn+1

ξn

|g̃(ξ)− ĝn|
ĝav.

dξ = βn

∫ 1

−1

|g̃(αn + βnζn)− ĝn|
ĝav.

dζn = βnη
II
n . (20)

A detailed expression of ηIIn is provided in Appendix B.
The global error is equal to

εII =

Ne∑
n=1

εIIn =

∫ 1

−1

|g̃(ξ)− ĝ(ξ)|
ĝav.

dξ. (21)

The random element is refined when the following condition is satisfied:305

βn η
II
n > θ2, (22)

where θ2 is a given constant of accuracy.
It may be difficult to give a physical meaning to the value of acceptable

threshold θ2. A possible good partitioning strategy may therefore be not to
use Eq. (22) criterion but to refine the element(s) with the worst error indi-
cator Eq. (20) until reaching a maximum number of elements, or a maximum310

computation time.

3.2. Criterion III : residual error

Once the approximation by PC expansion is performed on a particular ele-
ment of the stochastic space, one can evaluate its error from the real solution by
looking at the residual error this approximation creates in the governing system315

of equations.
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When the governing equations are algebraic, the definition of the residue
(denoted R) is straightforward:

R(U ; ξ) = H(U ; ξ), (23)

where U is defined from the PC decomposition.
In the case where the governing equations are a set of ODEs, the calculation320

of the residue depends on the methods – intrusive or non-intrusive – used to
compute the coefficients of the expansion. The basic idea though is to verify
that the relationship U̇ = f(U, t) is satisfied for some t values. Hence, the
residue is defined as follows

R(U ; ξ) = U̇ − f(U, t; ξ). (24)

The computation of U̇ from U PC expansion is detailed in Appendix C. With325

the above definition of the residue for a given value of ξ, a global error can be
evaluated as:

εIII =

∫ 1

−1

|R(U ; ξ)|1
2

dξ. (25)

This global error can be split into a sum of local errors over each element:

εIII =

Ne∑
n=1

∫ ξn+1

ξn

|R(U(ξ); ξ)|1
2

dξ =

Ne∑
n=1

εIIIn , (26)

with the local error on the n-th element being defined as

εIIIn = βnη
III
n , ηIIIn =

∫ 1

−1

|R(Un(ζn);αn + βnζn)|1
2

dζn. (27)

The random element is refined when the following condition is satisfied:330

βn η
III
n > θ3, (28)

where θ3 is a given constant of accuracy.
This error indicator is referred to as “criterion III” in the remaining of the

manuscript, and will be compared to criteria I and II in Section 4.
The numerical value of θ3 to use will depend on the set of governing equations

H: it can indeed be correlated to the termination tolerance on the function value335

usually employed in numerical solvers.

3.3. Remark on the partitioning process

The most common and simplest partitioning process consists in splitting
each element needing refinement in half and generating two equal-size elements.
This is a simple dichotomy procedure and it was employed for instance in [19].340

If the global method needs, or can take advantage of, the result contained in
the mother element, a simple interpolation, as well as the associated particular
change of variable, is achieved (see details in [19]). By this means, the random
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field is mapped from one mesh of elements to a new mesh of elements and this
acts as initialisation for the new system solution.345

The dichotomy partitioning method can be applied in different ways. The
first one, used in [19], consists in splitting simultaneously all the elements that
do not satisfy the given error criterion with threshold θi. This iterative process
ends when there are no elements left to split, and therefore all the remaining
elements satisfy the given error criterion. As all of the elements are studied350

independently of each other, this process can be easily performed in parallel
computing. Another method is to split only the element with the worst error
indicator, and repeat the process until a maximum computation time, a maxi-
mum number of elements or a minimum element size has been reached. For a
given computation time or a given number of elements, the mesh and solutions355

obtained with the two aforementioned methods are different.
Developing new partitioning processes is beyond the scope of this study.

Suggestions for possible development include reusing strategies that are widely
employed in classical finite element analysis (see for instance [27]), or invoking
some of the principles of continuation [26].360

4. Numerical applications

The different error criteria proposed in Section 3 are here illustrated with
benchmark examples, and their convergence characteristics compared. First,
cases when U is a random variable or random vector (not time-dependent) are
analysed, those are typical linear and nonlinear mechanical oscillators. Then,365

cases when U is a random process indexed by time, solution of a set of differential
equations, are studied. In all of the applications, the one-dimensional random
variable ξ is assumed to follow a uniform distribution on [−1, 1] (ξ ∼ U(−1, 1)).
The reference results are those obtained with a Monte Carlo simulation (MC)
and a sampling of 106 ξ-values.370

4.1. Wasserstein distance

As the post-processing of results usually involves rebuilding the pdf, the
quality of the approximation cannot be solely assessed by its mean and variance
convergences. Therefore, the Wasserstein distance [31, Chap. 6] to the reference
simulation is hereby also used. This distance provides a means to compare the375

quality of the approximation considering simultaneously the convergence on the
mean, the variance and the distribution law.

