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Abstract

The mean field approximation is numerically validated in the bosonic case by considering the time
evolution of quantum states and their associated reduced density matrices by many-body Schrodinger
dynamics. The model phase-space is finite-dimensional. The results are illustrated with numerical
simulations of the evolution of quantum states according to the time, the number of the particles, and
the dimension of the phase-space.

Mathematics subject classification: 81530, 81505, 81T10, 35Q55, 81P40
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1 Introduction

The mean field approximation is known to be a good way to approximate the many-body Schrodinger
dynamics when the number of particles is large enough (see [2, 6, 9, 10, 15, 19, 20, 21, 22, 24, 25, 26, 32, 37,
43, 46, 29, 30, 33, 50]).

It consists in looking for the solutions to the non-linear Schrédinger equation for one particle called the
Hartree equation. We are interested in the density matrix associated with the wave function, this matrix
satisfies the quantum Liouville equation dual to the Von Neumann equation.The partial trace operators of
this matrix, called the reduced density matrices, satisfy a hierarchy of equations. For instance, by considering
the case where the initial state for the Schrédinger equation is a Hartree ansatz(a product state) which is
suitable for a bosons condensate, the limit, when the number of particles N goes to the infinity of these
matrices converge in trace norm to the product of the density matrix associated with the solution to the
Hartree equation. And this asymptotic density matrix satisfies the time dependent Hartree equation [8].
When the particles are bosons, the suitable space for the bosons is the symmetric Fock space on the phase-
space. Moreover for the sake of numerical computations, a finite-dimensional phase-space will be used instead
of an usual phase-space of type L2(R?). So here the phase-space will be Z = £2({0,--- , K}) ~ CK where K
is a given integer representing the number of sites. Each particle can live in one of the K sites.

For the numerical implementation, an explicit basis of the N-fold sector of the Fock bosonic spaces is
specified. This basis allows the numerical computation of the full N-body quantum problem for N large
enough to validate various mean field regimes, in spite of a rapidly increasing complexity.

The resolution of the N-particles Schrédinger equation will rely on a splitting method, one part for the free
Hamiltonian and the other one for the two particles interaction term.

For the simulations, the considered real bounded potential associated with the interaction term will be V'
defined on Z/KZ by V(i) = ﬁ if i £ 0 and V(0) = 0.

According to previous results related to the propagation of the Wigner measures [3, 4, 5, 6] knowing the
Wigner measure at time ¢t = 0 determines the Wigner measure at time ¢ and all asymptotic reduced density
matrices. For many examples, like Hermite states, twin Fock states or states studied in quantum information
theory (see [1]) their Wigner measure as well as the order of convergence of reduced density matrices is known
explicitly. The evolution of the Wigner measure, and consequently of the asymptotic density matrices, is
evaluated after integrating numerically the mean field non linear Hartree time-dependent equation. In order

*IRMAR, Université de Rennes I, UMR-CNRS 6625, Campus de Beaulieu, 35042 Rennes Cedex, France
TFak. Mathematik, Univ. Wien, Oskar-Morgenstern-Platz 1, 1090 Wien, Austria



to preserve numerically quadratic quantities like the symplectic form, the latter is solved with a symplectic
4" order Runge-Kutta method ([35]).

To estimate numerically the error of convergence of the reduced density matrices in the mean field limit,
a discretization of a time interval [0,%,,4.] is considered, in the examples ¢4, = 1 is chosen, then the
”y(p ) t) — yé’;) H is observed. Here ’y(p )( t) denotes the time-evolved p particles
reduced density matrix for N bosons, while ’y(p )( t) is its theoretical limit when N goes to the infinity, and
Il denoting the trace norm.

For the evaluation of the order of convergence, the logarithm of the previous error estimate is drawn according
to log(N). This gives a straight line whose the slope is the order of convergence in 1/N.

These numerical results agree very well and illustrate the theoretical analysis carried out in [1].

By increasing K, we wish to approach a continuous model. The complexity of the computations increase in
the same time that K and NN increase because of the dimension of the N-particles bosons Fock space on CK
which is a binomial coefficient.

quantity maxe(o,t,.q.]

