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Scene Understanding from Aerospace 
Sensors: What can be Expected?

Automated scene understanding or interpretation is a fundamental problem of com-
puter vision. Its goal is to compute a formal description of the content and events 

that can be observed in images or videos and distribute it to artificial or human agents 
for further exploitation or storage. Over the last decade, tremendous progress has been 
made in the design of algorithms able to analyze images taken under standard viewing 
conditions. Several of them, e.g., face detection, are already used daily on consumer 
products. In contrast, the aerospace context has been confined to professional or mili-
tary applications for a long time, due to its strategic stakes and to the high cost of data 
production. However, images and videos taken from sensors embedded in airborne or 
spatial platforms are now being made publicly available, thanks to easily deployable 
UAVs and web based access data repositories. This article examines the state of the 
art of automated scene interpretation from aerospace sensors. It will examine how the 
general techniques of object detection and recognition can be applied to this specific 
context, as well as what their limitations are and what kind of extensions are possible. 
The interpretation will be focused on the analysis of movable objects such as vehicles, 
airplanes and persons. Results will be illustrated with past and ongoing projects.

Introduction 

What is scene understanding?

Scene understanding or interpretation is a traditional field of comput-
er vision. It consists of designing algorithms able to associate data 
produced by image sensors with a formal informative description 
enunciated in a shared language. The target description is defined 
by the context of use and it is often reduced in practice to detecting, 
characterizing and locating in space and time the entities and events 
of interest.

The role of scene understanding in a global system is to generate a 
formal description that can be communicated, stored or enhanced 
by various agents, either artificial or human and is therefore not the 
ultimate output of a processing chain. This also means that the re-
quirements for the interpretation result quality depend on the purpose 
that it will be exploited for.

Humans have no difficulty in describing what they see in an image or 
in a video and in reasoning about the cause and consequences of the 
observed phenomena. It is a platitude to state that this easiness is not 
shared by artificial devices such as computers. The expression “se-
mantic gap” has been coined to refer to this problem and expresses 
the fact that the information encoded in computers does not sponta-
neously match the inner structure of sense-data.

 
One possible explanation of this difficulty lies in the complexity of the 
function relating data to description: the input space is a point in a vec-
tor space of high dimension – the number of pixels – that maps to an 
often hybrid space mixing continuous and discrete representations. 
The data distribution is therefore very sparse in its representational 
space, with no obvious regularities that can be captured in a simple 
form. Physical models may help by introducing some constraints, but 
are not sufficiently accurate or general to account for all phenomena 
occurring in real situations.

What is special with the aerospace context?

By the aerospace context, we mean in this article two families of 
data: large still images from remote sensing satellites and images or 
videos from airborne platforms. Aerospace data acquisition for scene 
understanding is interesting for several reasons: it can be discreet and 
non-intrusive; it allows wide area views; it can provide information 
from isolated regions; it can produce various viewing conditions to 
remove ambiguities. One of the first applications has been intelligence 
through image analysis: aerospace sensors for scene understanding 
have been deployed since the beginning of photography, for instance 
for tactical information gathering on the battlefield using aerostats. 
Similar applications include surveillance or targeting. Information 
acquisition for search and rescue purposes after a natural disaster 
are currently being studied. Environment monitoring is a traditional 
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application of remote sensing data. The availability of large quanti-
ties of image and video data drives the need for smart archiving and 
retrieving schemes and the construction of semantic keys describing 
their content.

Sense-data in the aerospace context is specific in several respects. It 
is usually of high dimensions – it is not unusual to handle giga-pixel 
images in modern remote sensing data; it is often acquired under 
non-intuitive viewing conditions (nadir or oblique point of view);  it 
may be produced by unusual sensors (radar, infrared, laser, hyper-
spectral, etc.). However it often comes with extra metadata, typically 
describing the date, the viewing conditions within a given error range, 
or the weather conditions. Other sources of knowledge, such as maps 
or other similar data with informative ground truth, can also be ex-
ploited to introduce informative priors.

Although image and video data is now made easily available thanks 
to huge repositories (Google, Flickr, Getty, etc.) aerospace data is still 
scarce. A first explanation is that the aerospace context has always 
been strategic for governments and is therefore carefully controlled. 
A second explanation lies in the cost of producing good quality aerial 
or remote sensing data, limiting its use to professional applications. 
This situation is becoming less true nowadays: flight platforms with 
embedded sensors can be deployed more easily, high resolution 
remote sensing and “bird’s eye view” images are readily available 
on any computer connected to the Internet. This new trend was rec-
ognized in the recent and first workshop on aerial video processing 
(http://manufacture.nimte.ac.cn/vision/wavp/) addressing the need 
for automatic tools for aerospace image data analysis.

The goal of this article is to provide a broad view of the state of the art 
of automatic scene understanding from aerospace image and video 
data. The next section will give a short description of the current tech-
niques used in modern automatic scene understanding with specific 
emphasis on movable objects. The further two sections will concen-
trate on the problems of detecting and characterizing the entities and 
events of interest. Outputs of environment reconstruction and data 
registration will be assumed and are presented in a companion article 
of this issue [99], or can be found in other reviews [59]. The follow-
ing section will give some insight on more complex settings. The last 
section will give some clues in regard to the state of the art perfor-
mances, in terms of accuracy and processing time. The conclusion 
will state a few forthcoming challenges.