The Wasserstein distance (Wd) of order p between two probability measures
P1 and P2 having a second order moment is defined as [31]:

Wdp(P1, P2) = inf
{

E[(X1 −X2)p]
1/p

: L(X1) = P1, L(X2) = P2

}
, (29)

where L(X) denotes the law of X. The Wasserstein distance of order 2 will be380

used thereafter. In this case, it can be evaluated by:

Wd2(P1, P2) =

(∫ 1

0

(F−1
X1

(t)− F−1
X2

(t))2 dt

)1/2

, (30)
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where FX denotes the cumulative distribution function associated to X.
The distance between the MEgPC approximation and the reference sample

Uref can then be evaluated using Eq. (30). Finally, it is interesting to render
this distance dimensionless with respect to the order of magnitude of U [32]. In385

this way, let us denote Wd the Wasserstein distance of order 2 divided by the
standard deviation evaluated using the reference sample:

Wd(PU , PUref
) =

(∫ 1

0
(F−1
U (t)− F−1

Uref
(t))2 dt

σ2
Uref

)1/2

. (31)

To illustrate this distance, several numerical examples are provided in Appendix
D.

4.2. Random vectors390

4.2.1. Simple linear mechanical system

The first comparisons are performed by studying a simple linear dynamical
system with a single degree of freedom q (abbreviated SDof in what follows).
Uncertainty is assumed in its undamped natural resonant frequency ω0 such
that ω2

0(ξ) = ω2
0(1 + 0.3ξ). Under unitary harmonic forcing, its equation of395

motion writes:
q̈ + 2ηω0q̇ + ω2

0q = cos(ωt), (32)

with η the damping factor. Let set η = 0.05 and ω2
0 = (2π)2 for the following

numerical applications. The steady state response of such a system has the
form:

q(t) = u cos(ωt) + v sin(ωt). (33)

One here focuses on the cosine component u which is evaluated using:400

u = Re

(
1

ω2
0 − ω2 + 2ηω0ω

)
(34)

where Re(•) denotes the real part and 2 = −1. The coefficients of the poly-
nomial chaos expansions over each element are evaluated using a non-intrusive
method (see Sec. 2.2). Hence, u will be evaluated repeatedly at the quadrature
nodes using Eq. (34).

First, the influence of the polynomial degree p used for the expansion is stud-405

ied, and is illustrated in Fig. 2. The results obtained when using criterion I and
criterion III for given thresholds values θ1 and θ3 are compared. The quality of
the approximation is measured by the dimensionless Wasserstein distance Wd
defined in Eq. (31). Thresholds values θ1 = 5 × 10−3 and θ3 = 2 × 10−4 are
chosen so as to obtain similar Wasserstein distances for both criteria. The ex-410

citation frequency range ω considered is such that ω/(2π) ∈ [0.8 ; 1.2], which is
centred around the nominal resonant frequency and large enough to encompass
the ω0 range. The integral of the residue required for criterion III evaluation
(see Eq. (27)) is computed using 2p+1 Gauss integration points. Figure 2 shows
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Figure 2: SDof - Evolution of Wasserstein distance with the approximation degree. First row:
criterion I results; second row: criterion III results. From left to right, polynomial degree
is equal to 3, 4 and 5. Stairstep curves represent Wd with respect to ω while straight lines
represent the mean (solid line) and the standard deviation (dashed dotted line) of Wd over
the whole ω range.

the Wasserstein distance, as well as its mean and standard deviation over the415

whole ω-range, obtained using either criterion I or criterion III for p-values
equal to 3, 4, or 5, as a function of ω. It can be seen that there are large
discrepancies on this mean for criterion I when stepping up from one degree
to another while it globally decreases when using criterion III. Moreover the
variation of the Wasserstein distance from one ω-value to another is larger when420

applying criterion I than criterion III. Finally, Fig. 2 also indicates that a poor
quality approximation is obtained for ω = 2π when using a p = 4 expansion
together with criterion I.