2 Framework

The bosons Fock space on an Hilbert space Z is defined as I's(Z) = @,,~, V" £ where \/" Z is the symmetric
n-fold Hilbertian tensor product of Z which is the range of the projection defined on the Hilbert tensor
product Z%", by:

(51 ®EEQ..Q gn = ' Z ga(l) ® 5«7(2) ®.Q ga(n)v
oEX,

where ¢; is in Z for each ¢ in [1,n] and ¥, is the set of the permutations of n elements.

For z in Z and ¢ positive, the e-scaled annihilation and creation operators are defined for all ® in Z and
n in N by:

a(2)®%" = \/en(z|®) 0¥
a*(2)®%" = /e(n+ 1)S,11(]2) @ ®™).

These operators are then extended by linearity and density to \/" Z.

These operators satisfy the canonical commutation relations (CCR):

[a(z1),a"(22)] = e(21, 22)1d , (1)
[a(z1), a(z2)]
[a*(21),a" (22)]

The second quantization of an operator A € L(Z) or a self-adjoint operator (A4, D(A)) in Z is defined
by:

0,
0. (3)

dP(.A)l\/n,algD(A) = EZId(X)i—l RA® Td®n—t
i=1

The second quantization of Idz is the number operator:

Nl\/nz = 67’le\/nz .

2.1 Orthogonal basis of the N-fold sector
Use the following notations: Zx = Z/KZ .

For a = (ai, - ,ar) in N the length of a is written |a| = a; + -+ + ax and the factorial of «
al=aq!rag!.
Let (e1,--- ,ex) be an orthonormal basis of CK.

Set Z = CK. Then an orthonormal basis of \/NZ can be built from this basis which is labelled by the



multi-indices o in N¥ such that |a| = N

With the creation operators, an orthonormal basis can be written as:

-— a*(e)a . ;a* e )
= Y T Vaea @)

where |Q) = (1,0,0,0,...) is the vacuum of the Fock space.

eeat(ex) Q)

N+K-1
Then the dimension of \/" Z is card({c € N¥/|a| = N}) = ( ;; 1 ) .

And card({a € NK /|la] < N}) = (N;K) is the dimension of EBQI:O V' Z.
2.2 Hamiltonian

As a binomial number, the dimension of the N particles bosonic sector increases rapidly but not too much,
as N increases (see Table 6.4 for numerical values).The complexity has to be handled carefully if we want
to approach the mean field limit by taking N large or the continuous model by taking K large.

Define Ag the discrete Laplacian operator on CX by:

Ve CK | VieZ/KZ, (Axz)i=zip1+2i1-

And let Hy = dI'(—Ak) be the free Hamiltonian.

The interaction term denoted by V equals:
Z Vija*(ei)a*(ej)alei)ale;) ,
( J)ELY
where ‘/ij = V}i = V(Z —])
In this framework changing the value of V' (0) add an irrelevant phase factor in the time evolved wave function.

In the sequel V' (0) = 0 is assumed.
Or as a Wick quantized operator (14):

Wick
V= Z Vijle: @ ej)( e,®e]\)z®2> :
(m)EZ2

The considered linear Schrodinger equation is:
i€ =H.V, (4)
where the complete Hamiltonian is defined on the bosonic Fock space by :

H.=dl(-Ag)+ V.

3 Finite dimensional mean field equation

3.1 Energy of the Hamiltonian
The energy of the Hamiltonian corresponds to the symbol of the complete Hamiltonian:
_ 1
H(z, Z) = (z,—Agz) + 9 ; Vij‘zi|2|zj|2 )
i#]

while recalling our convention V;; = V(0) =0 for all ¢ in Zg.



3.2 Hartree equation

The mean field equation in Z is written as:
102 = 0:H(2,Z2) .

For each component in C¥ we obtain:

. 1
102 = 0, H = azq(z/ o =z = 2al® + 5 Y Virglew Pl )

=y
1
= 3@-(2(2@ —zi—1) (20 — zi—1) — 2Ziz + 3 Z VirjZir 240 Z525)
4 i'#£j
= Zi — Zj—1 — (Zi-l—l — Zl) — 22’1 + ZVijzﬂzﬂz
J#i
= —(zir1 + 2i1) + QO Viglz )z
iFi

4 = —i[—(Ag2)i + O Vijlz1?) 2l
J#i
By writing z = g + ip where ¢ and p belong to R¥, it becomes:

4G = —(Piy1+pi1)+ Z Vij(qf» —i—p?)pi
i
P = —( —(Qiy1 + 1) + Z Vij(qu +p§)qi)
J#i

A 4% or 6! order Gauss RK method is used by using the coefficients given in [35] to solve the Hartree
equation.