Figure 1 - General structure of processing chains for scene understanding 
from aerospace image sensor

Techniques for automated scene understanding

The main problem facing automatic scene understanding is a com-
plexity issue: how to map a high dimensional sparse sense data 
space to a hybrid discrete and continuous interpretation. The general 
paradigm applied to solving this problem is to project the input data 
into an intermediate representation, commonly called a feature space, 
and then making knowledge based inferences (localization, recogni-
tion, description, etc.) from this space (figure 1).

Feature extraction + inference

The objective of such a feature space is manifold: it is expected to 
reduce the dimension, to make computations easier, to normalize het-
erogeneous data in a common framework, to reveal information, to 
remove noise and biases and to be invariant to known nuisance while 
staying discriminative in the inference space. It therefore plays a very 
critical role in the processing chain.

Driven by industrial vision applications, the first type of features that 
have been used were inspired by geometric considerations [78]. They 
mainly consist of simple elements, such as corners, segments or 
lines and are rather easy to extract. However, their lack of robustness 
to various illumination conditions and their limited expressive power 
have restricted their use in real operations for interpretation purposes.

The next generation of feature spaces were built on geometric or 
spatio-temporal landmarks [75][61],  but were augmented with local 
image descriptors to better characterize the image and to introduce 
textural patterns in the intermediate representation [76]. This kind of 
feature space has higher dimensions compared with a pure geometri-
cally based description, but is still far more compact than the original 
data. 

Features are local, i.e., they only characterize a small part of the 
original data. Scene understanding is global, even if the interpretation 
contains local information (location of entities). Before going into an 
inferential step, there is a need to gather and encapsulate the local 
features in formal objects based on some sort of geometric exten-
sion: regions, bounding boxes, spatio-temporal tubes, 3D structure, 
collection of patches, etc. Many schemes have been proposed [62] 
[53] and evaluated for several types of data.

The next issue, given this simplified or intermediate feature space, is 
to produce reliable inferences to generate the interpretation in a given 
language or set of hypotheses. Ideally, features would be considered 
as direct indexes to the interpretation space. Unfortunately, it does not 
happen this way: features are still noisy, not sufficiently discriminative 
and still too complex. The inference step, i.e., the stage that actually 
produces the interpretation, also requires rather sophisticated pro-
cesses. A popular solution is to use a learning algorithm to build the 
interpretation function from a set of reference data and handle the var-
ious levels of uncertainty or noise left in the feature data (see box 1).

Coupling features, models, reference data and inference

In practice, segmenting the processing chain into two uncorrelated 
steps – feature extraction and inference – is conceptually appealing 
but not optimal. Good features depend on what kind of information 
they carry, the quality of the information being measured by the tar-
geted interpretation problem. Indeed, the huge volume of research 
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studies shows that there is no consensus on universal features, or 
on a general inference engine. The feature extraction and inference 
stages are in general designed jointly and purposely.

A first common practice making the two stages cooperate is the clas-
sical task of feature selection or construction. In this scheme, the 
goal of the first step is to provide an over complete set of informative 
features that will be selected or combined by the inference step ac-
cording to an error criterion.  In machine learning, the well-studied 
boosting family is a powerful instantiation of an integrated feature 
extraction + inference design (see box 1).

The inference step is heavily dependent on the nature of the refer-
ence data and on the available models. Objects represented by CAD 
models, collections of images, logical descriptions or deformable 
templates are not exploited in the same way. They constrain both the 
type of features that can be profitably extracted and the structure of 
the inference algorithm.

Prior or contextual data is often available in aerospace data: maps 
with various levels of semantic information or geo-referencing, view-
ing and weather conditions, 3D environments, knowledge representa-
tions such as ontologies, etc. They contain useful information that can 
be exploited to reduce the number of hypotheses to handle or map the 
features onto a cleaner and lower dimensional space. Though us-
ing extra sources of knowledge is appealing, there is no systematic 
way to introduce them into the processing chain. They can also bring 
their own type of noise and make data interpretation less robust if too 
much trust is given to their value.

Scene understanding processing chains can therefore be very com-
plex. Though as a first approximation they all follow the same basic 
feature extraction and inference scheme, the research literature pro-
poses many variations around it. One of the reasons for this high 
volume of research is the current performance level: with a few no-
table exceptions, it has difficulties to be really operational. Although 
improving and addressing new issues each year, it is hard to claim 
that automated scene understanding is a solved problem.

Box 1 - Machine learning for scene understanding

Object models have been restricted for a long time to physical models such as CAD polyhedrons with optical description of materials, il-
lumination and viewing conditions. Physical modeling is limited – it cannot predict all of the observed phenomena in a simple form – and 
relies on knowledge of parameters that are hidden most of the time and must be inferred from the data or from reasonable hypotheses.
 
Machine learning offers a series of empirical techniques able to produce models from sample data with minimal assumptions. Its cor-
nerstone concept is generalization, i.e., the capacity of producing meaningful inferences from unseen data. Theoretical results ensure 
that the empirically generated models have good properties (convergence, bounded generalization errors).