The corresponding results, when ω = 2π, are drawn in Fig. 3. One can see
that the shape of U -pdf is suddenly badly approximated for criterion I and p = 4425

whereas results for p = 3 and p = 5 are much more accurate. Here appears the
issue mentioned at the end of Section 3.1.1 as the target function comes close
to an odd function. Hence, even though the θ1 value was tuned so as to obtain
accurate results at the beginning of the ω-range, the quality of the results over
the whole range largely varies. Furthermore, this particular inaccuracy occurs430

at resonance, a point of major interest in mechanical systems. In this way,
Criterion III seems more robust as the results are globally less spread out,
considering different ω-values or different degrees.

Figure 4 illustrates the variation of the Wasserstein distance with respect
to threshold values θ1 and θ3 for a given degree p = 4. For each criterion, one435

considers 5 values of ω around 2π, and 31 values of θ1 and θ3 equally spaced on
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Figure 3: SDof - Comparison of results for different degrees when ω = 2π. (a) U -pdf, denoted
pU ; and (b) U as a function of ξ.

a logarithmic scale. The ranges chosen are [10−8.1, 100] for θ1 and [10−12, 10−1]
for θ3. These ranges provide approximately equal limits (10−1 and 10−9) for
the Wasserstein distance as depicted in Fig. 4.(a,b) with solid lines. The first
observation is that, when the thresholds decreases, the Wasserstein distance for440

criterion III decreases smoothly and almost in an affine relationship in a log-log
scale, while that for criterion I decreases step by step and spreading out more.

The second information depicted is relative to the number of elements pro-
duced by each method. Figure 4.(c,d) shows this number of elements as a
function of the Wasserstein distance obtained. It then appears that criterion445

I produces more elements than criterion III to reach an equivalent value of
the Wasserstein distance. Hence, the numerical cost is higher, as illustrated in
Fig. 5. As cpu times are very small and then difficult to measure and compare,
the numerical cost is evaluated through the number of evaluations of Eq. (34)
used to compute polynomial chaos expansions. This number of evaluations is450

represented along Wd in Fig. 5.(a) and the ratio between the number of evalu-
ations required when using criterion III and the number of evaluations needed
when using criterion I is displayed on Fig. 5.(b). As data were not accessible
for the same abscissa (Wd value) for both criteria, the number of evaluations
for each criterion is averaged per Wd decade to plot Fig. 5.(b).455

Figures 4 and 5 indicate that it may be hard to set a proper value for θ1 as
the quality of the subsequent approximation varies irregularly with the threshold
and that criterion I generally requires more numerical resources than criterion
III.
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4.2.2. Duffing oscillator460

In this section, an uncertain Duffing oscillator is considered as a possible ex-
ample of the outcome of nonlinear equations derived from a structural mechanics
problem.

The governing equation of motion for such an oscillator is nonlinear with a
cubic term in stiffness. Under a harmonic excitation, it can be written as:465

mq̈ + cq̇ + kq + knlq
3 = F cos(ωt), (35)

where q is the displacement, m the mass, k the stiffness, c the damping coeffi-
cient, knl the purely nonlinear stiffness, F the applied force magnitude, ω the
excitation frequency, and t the time.

Looking at the periodic forced response, and using the harmonic balance
method [33] with a single term in the Fourier expansion, such as

q = a cos(ωt) + b sin(ωt),

Eq. (35) gives the following system, not time-dependent, of nonlinear equations:
470 {

( km − ω
2)a+ c

mωb+ 3
4
knl

m a(a2 + b2)− F
m = 0,

( km − ω
2)b− c

mωa+ 3
4
knl

m b(a2 + b2) = 0.
(36)

Uncertainty is assumed in the nonlinear stiffness parameter knl, and it is
defined as knl = knl(1 + αDξ), where knl is its mean and αD is a coefficient of
dispersion.

The unknown coefficients a and b are expanded in the polynomial chaos
using Legendre polynomials (see Appendix A) up to a degree p. An intrusive475

method is used, as explained in Section 2.2, and applied to the system (36),
with an order of approximation of p = 2. It gives a new system of 6 coupled
equations.

Figure 6 shows the nominal displacement amplitude (defined as
√
a2 + b2

with ξ = 0) as a function of the excitation frequency. The existence of an480

uncertainty in the nonlinear stiffness implies a set of possible responses. The
extreme responses obtained when ξ = −1 and ξ = 1 are also illustrated. The
dispersion of these responses is shown at a given frequency before the tilting of
the resonance curve to avoid difficulties in the case one moves forward in the
frequency range and reaches a point when either 1 or 3 solutions exist. Darker485

regions along the dispersion line mean higher probability. One can see that
even though the initial uncertainty is taken as uniform, the dispersion is not
and results are compacted towards smaller amplitudes.