A symplectic method is used to preserve the quadratic part of the energy, the symplectic form and the phase
space volume.

3.3 Wigner measures
For f € Z the field operator is defined by ®(f) = —=(a*(f) + a(f)) which is essentially self-adjoint on

V2
al n
Dyinl2) = LSV 2 |
The Weyl operator is defined by W(f) = e!®(/).

Let (0:)cece be a family of normal states on I',(Z) with & C (0, +c0), 0 € €. o
A measure p is a Wigner measure for this family, u € M(o., ¢ € ), if there exists £ C &, 0 € £’ such that

vfeZ, lim Tr [QEW(\/iﬂ'f)} = [ e¥™Re (12 qu(z) ,
e€&’ ,e—0 z
see [42].

The following result valid for separable Hilbert spaces Z, apply to our finite dimensional Z ~ CK.

Theorem 3.1 [3]. If (0:).ce satisfies the uniform estimate Tr[p.N°] < C5 < 400 for some § > 0 fized,
M(oc, € € E) is not empty and made of Borel probability measures (£ separable) such that fz |212%du(z) < Cs.

For each p in N, the reduced density matrix associated with a state . is a trace class operator in £(\/? Z)
defined by the duality relation:

vil Tr [stWick]
T [228] = oy )




where b € L(\/? Z).
The asymptotic reduced density matrix associated with the Wigner measure p equals:

L 1 ()
e W RE e . ©)

In finite dimension, if the family (g¢)cce satisfies M(ge, e € ) = {p} then the (PI)-condition (see [3]):

v

E,e—0

Vp €N, hm Tr [0 NP] = / |2|* du(z
is always satisfied.

3.4 Reduced density matrices
Theorem 3.2 [5]. If the family (0c)cecs satisfies M(pe,e € ) = {u} with the (PI)-condition:

Vp e N, hm Tr [0:NP] = / |2 du(z
E

then Tr [0-b"k] converges to [ b(z) du(z) for all polynomial b(z) and

cedm g = gller =0

for allp € N.

Theorem 3.3 [5, 6, 42]. Assume M(oc,e € (0,&) = {uo} and the condition (PI). Then ./\/l(e_lfHE 0.t He ¢ €
(0,8)) = {m}. The measure puy = P(t,0).po is the push-forward measure of the initial measure g where
®(t,0) is the hamiltonian flow associated with the equation

iatzk(t) = —AKZk<t) + Z ij|zj|22k . (7)
J

After propagation of the Wigner measures, for any p € N, the convergence of the reduced densiy matrices
is obtained at any time t:
‘ [ 1297) (2P |dpe(2) ‘
Sz 12PPdpo(2)

Theorem 3.4 [1]. Let (a(n))nen< be a sequence of positive numbers with lima(n) = oo and such that
(a(n") Ynen+ i bounded. Let (op)nen+ and (%}g))peN* be two sequences of density matrices with o, € L(\/" Z)

and 7&2) € LY\ Z) for each n,p € N*. Assume that there exist Co > 0, C > 2 and v > 1 such that for all
n,p € N* with n > vp:
(&t

Then for any T > 0 there exists Cp > 0 such that for allt € [-T,T] and all n,p € N* with n > ~p,

VE(t) —

L1

AP H (8)

o
a(n)

, (9)

W(E) -2 0| <or
where

A0 = [ 126 du ),

with e = (Py)gpo is the push-forward of the initial measure pg by the well defined and continuous Hartree
flow @ on Z.



4 Numerical methods

4.1 Method to solve the Hartree equation
To solve the mean field equation (7), a Runge-Kutta method is used.
Let b;, a;; (i, =1,...,s) be real numbers and ¢; = Z;:l ;.