The last decade has seen statistical machine learning techniques invading the area of computer vision, especially the field of object 
recognition. A conjunction of events can explain this fact: new powerful learning techniques, increase in computer power, easily avail-
able digital data, stagnation in performances in pure geometric approaches and a new generation of researchers. Almost all modern and 
efficient scene understanding algorithms include in their processing chain a module whose parameters have been estimated by machine 
learning.

What is machine learning?

A collection of algorithms able to mimic a function from sample empirical data. We talk of classification when the output is discrete and 
of regression when it is continuous.

What are the main achievements? 

Powerful algorithms and software toolboxes relying on solid theoretical grounds can now be exploited quite easily, without too much 
theoretical knowledge.

What are the main algorithms used in scene understanding? 

Large margin (Support Vector Machines), neural networks and ensemble classifiers (boosting, bagging, random forest) for classification 
[17] , Kernelized Gaussian processes for regression [95] . Other more classical techniques such as Principal Component Analysis and 
Discriminant Analysis may produce acceptable results in low dimensional problems. 

What are the limitations?

 Data must be representative. No guarantee that the output will be meaningful on outliers or biased data, although several techniques are 
currently being developed to handle this problem.
And what are they in the aerospace context? The availability of data mainly limits the use of machine learning techniques to on-line ap-
proaches, or generic problems (person and vehicles detection). Another limitation is the processing time required by several approaches.
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The following sections will present in more details the achievements 
to date and the specificities of several scene understanding problems. 
The first logical step of scene understanding will be described first: 
detecting the presence of entities of interest and locating them. How-
ever, as will be made clear, the detection step may require more spe-
cific object descriptions, implying that recognition is often logically 
antecedent to detection: bottom-up (detection) and top-down (char-
acterization) processes are intimately linked in a global interpretation 
loop. Detected entities have some qualities and therefore carry pieces 
of information that must be revealed: how to extract this information 
and how to communicate it will then be presented. The aerospace 
context offers unconventional ways to acquire sense-data that will 
finally be described.

Object detection and localization 

Detection is the first logical objective of image data interpretation, 
since it reveals the presence of entities of interest. Aerospace sensors 
are used in multiple situations and produce data of various types and 
qualities. Non-conventional sensors can make use of the specificities 
of the aerospace sense-data acquisition mode (see box 2). Detec-
tion algorithms depend mainly on the apparent object size: entities 
observed as fewer than ten pixels are not handled in the same way as 
entities spanning thousands. Moving objects are also a special case. 
The sections below will present a broad view of these issues.

Small objects

In many automatic surveillance activities, objects in the sensor range 
appear small or even unresolved. Early detection of such objects is 
fundamental, in order to perform higher level recognition tasks by 
pointing a better resolved sensor onto them. The scope of this section 
is detection from an image or a sequence of images. An example of 
such an application considered at Onera is the detection of objects 
on a runway (DROP project): in such a context, a 2cm part fallen 
on the runway appears as less than the size of a pixel on the image 
because of the wide field to be covered. When one considers small 
objects, very few features can be used from the object itself; typi-
cally, in many application contexts, only its position and intensity are 
available. Conversely, image backgrounds may have a huge variety 
of appearances; being non-stationary temporally and spatially, this 
variation emphasizes adaptive processing, where background behav-
ior on a current image is deduced from previous images, or from 
spatial neighbors [73].

We have developed different methods based on building background 
statistics against which a pixel or a group of pixels is tested. The first 
one [29] considers  a “detection by rejection” method. In this context, 
we have proposed several statistical approaches to correctly estimate 
a model of the environment. In particular, we have proposed the use 
of a mixture of densities, to guarantee a good estimation in case of 
background transition. An example of such processing is given in fig-
ure 2, on a SAR image. A second trend of research consists in build-
ing robust means for background pixels, by fetching pixels in a much 
wider area than the usual local windows and weighting them, using 
a patch similarity measure like the Buades “Non-Local means” [24]. 

The approach, denoted detection by NL-means (D-NLM), proved to 
be very efficient on non-stationary structured backgrounds, such as 
clouds [39].

 When the object is moving w.r.t. the background, one can take advan-
tage of image sequences, instead of single images. In such cases, a 
very simple cascade of motion compensation, threshold and short-
term temporal association yields very good performances, provided 
that the background motion is described by simple parametric mod-
els. We showed that a particular spatio-temporal extension of D-NLM 
deals very efficiently with the alternative complex motion context, 
requiring only rough motion compensation [39]. 

Figure 2 -  Detection result on a SAR image. 
Green squares mark good detection, red squares indicate false alarms. 
(better viewed by magnification on screen)

Extended objects

When the resolution is sufficiently high, object appearance is 
associated with a region typically of the size of several hundreds 
to several thousands of pixels in an aerospace context. This means 
than the object appearance contains textural information, but this 
intermediate size also dismisses approaches relying on fine details.