The numerical solution of the nonlinear system with variables a and b ex-
panded onto the polynomial basis is carried out by a standard nonlinear iterative490

solver. The error criterion is calculated on every elements. If an element needs
refinement, the same kind of mapping as that presented in Section 3.3 is em-
ployed to initialise the solution from the mother-element to the sub-elements.
Then, a new solution is calculated on the just-formed sub-elements.
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Figure 6: Duffing oscillator - Displacement amplitude as a function of the excitation frequency
for different values of ξ. ξ = −1: bold dashed line, ξ = 0: solid line (nominal value), and
ξ = −1: light dashed line. The dispersion is shown at the particular frequency of ω = 1.45.
Numerical values used are k = 1, m = 1, c = 0.3, knl = 0.5, αD = 0.8, and F = 2.

Comparisons on convergence characteristics of the different error criteria are495

illustrated in Figs. 7 and 8. In the dichotomy partitioning process employed,
it has been chosen not to split simultaneously all of the elements that do not
satisfy the error criterion but to split at each iteration only the element with
the worst error. Values of θi are therefore here not relevant. In the results
labelled “Optimal mesh”, the partitioning process used is different. In this case,500

a numerical optimisation algorithm looks for the partition for a given number
of elements that minimises the global residual error εIII (Eq. (25)). The idea
behind this simulation is to show the convergence of the multi-element approach
when the global residual error is minimised.

Figure 7 illustrates results for coefficient a in Eq. (36) but similar results505

can be obtained for coefficient b. It gives the approximation error for different
indicators as a function of the number of elements created in the partition.
It shows that for a given number of elements the proposed error criteria (II
and III) give generally better results than the original one. Those are more
efficient than εIn because dividing elements referring to those errors shows better510

convergence characteristics. The second row in Fig. 7 illustrates the ratios of
the errors with the ones obtained from criterion I and shows that the proposed
criteria may offer an increase in quality up to two orders of magnitude.

Figure 8 illustrates the global errors for the different cases. As it could be
expected, it shows that faster convergence is obtained on εi when partitioning515

using criterion i is performed (i being I, II, or III). The “optimal” mesh
considering criterion III gives indeed the best results on εIII. Focusing on a
particular criterion also tends to decrease the other global errors. This is not
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Figure 7: Duffing oscillator - (a) Relative error on the mean, (b) relative error on the variance,
and (c) Wasserstein distance, as a function of the number of elements in the partition. (d-f)
ratios with results from criterion I for the same error indicators. Numerical values used are
those given in Fig. 6.
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that clear concerning εI. It is found for instance that the “optimal” mesh (with
respect to minimising εIII) may display a partition with more elements (around520

10 or 35 elements) but with a worse εI-value. This shows some kind of lack of
robustness in εI. Furthermore, even when results obtained with criteria II and
III show an increase in the global error εI, they still give mean error, variance
error, and Wasserstein distance that decrease as shown in Fig. 7.

4.3. Random processes indexed by time525

4.3.1. One-dimensional ODE

In this example, let us focus on the performance of the different error criteria
for the following ordinary differential equation (ODE) studied with the original
gPC in [16] and the standard MEgPC partitioning in [19]:

du

dt
= −ξu, u(0, ξ) = ut=0, (37)

The exact analytical solution from which MC simulations are performed is given530

in Eq. (38). This expression also acts as reference for relative error calculations.

u(t, ξ) = ut=0 e
−ξt. (38)

A similar integration algorithm with adaptive meshing as that explained
in [19] is here employed. The time increment used is δt = 0.03 s for the adaptive
scheme. It means that the error criterion evaluation, possible re-meshing, and535

re-initialisation of initial conditions are performed every 0.03 s. From a given
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time t to t + δt, the integration is performed with a 4th order Runge-Kutta
algorithm.

Because it is only possible to calculate criterion II when Ne ≥ 2, the stochas-
tic space is split in half after the first time increment for the 3 error criteria.540

Thereafter, the elements that do not satisfy the threshold value at the current
time step are split in two equal-length elements, the mapping of the initial con-
ditions is performed, new approximations are calculated and these serve as new
initial conditions for the next time step.