An s-stage Runge-Kutta method with a time step h to solve a first-order ordinary equation y' = f(¢,y) ,
y(to) = yo is given by:

S
ki = f(to—i—cih,yo—l—hZaijkj),izl,...7s
j=1
S
yo= yo+hd bk
i=1
represented as:
C1 a1 A1s
Cs As1 QAgsg
o0 .. b,

Here the system is autonomous, and according to [35] the coefficients used for the Gauss RK method are:
0 0

1/2 | 1/2 1/3 ] 1/3 1/2-/3/6 1/4 1/4—-/3/6

/21 0 1/2 , 2/31-1/3 1 or 1/2++/3/6 | 1/4++/3/6 1/4

1 0 0 1 1 I B | | 1/2 1/2
[1/6 2/6 2/6 1/6 | 1/8 3/8 3/8 1/8

In our case, the function f corresponds to f(z) = —i (—Asz +22; ij|zj|22k).
As a function in R?X by replacing z by ¢ + ip,

fa,p) = fo(a,p) +ifp(q,p)

fa(@,p) = —(pit1 + pic1) + Z Vi (4 + 05)ps
Jj#i
fpi(@:p) = Git1 + qim1 — Z Vij(qu +P§)Qi
J#i
For an implicit Runge-Kutta method, a Newton method is applied to find the coefficients k; for each step
of the RK method to the function gy, : (ki)i=1,...s — (ki — f(yo + hZ;:l aijkj))
i=1,--s

Given the time step h small enough, the starting point of the Newton method is chosen by setting
ki = f(yo) for all i.

To apply the Newton’s method the differential of f is computed by using the following partial derivatives
of f:

Ofq,
aj;: — (1= 6,1)2Vinapi
afp, + [ Z
8fp1 = Oit1,k + 01 + (G — 1)2Vikqrqi — 0k Vij(q? p?)
o J7#i
Of
a{)‘: = (g + 0im1p) + (1= 65.0)2Vikprps + 0 E Vij (4 +p3)
J#i
fpi _ (1 — 6 1) 2Vikprai
Opk



Then the differential of g,, is:

Dgyy((ki)i=1,.. s) = | Idax —hauDf(yo +hY_ aijk;)
J=1 =1,

where g, is considered as a function from R*%*.

4.2 Resolution of the Schrodinger equation in \/N Z
4.2.1 Composition method

For a given ¥ in \/N Z, the full N-body evolved state e “H= ¥ is computed in the basis (€a)ja|=n- After
writing ¥ = Z|a\: ~ Paeq a modified splitting method for which the numerical error is carefully controlled

(see 5), involves only multiplications by the diagonal matrix e %" and the sparse matrix dI'(—Ag).

In order to handle the high complexity of the problem (see table 6.4) no matrix, but only vectors or the
sparse matrices dI'(—Ag) and the matrix (V;;); ; are stored.

The complete evolution et H: g computed by a composition method based on the Strang splitting method:

.t gt 4t it
—izHe = lim (6 ZQEPVQ ZEpHoe 225PV>17

p—o0

(&

The 4" order composition method is given by:

. .agt .agt .agt .agt .aot .aot .aqt .aqt .aqt
e iete = lim (eiz%veﬂ 2p Hop—iadyVe—inlgV—idy Hop—ighVo—ighy V=it Hoeﬂ%lpv)p ,
p—0o0
where the coefficients of the method are satisfying the two equations (see [35]):
a1+ as+az3=1 (10)
3, .34 .3
ay +ay+a3=0 (11)

and are given by:

1 21/3

M=WB=5 T 2T Ty 918

4.2.2 Computation of the free evolution eiedl(=Ak)

The numerical computation of e~ 240 (=Ax) — ['(eAx), relies on the following two remarks:

e the dimension of the N-fold sectors (N ;215 N 1) prevents the storage of any square matrix.

e the matrix of T'(e®2%) is actually non trivial sparse matrix in the basis (es).

The matrix of Ak is given by:

0 1 0 0 1

1 0
Ag = 0 . . . A 7

. t. T T T, 0

0 1

1 0 0 1



We are interested in the matrix of the second quantization of the discrete Laplacian on the basis of the

N+K—-2

bosons space to implement it numerically as a sparse matrix containing only 2K ( Koo

N+K71)2
K-1

Then e~#" 40 (=A%) will be computed at each time step by a 4" order Taylor expansion.
This expansion is then replaced in the composition method.

a full matrix contains (

For an operator A : CK — CK A= (4,;);,

K
dF(A)|vn CkK = Z Ai7ja*(ei)a(ej) .

ij=1

This yields:
K
dU(-Ag) = = a*(ej1)ale;) +a*(ej)alej) -
j=1

Lemma 4.1 For all multi-indices v and « the following equality holds:

al

a(e)"a*(€)*2) = 0y<acl”! a*(e)* 7).