The algorithms for object detection conform to a structure in three 
successive stages sharing the load of calculation:
	 • Saliency detection. This computes a low-cost list or regions 
potentially containing an object, with high level of confidence. It may 
use “generic” object models for persons or vehicles.
	 • Detection by recognition. This computes a confidence measure 
or a likelihood for each region, given the object models. It possibly 
provides a segmentation mask of the target to improve localization.
	 • Spatial filtering. This ensures that the detected objects have a 
consistent spatial distribution. This step eliminates obvious artifacts, 
by using simple and inexpensive rejection mechanisms.

The first step requires fast algorithms: stationary filter banks [26] 
[70], cascades [60] [111], coarse to fine schemes [11] , etc. It often 
greatly benefits from a parallel implementation (GP-GPU). The chal-
lenge is to identify salient structures from a background that is also 
structured. The algorithms are based on features able to discriminate 
textures or patterns characteristic of artifacts from those correspond-
ing to natural elements. When the ground resolution is unknown, it is 
usually necessary to perform multi-scale analysis (pyramid filters, 
wavelets, scale space, etc.) to scan the potential size of the observed 
objects (figure 3). These techniques are in general increasing the 
number of false alarms to be filtered in the subsequent phase. In the 
case of urban settings, containing many artifacts (buildings, infra-
structure), the exploitation of registered maps and the knowledge of 
image resolution can be a great help to constrain the decisions.
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Many existing acquisition approaches rely on change detection and 
inter-frame correspondence, i.e., comparing the incoming image 
with a reference, which could range from a single image to a model 
obtained from data. However, the underlying assumption of this ap-
proach is that the sensor is fixed in location, which severely limits its 
applicability in the aerospace context. Image registration techniques 
can compensate for the apparent motion between frames (see article 
[99] in this issue), but cannot get rid of the parallax phenomenon, i.e., 
the apparent motion due to tri-dimensional structures in the scene. 
Furthermore, objects may enter and leave the observed area because 
of the moving platform, breaking the time continuity of its appearance. 
The literature solves these problems in two ways.

The first idea is to mix the two phases of object acquisition and pur-
suit. Object features are learned either offline or online to allow re-
detection and localization during runtime. Approaches involving of-
fline learning are applicable if the appearance of the objects of interest 
does not change overtime and if sufficient training data is available. 
However, in order to handle possible variations of the objects of inter-
est, adaptive techniques (i.e., online learning) are required to incre-
mentally update their representation. Multiple variations around this 
scheme have been proposed, especially in the case of single object 
tracking ([40]). The detection and tracking of multiple objects from 
moving sensors, exploiting machine learning techniques, have been 
studied more recently [22]. These approaches rely on a good appear-
ance characterization and are therefore more suitable to rather large 
extended objects.

A second idea is to filter out the residual noise after motion compen-
sation, either by introducing object motion models and/or contextual 
information [9]. These techniques are applicable to smaller size ob-
jects. Longer time scale filters allow a more global analysis on blocks 
of data [113], or post processing on elementary tracks [71]. We have 
proposed to introduce a light learning step to take into account local 
context estimation in the inference [41] to specialize the processing 
chain under various viewing conditions and scene contents easily. 
Figure 4 shows several detection results on very different styles of 
image content.

Though the first step is to be considered purely bottom-up, the sec-
ond step (detection by recognition) implements a top-down process. 
It uses more sophisticated features to characterize the hypothetical 
object, or to reject it. It often contains an extra class for background 
identification, or a rejection scheme able to state that a given instance 
is out of the scope of the hypothesized objects. The models used to 
compute the likelihood are similar to those developed for object clas-
sification or categorization: configuration of parts [35], accumulation 
scheme [38] [63], histograms of local features[62] [90].

Figure 3 - Typical chain for multi-scale saliency detection. The saliency 
maps are built using a combination of contrast detectors (Gabor filters) and 
local scale estimation [26].

Moving objects

Detecting and localizing moving objects in the scene is fundamental 
to many higher-level interpretation processes, both in the aerospace 
and the security context. Examples include detecting other airplanes 
while airborne, maritime surveillance, pursuit of land vehicles from 
the air, as well as visual surveillance where either individuals or faces 
must be detected and localized over time.

The detection of moving objects can be divided roughly into two 
phases: acquisition, which reveals the presence of an object of inter-
est and pursuit, which filters its location over time. 

Input Image Multi-scale pyramid
Multi-resolution
saliency maps

Local maxima
detection Post-

processing
Fusion of maps

   
Figure 4 - Results of moving object detection using local context estimation on videos with different viewing conditions [41]. 
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Content description

This part will concentrate on what can be inferred once the entities 
of interest have been detected in space and time. It will concentrate 
on three types of interpretation: 3D object classification, action and 
behavior description and it will present a focus on the prospective 
research area of high level semantics.

Object recognition

Object recognition is a rather imprecise expression referring to vari-
ous types of discrete decisions from image data. In this section, we 
will focus on two types of functions: classification according to a 
given list of hypotheses and re-identification based on a similarity 
measure. The typical targets of choice are vehicles, which have gen-
erated many studies driven by traffic surveillance, battle field situ-

Box 2 - 3D object recognition based on laser data

Ladar (Laser Detection And Ranging) is a powerful technology that provides direct access to three-dimensional information. Originally 
limited to macroscopic meteorological and atmospheric research, recent technical developments of ladar (miniaturization, lower cost of 
ownership and maintenance, eye-safe operation, performance) has led to considerable diversification of potential application including 
3D object recognition.
Recent competitions on this topic (see, for instance, SHREC, http://www.aimatshape.net/event/SHREC) have encouraged the develop-
ment of efficient 3D recognition algorithms. The following approach (representation / feature extraction / database inspection / model 
matching) is quite generic and representative of most algorithms from the state of art [16][23][68][87][86].