First, threshold values θi (i = 1, 2, or 3) are chosen such that the total545

number of ODE evaluations at the final time t = 6 s is similar for the three
different criteria. The number of ODE evaluations for a certain period of time
is defined as the number of elements in the partition multiplied by the number
of time increments included within this period. For instance a partition with
4 elements used during 10 δt costs 40 ODE evaluations. This number of ODE550

evaluations is a direct way to measure the cpu time or complexity of the scheme.
Indeed, the calculations of the different error criteria are fast to compute and it
is possible to consider that their evaluation time is negligible compared to the
cpu time required for the ODE solution. The simulations illustrated in Fig. 9
and Fig. 10 are made with an approximation degree p = 3, and threshold values555

θ1 = 10−4, θ2 = 8× 10−3 and θ3 = 10−6, which relate to a total of 4393, 4386,
and 4372 ODE evaluations respectively to complete the time integration up to
t = 6 s. With these simulations, one can compare the behaviour (Fig. 9) and
performance (Fig. 10) of the three criteria considering a similar global numerical
cost.560

Figure 9 illustrates the adaptive mesh created by the different error criteria.
It shows that for criterion I, the number of elements is always equal to Ne = 2m

(m integer) and the mesh completely uniform. But for the other criteria, addi-
tional splitting is performed towards the left boundary (ξ = −1), see Fig. 9.(b.2)
and Fig. 9.(c.2), because the exponential curvature of the response (Eq. (38)) is565

more difficult to approximate polynomially towards this end. One then gets a
sensible mesh with element sizes that progressively increase from left to right.
It is worth noting that even though the number of elements at t = 6 s is greater
with the mesh obtained with criterion III than that obtained with criterion I

or II, the number of ODE evaluations performed is actually a little bit smaller.570

The convergence from adaptive partitioning as a function of time for crite-
rion I has already been shown in [19]. In Figs. 10 and 11, the convergence of the
proposed error criteria is compared with that of the original criterion. Figure 10
illustrates the ratio of absolute error obtained with criteria II and III over the
absolute error obtained with criterion I, as a function of time with adaptive575

partitioning. Even though the number of total ODE evaluations is similar for
t = 6 s, the proposed error criteria offer much better convergence characteris-
tics (smaller errors illustrated by ratios of absolute error smaller than 1) for the
mean, the variance and the Wasserstein distance. In Fig. 11, one focuses on
the MEgPC approximation state at t = 6 s. The θi values triggering the par-580

titioning are varied so that different meshes are created along the integration.
Smaller θi implies more elements and a more accurate approximation, whereas
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Figure 9: 1D ODE; simulations with a similar final numerical cost (total number of ODE
evaluations over the time range) - First column: number of elements in the partition during
integration as a function of time t; second column: adaptive mesh (elements lengths) at t = 6 s.
Each row contains the results obtained for a particular criterion.
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obtained with criteria I, as a function of time during the integration scheme. (a) Error on the
mean value, (b) the variance value, and (c) Wasserstein distance.

larger θi does not trigger much the partitioning process and implies a rougher
approximation. The relative error on the mean value, the variance value, and
the Wasserstein distance are illustrated as a function of the number of ODE585

evaluations (which is itself function of the number of elements in the mesh –
or of the value of θi). A given number of ODE evaluations directly relates to
a given cpu time of computation. For a given computation time, the proposed
error criteria, and especially criterion II, show faster convergence than criterion
I. It is here obtained better accuracy in fewer ODE evaluations.590

Results were shown for an order of expansion p = 3 but similar trends and
conclusion can be obtained with a higher degree of approximation. However, this
simple example is particular as criterion I does not give non-uniform meshes.
In the next section, the same methodologies and error criteria are applied to a
more complex system of differential equations.595

4.3.2. The Kraichnan–Orszag three-mode problem

The Kraichnan-Orszag three mode problem, first introduced in [34], with
uncertainty in its initial conditions, is known to fail in a short time when em-
ploying gPC. It has been intensively studied to show the loss of accuracy of gPC
expansion for problems involving long time integration. This problem is highly600

sensitive to the initial conditions. It therefore represents a challenging bench-
mark. Different methods have been applied to this problem such as adaptive
MEgPC, TDgPC or adaptive stochastic collocation [19, 18, 12, 20, 14, 35].
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Figure 11: 1D ODE - (a) Relative error on the mean, (b) relative error on the variance, and
(c) Wasserstein distance at t = 6 s, as a function of the number of ODE evaluations, which
is proportional to the numerical cost. The error threshold θ1 varies between 0.1 and 10−4, θ2
between 1 and 8 × 10−3, and θ3 between 0.1 and 10−6. The order of approximation is p = 3.

The problem is defined with the system of ordinary differential equations:
ẏ1 = y1 y3,

ẏ2 = −y2 y3,

ẏ3 = −y2
1 + y2

2 ,

(39)

subject to initial conditions605

y1(0) = 1, y2(0) = 0.1ξ, y3(0) = 0, (40)

The introduction of randomness in the initial conditions implies that the stochas-
tic solution can be either continuous or discontinuous [19].