Proof.

a(e)’a*(e)* =

e
—~

e1)" .. alex)™a*(e1) ... a"(ex)*K

ale;)"a*(e;)* which is a commutative product because of CCR (1)

Il
VEW

©
I
—

ales)a*(e)™

@~

@
Il
—

by using the following separation of the variables: I'(Z) =T'(Ce;) ® ... @ T'(Ce) .
In this space let |Q) be |21) ® ... ® |Qk).

Let us consider v; > 1 and o; > 1,
ale;)Va* (€)™ ) = ale;)” tale;)a* (e;)* )
=a(e;)" ta* (e) ™ ale;)| ) + ale:) " Hales), a*(e:)*]|€%)

= cazale;) " ta* (e)* Q)

By induction, we obtain

ae;)"a” (e;)™

Q) = e X (a; — 1)e X ... X 2e X ea(e;)V ~

Q;) =0,when a; <;

and

ale))a*(e;)* Q) = aze X (o — Ve X ... x (o — (75 — 1))ea™(e;) 7 7|8;)
Cki!

=g
(i —i)!

a*(e;)®

Q;) ,when v; < a;.

) elements whereas



The above separation of variables leads under the condition v < « to:

a(e)’a*(e)*|9) = @i a(es) " a" (€)™ )
K E’Yiai! * Q=i
= (Hm) ®ity a*(es)

i=1

=l ” 0“7)! (Ha*(ei)ai_%) (121)®...® [Qx))

— &l

ol * (o \o—y
’y)!a (e) |Q) .

Proposition 4.2 For all multi-indices a and 3, the matriz elements of dT'(—Ax) are given by:

dl'(-Ax) b = _EZ B—ei,a—eiy1 V Bi(Birr +1) +5+*Ei+1,0t767; VBiv1(Bi + 1)),

where 52,@ = 00,51y (@) for a and B multi-indices in ZX.

Proof.
According to (13) and to Lemma 4.1, we obtain:

a”(€i+1)alei)a”(e)*[2) = e<a6(oéi[;)!a*(e)ei+l+aei Q)

zélgaiEOﬁa* (e)ei+1+o¢—e,y |Q> 5

and
* a! el eitae;
a (ei)a(ei.t,_l) ( ) |Q> (,7+1<a5ma (6) i 1+1|Q>
:51Sai+1€ai+1a* (e)ei-l-a—eul |Q> i
Then

(ea,dl(=Ak)eg) = < (Za €i+1)a a*(ei)a (ei+1)> 35>

Q| 51<5161 ( )ﬁ+€i+1*€i + 51§B,;+15i+1a*(€)5+eiiei+l) Q>

\/W 2
- W Z(aﬂ—ei,a—eiJrlﬂigN \/O['(

ﬂ —€; —+ 67;4_1)!

+ % eip1,0me; Dit1€ NVal(B = eip1 +e))

= ﬁ Z((sﬁfei,afei_'.lﬁiv (B—eiteir) + 05 aeBir1V (B — €1 +e)!)

/51+1 +1 Bi+1
= _EZ B—ei,o— el+1 57, + 6[3 €it1,0— elﬁl"rl ﬁiJrl )

( AK O‘ B = _EZ B—ei,a—eit1 Bi(ﬂi+1 + 1) + 5+7ei+1,ozfe,; Bi+1(ﬁi + 1)) .




O
Numerically only the indices of the multi-indices @ and 8 corresponding to the nonzero components of
dTl(—Af) with their values, are stored in an array.
In the algorithm instead of running over the multi-indices o or 8 with a length N, the multi-indices 8’ with
a length N —1 are run over. And for each i in [1, K], the changes of multi-indices 8’ = f—e; or f' = f—e€;11
are used, then the indices of the corresponding multi-indices o and § with length N are looked for.

Therefore an array composed of 2K (N ;If; 2) triplets of elements is numerically stored.

4.2.3 Computation of the interaction factor i

Denote a;# =a*(e;) and N; = ala; .