 

Figure B2-01 - 3D laser acquired by the Onera UAV Ressac. Detected clusters of 3D points are shown in green (left picture) and allow the object extrac-
tion phase (right picture).

Ongoing research is currently focused on the following topics:
	 • The model representation: It should present simultaneously a highly discriminative power and a limited complexity.
	 • The constitution of the database. Its structure determines the speed and performance of any algorithm for automatic and real time 
recognition.
	 • The efficient and robust extraction of characteristic features of any object, even in the presence of noise or clutter.
	 • Effective recognition (matching) from the set of characteristic elements that has been introduced previously into the database.

Current developments are aimed at improving and embedding 3D recognition algorithms for the exploitation of data acquired by Onera 
UAVs. (see figure B2-01).

ational awareness or intelligence applications. Person recognition in 
an aerial context has been less investigated [87], but the increase in 
video resolution is likely to stimulate new approaches. To face the 
challenging conditions of the aerospace context, various approaches 
have been proposed. We will focus on the solutions that can be de-
ployed in practical situations.

Classification, i.e., the choice of a hypothesis from a set of possibili-
ties – category, object model, brand, aspect, etc. –can be used as a 
final interpretation or as a means to filter out outliers using a rejection 
mechanism. It is a critical function in image understanding and has 
therefore received considerable attention. In re-identification, the set 
of hypotheses is a list of previously observed objects and relies on 
a similarity measure or on a conditional likelihood: it is mainly used 
to associate observations at different dates between distant fields of 
view to increase the temporal continuity of interpretation.
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Action and behavior analysis

Action recognition refers to the classification of spatio-temporal pat-
terns over a short time interval and seldom involves more than two 
or three agents. Usually the set of actions that we wish to recognize 
is defined and action recognition is the process of determining which 
action class the given data belongs to. Behavior analysis, on the other 
hand, refers to the recognition of phenomena that are more long-term 
and usually involves multiple interacting agents. Often, “normal” be-
havior is learnt from data and any deviation from this norm can be 
used to detect anomalies.

Many human action recognition approaches share the same global 
structure, where extracted spatio-temporal features of the different 
actions are used to train a classifier. The difference between silhou-
ettes several timesteps apart is used as features in [94]. In [79], an 
action is represented by a sequence of primitive actions and learning 
is accomplished on a small dataset. A bag-of-words-based approach 
with a hierarchy of class-specific vocabularies using neighborhoods 
of spatio-temporal feature points is used in [57]. In [67], view-point 
and style independent manifolds are learnt to improve robustness. 
A Hough Transform-based voting where random trees are trained to 
learn a mapping between feature patches and spatio-temporal action 
Hough space is used in [112]. The problem of selecting the most 
discriminant part of the data by proposing an automatic optimal 
cropping applicable to action recognition techniques in general is ad-
dressed in [100].

Behavior analysis also relies on machine learning, except that a global 
representation of normal behavior is automatically extracted from the 
data and “anomalous” behavior can be detected by the fact that it 
cannot be explained by this representation. In [19], any new query 
that cannot be constructed using the video segment database com-
ponents is classified as abnormal. Global motion flow fields are used 
to determine the dominant motion patterns called “supertracks” in 
[48]. A global representation using spatio-temporal co-occurrence 
between motion vectors is proposed in [103].

Aerospace sense-data (still images or videos) can be obtained from 
various sources, the sole common feature of which is the fact they are 
located above ground, from low-flying micro-uavs to satellites. This 
implies a wide variety of viewing conditions: points of view are usually 
oblique, which leads to unusual appearances of the objects. One of 
the main difficulties is the 3D nature of objects and the variety of ap-
pearances that a single object can produce. Moreover, aerospace data 
is often noisy, due to motion blur, bad color calibration, low contrast 
or saturations, bad focus, etc. A second practical issue is the need for 
an object model that can handle all of these types of nuisance.

Three dimensional object modeling is an old problem in computer 
vision, and was originally studied to locate an object and estimate 
its position from well-defined CAD geometric models [78]. This kind 
of approach is limited to a specific object shape. When it comes to 
a more general category of objects, new types of models must be 
defined.

A first idea is to exploit learning-based methods and blend them with 
geometric models. Several approaches have been used to estimate 
the position of  vehicles [69] [88], by learning the visual appearance 
from various 3D points of view and the 3D geometric relationships to 
produce a global model [101] or by trying to fit a complete 3D ap-
pearance model [64] [56] [45]. All of these new approaches are par-
ticularly greedy for training data, a condition not often satisfied in the 
aerospace context. In practice, only simple models are manageable.