Wan and Karniadakis [19] showed that MEgPC approximation converges
towards MC simulation as θ1 decreases. In this section the results obtained
with MEgPC and with the proposed error criteria are compared with those610

obtained with criterion I. The order of polynomial approximation is p = 3. As
in the previous example, the integration is performed with a 4th order Runge-
Kutta algorithm. The time increment in the adaptive scheme is 0.03 s. It has
been imposed to split the stochastic space in 3 equal-lengths elements after the
first iteration because criterion II always needs Ne ≥ 2, and furthermore, here,615

it must actually be set at least equal to 3 to avoid problems with criteria I and
II due to the parity characteristics of the function. The error thresholds used
are θ1 = 8× 10−3, θ2 = 7× 10−2 and θ3 = 1.1× 10−3, which creates partitions
with 44, 40 and 40 elements respectively at t = 30 s. The error threshold values
were chosen such that the number of elements in the mesh at t = 30 s is similar620

for each simulation.
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Figure 12: Kraichnan–Orszag problem - Focus around the discontinuity: length of elements
in the adaptive mesh (1st row), y1-values (2nd row), y2-values (3rd row) and y3-values (4th

row) obtained with the 3 different error criteria at t = 30 s. The x-axis is ξ on the interval
[−0.05, 0.05]. MEgPC approximations (thin black lines) are compared to MC simulations (red
thick lines).

The first row of graphs in Figure 12 illustrates the mesh obtained at t = 30
s around the discontinuity (at ξ = 0) for the different criteria. The results
in Fig. 12 show that Criteria II and III produce a finer mesh around the
discontinuity. In that way, the area around the discontinuity is better captured.625

This is illustrated in the following rows of graphs in Figure 12. Those show the
random variable y1, y2, and y3 values as a function of ξ, compared to the MC
simulation. It is not shown in the figure but for the rest of the ξ-range, the
3 methods behave perfectly well. It appears clearly that the meshes obtained
with criteria II and III are more efficient than that obtained with criterion I630

as the approximations around the discontinuity are of better quality. Criterion
II behaves particularly well because more partition refinement occurs early in
time during integration (similar to what is illustrated in Fig. 9 for the one-
dimensional ODE case) and therefore it does carry less inaccuracy along the
integration. This makes it possible to keep a relatively good approximation635

around the discontinuity, whereas for instance with criterion I, the refinement
appears too late in time and the approximation obtained after a certain time
(for instance at t = 30 s) is locally not accurate at all because some inaccuracy
was carried out and amplified during the integration scheme.

5. Conclusions640

In this paper, different strategies for stochastic space partitioning are pro-
posed. The authors offer alternatives to the initial error criterion suggested by
Wan and Karniadakis [19] and illustrate them on several examples. The main
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focus was to study relative convergence characteristics: the proposed method-
ologies prove to be generally more efficient on the examples tested, and to con-645

verge faster in terms of computation time and number of elements, especially
for criterion II. It is worth noting that the different error criteria introduced in
this manuscript were illustrated on MEgPC problems but could also be adapted
without too much difficulty for the adaptive meshing in MEPCM [12].

For the initial error criterion suggested by Wan and Karniadakis, it may650

be difficult to chose the parity of the polynomial approximation. If the output
function is odd or even, a wrong choice of polynomial order may end up with
not triggering the partitioning process at all. The same kind of problem exists
with criterion II and 2 initial elements. However, criterion III is itself really
robust and can be applied without any a priori knowledge of the regularity or655

parity characteristic of the uncertain output function.
Only one-dimensional stochastic cases have been considered in this paper.

The simple approach consisting in smoothening a piecewise constant function
proposed in Section 3.1.2 will need to be extended to high-dimensional cases.
A possible idea would be to look at techniques developed for three dimensional660

problems in the finite element community. The use of criteria I and III is
probably here more straightforward.

The field of multi-element polynomial chaos approaches would benefit from
further work in the partitioning techniques. Instead of splitting cells in two
equal parts, one may think of a cleverer way to find a not-arbitrary splitting.665

Furthermore, during long-term integration, it is possible that some areas in the
stochastic space which need refinement at a particular time because becoming
difficult to approximate polynomially, start to be smooth again further in time.
It means that, in the concept of adaptive meshing, the possibility of joining
elements and obtaining a coarser mesh locally would be beneficial for the overall670

computing time. The meshing methodology presented here unfortunately only
considers division but not junction of elements. A possible lead to follow would
be to analyse if the neighbouring approximations are close enough to the current
element approximation, which would imply some kind of local smoothness and
the possibility of an eventual locally coarser mesh. Further study on this aspect675

of adaptive and optimal meshing will be considered by the authors.
In subsequent papers, the proposed MEgPC methodologies will be applied

to the problem of uncertainty quantification in acoustic pumping. In systems
driven by experimental acoustic measurements, uncertainties in modelling pa-
rameters are common and a polynomial chaos approach is an efficient tool to680

accurately predict the response dispersion. The existence of a nonlinear en-
ergy sink used in such application also supports the need of stochastic space
partitioning.
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Appendix A. Legendre polynomials

Legendre polynomials can be defined using Bonnet’s recursion formula:{
ψ0(x) = 1, ψ1(x) = x
∀k ≥ 1, (k + 1)ψk+1(x) = (2k + 1)xψk(x)− k ψk−1(x)

(A.1)

The first 4 polynomials are:800

ψ0(x) = 1 ψ2(x) = 1
2 (3x2 − 1)

ψ1(x) =x ψ3(x) = 1
2 (5x3 − 3x)

(A.2)

This set of polynomials is orthogonal with respect to the following scalar prod-
uct:

< f, g >=
1

2

∫ 1

−1

f(x)g(x)dx (A.3)

The weight function w(x) = 1/2 is then equal to ξ pdf. Subsequently, one has:

< ψi, ψj >= E[ψi(ξ)ψj(ξ)] (A.4)

In particular, it is worth noticing the following results:

< ψ0, ψ0 >= E[ψ0(ξ)ψ0(ξ)] = 1, (A.5)

805

∀k ≥ 1, < ψk, ψ0 >= E[ψk(ξ)ψ0(ξ)] = 0. (A.6)

In the frame of a polynomial chaos expansion with Eq. (3) notations, this implies
that the mean and variance are given by:

µU = E[U ] = u0 (A.7)

σ2
U = E

[
(U − E[U ])2

]
=

Np∑
k=1

uk < ψk, ψk > (A.8)

Appendix B. Detailed expression for criterion II local error

The local error for criterion II over the n-th element can be decomposed into810

a weight, βn, relative to the element size, and an error computed in the local
basis ηIIn , leading to εIIn = βnη

II
n . ηIIn is calculated from Eq. (21) and makes use

of the value of g̃ in ξn, which is obtained for non-extremal breaks using linear
interpolation between g̃(αn−1) and g̃(αn):

g̃(ξn) =
βn ĝn−1 + βn−1 ĝn

βn + βn−1
, n ∈ [[2, Ne]]. (B.1)
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For non extremal elements (i.e. n ∈ [[2, Ne − 1]]) ηIIn becomes:815

ηIIn =
βn∑Ne

n=1 σUn

(
|ĝn−1 − ĝn|
βn + βn−1

+
|ĝn+1 − ĝn|
βn + βn+1

)
. (B.2)

For extremal elements the formula depends on the positivity of the extrapolated
values of g̃. This positivity does not have to be tested and the following formulas
handle all the cases:

ηII1 =
1∑Ne

n=1 σUn

(
β1 |ĝ2 − ĝ1|
β1 + β2

+ min

(
β1 |ĝ2 − ĝ1|
β1 + β2

, ĝ1

))
, (B.3)

and

ηIINe
=

1∑Ne

n=1 σUn

(
βNe
|ĝNe

− ĝNe−1|
βNe + βNe−1

+ min

(
βNe
|ĝNe

− ĝNe−1|
βNe + βNe−1

, ĝNe

))
.

(B.4)

Appendix C. Residue expression for criterion III in the case of ODEs820

When the set of governing equation is an ODE, the residue calculation de-
pends on the method used to evaluate the PC expansion coefficients.

If an intrusive method is used, the initial set of equations u̇ = f(u, t) is
turned into a larger system which usually depends on the element In and can
be written as:825

U̇PC
n = Fn(UPC

n , t), (C.1)

where UPC
n gathers the PC expansion coefficients ũk,n.

Having computed UPC
n for a given time t enables to compute its derivative with

respect to time using the Fn function. Realisations of U̇n can then be evaluated
using a formula similar to Eq. (7) and the local residue can be defined over each
element In as the difference between U̇n and f(Un, t).830

If a non-intrusive method is used the PC decomposition of U̇n can be evalu-
ated the same way as Un decomposition. Once realisations of Un are calculated
at collocation points, corresponding U̇n values are computed using f . Applying
the same collocation method for U̇n as for Un then provides its PC expansion
over the n-th element. The residue is finally defined in the same way as in the835

intrusive case, that is, as the difference between U̇n and f(Un, t).