In object re-identification the algorithms depend mainly on the differ-
ence of viewing conditions: same sensor or not, same point of view 
or not. Many of the re-identification approaches in the aerial context 
aimed at correcting detection gaps [44]. Several approaches also 
make use of learning techniques to build a similarity measure between 
images adapted to a given setting [83] [36]. In [42] we proposed 
several solutions to object re-identification exploiting 3D modeling for 
aspect extrapolation and self-occlusion handling. Global and sparse 
appearance descriptions have been evaluated in an experimental set-
up aimed at urban surveillance using a camera network with oblique 
points of view.

		   
Figure 5 - Example of vehicle re-identification with various aspects [43]. 
On the left, images in the first column are “queries” that are to be matched 
with the color framed images. Green means good match, red means false 
match. 
On the right, two kinds of models used to extrapolate aspects: sparse and 
global.
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In [58], spatio-temporal features are extracted to be used in a cou-
pled-HMM. Behavior analysis on crowds is also starting to receive 
much attention, its interest shown by the inaugural workshop on large 
crowds at the last ICCV [7]. For a comprehensive review on crowd 
analysis, see [51]. In the aerospace context, research on behavior 
analysis focuses on learning normal traffic patterns from tracking in-
formation, so that deviations from this norm can be detected as an 
anomaly [49] [21] [98] [77].

A behavior analysis problem that has been studied for many years 
is the long term trajectory characterization of humans, vehicles and 
airborne platforms, in the ultimate objective of supporting long-term 
reasoning; however, it is only recently that solutions are being pro-
posed. The technology for tracking an object for a short time interval 
has reached a relatively mature level. However, maintaining continu-
ous tracks over a longer duration is still a difficult problem, since 
occlusions, both static and dynamic, mean that the labels assigned 
to individual objects are not unique. Interactions between entities, for 
example the formation and splitting of groups, add another layer of 
difficulty to the problem.

A new trend for addressing this problem draws on the analysis of 
groups. Social force models have been proposed to explain the physi-
cal dynamics and groupings of individuals [74] and Pellegrini et al. 
proposed a joint estimation of tracks and groups [89]. We propose a 
solution based on Markov Logic Networks (MLN) [66][96]. An MLN 
is the application of a Markov network to first order logic and com-
bines both logical statements and probabilities [109] into a single 
framework. This approach is promising, since it allows higher-level 
reasoning and multiple types of queries on the data structure. Figure 6 
shows a typical complex situation with the formation and splitting of 
groups whose interpretation will benefit from such an approach. In 
such a situation, traditional trackers will return eight tracklets, but will 
be unable to infer the tracks of the three people. Applying the MLN-
based solution here allows the three tracks to be recovered.

Figure 6 - Illustration of the complex behavioral patterns that can be inter-
preted using our Markov Logic Network approach ([66]). Tracklets 3 and 5 
are tagged as groups. The resulting structured pattern allows different levels 
of reasoning for further interpretation.

Complex settings

The presentation above has described scene understanding issues 
from a single image or video stream, concentrating on the specifici-
ties of the aerospace origin of data. Acquiring images from aerospace 
platforms allows increased flexibility in the acquisition settings. This 
part discusses three of these: the exploitation of multiple points of 
view, of multiple sources and of multiple sensors.

Multiple points of view

Aerial sensors are embedded in moving platforms. Movement can 
be considered as a nuisance requiring compensation (see section 
on moving objects). But it can also be considered as a chance for 
information gathering by allowing multiple viewing conditions and 
therefore different ways to look at scene content.

Multiple points of view can be considered either as a redundant or as 
a complementary source of information. Redundancy can be used to 
remove noise or enhance the quality of the input signal. Interpreta-
tion performances are improved by exploitation of complementarity 
properties.

One of the main difficulties of vision is the management of occlu-
sions; objects can be hidden by others and by the environment; they 
also occlude themselves and show to the camera only one aspect, 
which may be not informative for several reasons (no corresponding 
reference data, ambiguous appearance, or incomplete model).
The management of multiple points of view for interpretation is gener-
ally closed loop and addresses three different problems:
	 • Inference: what multiple view combination schemes use in or-
der to build the final interpretation; 
	 • Informative state modeling: how to encode and sequentially up-
date the current information level reached;
	 • Control: what action or sequence of actions may improve the 
information state, and on what grounds.

This “active vision” approach has received a lot of attention, espe-
cially in the robotics community, since it implements a perception/ac-
tion loop. The main problems addressed have been 3D environment 
or object reconstruction, object search in complex environment or 
unknown position and object recognition [97] . The problem of sensor 
placement and information fusion in multiple camera networks [52] 
[8] [104]   can also be interpreted as an active vision question and will 
be presented in more detail in another section.

In the aerospace context, the position of an object relative to the ob-
server, its aspect, is hard to anticipate. Each item of image data car-
ries some information, but often not enough to discriminate between 
all of the hypotheses of a given set. Several studies have addressed 
this multiclass problem using an active recognition scheme, where 
the next view [30] [20] [13] [31] [32] or the observation strategy [46] 
[47]  is optimized. Figure 7 shows an example of the influence of the 
number of views acquired on the recognition accuracy for a problem 
of vehicle classification with rather similar shapes.
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Box 3 - Rich semantics perception

Object recognition achievements have considerably improved with the development of new techniques, especially the coupling of ma-
chine learning and multiple feature representations of objects. However, when the number of classes or categories to be discriminated 
increases, performance seems to plateau: the smallest classification error on an item of the well-studied benchmark data containing 101 
categories [5] is about 30%, a performance level that cannot be considered high enough for real operational applications.

One possibility for overcoming these limitations is to increase the size of the data set and hope that learning algorithms will scale ac-
cordingly. A second idea is to consider “flat” classification as a simple instance of a more structured description language with richer 
semantics, where more subtle and potentially more reliable scene interpretations can be generated.

A first instantiation of this principle is simply to build a hierarchy of classes and exploit this structure, both in the algorithm design and 
in the output: for example, in a problem of vehicle classification, if the precise model (“Citroen C3 5 doors”) cannot be issued reliably 
enough, a simpler higher confidence level “Hatchback” description would be preferable (figure B2-01). [108] presents a recent review 
of the use of hierarchies for image understanding. 

Figure B2-01 - Example of a multiple level semantic description of a vehicle. The output is a distribution of tags constrained by a hierarchy and with 
associated confidence. The less semantically precise it is, the more confident [107] it is.

The introduction and development of tools for richer semantics management in the description of image and video data is a rather new 
trend of research. It takes inspiration from various other fields, such as natural or computation linguistics, knowledge engineering, se-
mantic web, structured data processing and multimedia database and has made concepts such as stochastic grammar [116] [93] or 
ontology [6] meaningful for scene understanding.

One of the key issues is the description and management of uncertainty. Indeed – this is especially true in the aerospace context – scene 
description is often not the ultimate output of an artificial system exploiting sense data and is likely to be exploited by other agents: since 
scene understanding outputs cannot be produced with infinite confidence, there is a need to provide the results in a form that contains 
a usable representation of uncertainty. The trade-off between confidence and complexity of description or semantic precision is one 
aspect of such a question.
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Figure 7 - One example of an active recognition problem [30]. The 8 objects 
to discriminate are all vehicles (left). The three view planning strategies 
generate various recognition rates (right).
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Multiple sources 

The multiplicity and variety of sensors available today that are capable 
of delivering complex digital information strongly encourage interest 
in their joint use in current or future intelligence systems. This fusion 
of information is a particular need in the context of a complete C4ISR 
chain (Communication, Command and Control, and Computers, Intel-
ligence, Surveillance and Reconnaissance) [25] . The expected ben-
efits are a greater capacity to analyze complex situations and robust-
ness to the environment [18] .

Onera has been conducting research on this subject for several years. 
In particular, in [15] we proposed the definition of a functional archi-
tecture of SAR/optic images fusion for automatic target recognition, 
in a satellite or aerial context. The approach is based on the use of 
conventional methods of recognition, on the one hand a bottom-up 
method that allows us to make different assumptions on the basis of 
target information extracted from the images and, on the other hand, 
a top-down method  that verifies each of these hypotheses using a 

Feature extraction 
by a cooperative
or fusion 
approach

Figure 8 - Left: bottom-up process – hypothesis generation. Right: Top-down process – hypothesis verification

matching model/image technique (see figure 8). The originality of the 
approach lies in the reasoning mechanisms in place. These occur 
mainly in the ascending phase, controlling the extraction of informa-
tion by using the concepts of fusion or cooperation of sources, and, 
secondly, by allowing a gradual exploitation of this information

In the area of UCAV (Unmanned Combat Air Vehicle), we have devel-
oped a perception module whose aim is to increase the independence 
of the system by proposing fully automatic functionalities for image 
understanding of sensor outputs. The implemented functionalities are 
“automatic target detection” resulting from “fusion of the detections 
from 2 SAR images” and “automatic target recognition from optro-
electronic (EO/IR) images”.

Thanks to its stand-off acquisition, its wide field, and its all-weather 
capabilities, SAR imagery is particularly well suited to detecting me-
tallic objects in a natural environment. The method of detection is 
based on censoring techniques, a target being regarded as an anom-
aly compared to its close environment (figure 9).
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In order to limit the amount of information coming through the data 
links, the result of the detection of each SAR image is transmitted as 
a list of points located by their geographical positions. The fusion of 
detections is then carried out in a decentralized scheme, producing a 
list of objects of interest characterized by a confidence index (plau-
sibility).

Vehicle recognition is carried out on the basis of two triplets of high-
resolution images (visible and infra-red), since the current perfor-
mance of the identification process with SAR images is not sufficient 
to consider automation. Each triplet consists of an image acquired at 
nadir and two images acquired using an oblique optical axis (±45°). 
Recognition is based on a template matching method that uses a local 
planar geometric model to fit 3D models to the vehicle silhouette in 
the image (figure 10)[72] .

Figure 10 - Block diagram of the baseline ATR system [72].

Sensor networks 

Sensor networks are often encountered in distributed systems. Their 
configurations range from sensors with a shared, overlapping field of 
view, to sensors that are non-overlapping. The primary purpose of 
using sensor networks is to increase the amount of information avail-
able for subsequent processing. For overlapping cameras, multiple 
views of the same scene can, for example, improve localization accu-
racy [28] [92]; for a series of non-overlapping cameras, the coverage 
area is increased.