Appendix D. Illustration of Wasserstein distance

The Wasserstein distance is illustrated in this appendix via several exam-
ples. In what follows, a target random variable U and its approximation Û
are compared considering different error indicators : the relative error in mean840

εE (defined in Eq. (D.1)), the relative error in variance εσ (also defined in

31



−1 0 1
0

0.5

1

1.5

2

0 1 2
0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

10
−8

10
−6

10
−4

10
−2

10
0

(c)

εE εσ Wd2 Wd

(b)

p
U

U

(a)

U

ξ

Figure D.13: Wasserstein distance illustration: Advantages, Example 1. Thick (red) line:
target random variable; thin (black) line: approximated random variable.

Eq. (D.1)), the Wasserstein distance Wd2 (defined in Eq. (30)), and its dimen-
sionless version Wd (defined in Eq. (31)) that what used throughout Section 4:

εE =
|µU − µÛ |
|µU |

and εσ =
|σU − σÛ |
|σU |

(D.1)

where µX = E[X] and σX =
√

Var[X].845

The first example shows the advantage of the Wasserstein distance when one
is interested not only in the first two moments but also in the global distribution.
Here, the approximation Û is chosen such that it has the same mean and variance
as the target random variable U .

• Example 1: the target random variable is U = 1 + e−ξ/s with s = 1.5850

and the approximation is Û = a + b
√

3 ξ with a = E[U ] = s sinh(1/s)
and b =

√
Var[U ] =

√
s sinh(1/s) (cosh(1/s)− s sinh(1/s)). Results are

displayed in Fig. D.13.

In this first example, one can see from Fig. D.13 that Û is a rather bad
approximation of U (pane (a)) and that the resulting pdf is also very different855

(pane (b)) from the target one. However, relative errors εE and εσ are both very
small (≈ 10−7). This was expected by construction of Û . This said, it is to be
noted that the Wasserstein distances Wd2 and Wd are not “small” (≈ 10−1)
and then, they seem able to provide more interesting information considering
the inaccuracy of the pdf approximation.860

As a “small” number is a very relative notion, the next three examples try to
quantify it. For each example, the target random variable U is approximated by
polynomials with increasing degrees. These polynomials are computed using a
simple intrusive Polynomial Chaos expansion. For each approximation, the pdf
is built, the 4 error indicators are evaluated and their evolution is monitored.865

• Example 2: The reference random variable is U = 1+cos(π ξ)+2 sin(π ξ);
polynomials with degree 2, 4 and 6 are used for Û approximation. Results
are illustrated in Fig. D.14.
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• Example 3 (mechanical system response near resonance): The reference
random variable is U = 10/|ω0(ξ)2 − ω2 + 2 × 0.03 × ω0(ξ)ω| where870

ω0(ξ) = 1 + 0.2 ξ, ω = 0.90. This depicts the amplitude of a simple mass-
spring-damper oscillator similar to the one studied in Section 4.2.1. Here,
the target random variable is not the cosine component of the response
but its amplitude. Polynomials with degree 20, 35 and 50 are used for Û
approximation. Results are displayed in Fig. D.15.875

• Example 4: The reference random variable is U = e−4 ξ2 . Polynomials
with degree 6, 10 and 14 are used for Û approximation. Results are shown
in Fig. D.16.

In each case, the lowest polynomial degree simulated returns a very bad ap-
proximation considering the pdf while the highest degree returns a rather good880

one.
As Wd is a dimensionless, or relative, measure, it is expected not to vary too

much with respect to the order of magnitude of U , and therefore its quantitative
value is more meaningful and consistent from one example to another than Wd2

value. Moreover, from this set of illustrations, it can be said that Wd < 10−2
885

seems an acceptable condition to get the skeleton of the pdf, Wd < 10−3 looks
like a good criterion to get an accurate description of the pdf and Wd < 10−4

seems required to get a perfect match.
The quantitative conclusions that can be drawn from these examples are not

proved in any way and the proposed Wd limits may not be adequate for every890

possible case. However, this collection of very different test cases still provides
some useful information on the meaning of the order of magnitude of Wd.
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Figure D.14: Wasserstein distance illustration: Value, Example 2. Thick (red) line: target
random variable; thin (black) line: approximated random variable.
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Figure D.15: Wasserstein distance illustration: Value, Example 3. Thick (red) line: target
random variable; thin (black) line: approximated random variable.
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Figure D.16: Wasserstein distance illustration: Value, Example 4. Thick (red) line: target
random variable; thin (black) line: approximated random variable.
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