One of the main difficulties in using a sensor network is to ensure cor-
respondences amongst the cameras. On a basic level, a geometrical 
calibration process handles positional correspondences [105] [115] 
. However, for an extended network, the configuration of the cameras 
is also required for handling “sensor handoff” [28]. This addresses 
the following question: when an object leaves the field of view of one 
camera, which are the possible cameras with which the object can 
be viewed next? In addition, since the viewing conditions and the 
response of each camera can be different, the same object viewed 
by different cameras can be different. In order to associate objects 
across different cameras, a color calibration process is also required 
[10] [50] [54] [92].

Perhaps one of the most common deployments of sensor networks 
is in public transport networks, e.g., the use of surveillance cameras 
in underground systems. The sheer extent of such networks poses a 
challenge to scene interpretation; nevertheless, there is much a priori 
information and physical constraints (e.g. a train can only move ac-
cording to a predefined route) to facilitate this task [65] .

The deployment of sensor networks in defense or security applica-
tions is primarily for the purpose of providing a common operating 
picture (COP) and for including redundancy in the system. For the net-

works to be scalable and be able to provide consistent and succinct 
information to the users, techniques of distributed and decentralized 
data fusion [27] [80] [81] have been studied extensively. These sys-
tems face a different set of difficulties. These include the problem of 
ensuring that the information provided by all the sources is trustwor-
thy [105] [114] and the potential for reconfiguration in the event of 
the loss of one or more sensors [10].

Performance evaluation

A shared concern

How far are we from an operational solution? This question did not 
have any answer until a series of benchmark data and associated 
competitions were put forward [91] . Several international and na-
tional initiatives have distributed annotated data and organized image 
understanding competitions. The most famous and still active series 
of competitions are Pascal VOC [1]  for object detection and recogni-
tion in internet data, TrecVid [2]  video interpretation and PETS [3]  for 
video surveillance problems. These competitions have encouraged 
research teams to compare their results on the same data and have 
prompted a global emulation. They have revealed a few things: no 
tested solution clearly outperforms all of the others on all interpreta-
tion problems; performances increase each year, but at a slow rate; 
some problems are much easier than others. Figure 11 illustrates the 
evolution of a 20 category detection/localization competition for three 
different years. 

Figure 11 -  Progress on the Pascal VOC challenge on three years for the 
best results on the object localization from 20 categories (http://pascallin.
ecs.soton.ac.uk/challenges/VOC/voc2010/workshop/voc_det.pdf)

The aerospace context has no equivalent. The CLIF data set [4] is no 
longer available outside of the US.  The French initiative TechnoVision-
ROBIN [33] [34]  is no longer maintained. With the growth of interest 
in aerial and satellite data, it would be beneficial for quantitative evalu-
ation and innovation stimulation to produce and maintain comparable 
sets of aerospace benchmark data. Possibly the recent dataset for 
wide area surveillance and containing aerial video [84] will partially 
address this need.

Processing time

Most of the advanced algorithms for scene understanding are not re-
al-time: the design energy is usually placed on algorithmic innovation, 
rather than on computing time control. However, with the constant 
growth of data size, fast algorithms are needed: this is especially true 
for videos. Several studies are now explicitly addressing the comput-
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acclimatization of machine learning techniques and a constant devel-
opment of new image features.

Are the newly developed principles and algorithms really operational? 
By operational we mean that the processing output can be reliably ex-
ploited by non-experts. The answer is not clear-cut. As mentioned in 
the introduction, simple image understanding algorithms are already 
used daily, but in situations where their failure is not critical. When 
embedded into a complex system, a failure may contaminate the en-
tire chain and ruin the confidence in the interpretation.

One should not project too many anthropomorphic expectations on 
automated scene understanding: algorithms do not think or reason, 
and have limited experience. However, they are tireless tools, insofar 
as we can anticipate what they are good at. The next generation of 
algorithms should therefore integrate reflexive analysis and develop 
self-diagnosis tools 

ing time issue, especially with the availability of GP-GPU devices and 
programming toolkits.

“Fast” image understanding algorithms claim a computing time be-
tween a few tenths of a second to a few seconds per image, in gener-
al with a parallel implementation. Several bottlenecks are still limiting: 
low level features used by every stage of scene understanding are, 
in general, time consuming and should be carefully optimized. Entity 
detection remains the most demanding step.

Conclusion: What can be expected?

Scene understanding from aerospace sensors follows the general 
trend of computer vision progress: more robust processing chains, 
larger domains of exploitation, higher and more refined interpretation 
levels and better performances both in accuracy and computing time. 
There has been a noteworthy evolution over the last decade, with the 

Acronyms

CAD (Computer Aided Design)
C4ISR (Command, Control, Communications, Computers, 
Intelligence, Surveillance, and Reconnaissance)
EO (Electro Optic)
GP-GPU (General Purpose Graphical Processing Unit)
IR (Infrared)
SAR (Synthetic Aperture Radar)
UCAV (Unmanned Combat Aerial Vehicle)
UAV (Unmanned Aerial Vehicle)
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