By using the relations CCR (1):

* *

J J
= NZN] — E(SijNZ' = Nl(Nj — 5(5”) .

a;aia;a; = a;(aa

_— * . Ppp— .. * .
i 0 —&di;)a; = aja;aia; —ed;ja;a;

Then V can be rewritten as: 1
V= 5 Z ‘/Z‘jNi(Nj — 652‘3‘) .
(1,5)€Z3,

And since N;e, = ea;e, then V is diagonal in the basis (eq)q:

1
V@a = 5 Z ‘/;jEQi(Eaj — E(Sij) €a

(i,J)€Z3
&2

=13 > Viailag = 8;) | ea

(4,4) €L

and
) _it (2 s (s — 8

e—zgvea — e 15(52 Z(i,j)ez%( Vijoi(a; 6”))6
e 3 (Zi;ﬁj Vigouo+3 2 cn, Viiaz‘(aﬁl))

(0%

€a -

4.3 Numerical computation of the reduced density matrices
Consider bk = a*(e)%a(e)? with |§] = || and its associated homogeneous polynomial:

b(z) = 2027 = 200 L BK LK
Let us compute the quantity Tr(o.6"%*) when p. is a normal state. Using an orthonormal basis of the
N-fo%/giig‘cl;cg)r /N £, 0. is a linear combination of operators |®)(¥|. It suffices to compute Tr(|®) (¥ [pWick) =
(¥,b :

Lemma 4.3 Set b"Wick = q*(e)%a(e)” with 6] = |y| and let ® and ¥ be in \/™ Z then:

\/(a’ + )/ +7)!

o'

<\Il7bWiCk(I)> = 5|’Y| Z \i/oz’-i-éq)a'-l-’y
o/ |=N 3]

. . a*(e)” N
in the orthonormal basis (\/%KD)M:N of V' Z.

10



Proof. Given ¥ and ® in the N-particles bosons space and the formula 4.1

al

a*(e)’a(e)?a*(e)*|92) = Gy<ac’ (a—7)!

a*(e)’t*7IQ)
we can write :

\If, bWick(I) _ \I/a a*(e)a
o) = 3
el

- \/E * o * S+B8—v
== v, Pg————(a"(e)*Q,a" (e Q
~ MZ_N m_;’m g = @@ e @)

_ —9)!
— <l VS (O‘+—7 !
P SRV TP T

Q, hl Z q)ﬁﬂ'a*(e)ﬂﬁf”m

N/2(3 _
plenpzy  E B!

|la|=N,a>§
_ ! —)!
_ bl alla+v
—¢ > Uaayys @)
|a|=N,a>d
_ oo !
T R 2V S Vi + a)"(a +)!
o |=N ]3] '

because
(a*(e)*Q,a"(e)"777]Q) # 0

ifandonlyifa=6d+8—-vsof=a+~v—39 and > v means a« — § > 0.
The last line is obtained by a change of multi-indices by setting for each o, o' = a — d because a > ¢, and
then |&/| = |a| — |6] = N —|4]. O

Numerically, all multi-indices of N with length not larger than a given N,,q. are stored in the lexico-
graphic order.
For our algorithms, we pay attention to preserve this lexicographic order (or reverse).
For a given N < N4z, the list of relevant multi-indices (with length N) is extracted and handled in the
lexicographic order.

For a given d, numerically the above summation is performed over multi-indices o’ such that |a/| = N —|d]
in the lexicographic order.
Then for each o, the multi-indices a of length N written as @ = o’ + § are looked for. These « are exactly
the multi-indices such that o > ¢ and |a| = N.
Note in particular that the mapping o’ — o’ + § preserves the lexicographic order.

First let us compute the matrix elements of 72 in the orthonormal basis (e4)q-

The matrix element corresponding to the line 8 and column « is:

a*(e)® a*(e)® a*(e)?
2o = (e | o) (V)
B Tr(o- (t)bW”k’)
T e?N(N—-1)...(N—p+1)

a*(e)’
(Vm

according to the duality relation (5) of the reduced density matrices with b= a*&fz:' Q>< ?;%Q , and
b(z) = (287 b28P) € P, .
Ifb= ‘1;%9>< '1/6(:7;9 , its Wick quantized is :

. |
bchk _ p: a*(e)aa(e)ﬁ .

alp!

11



And then

v _ 7 Tr(o-(t)a*(e)a(e)”)
OB = NN - (N —pt D)

Then owing to Lemma 4.3, all the elements of the matrices 72 can be numerically computed.

In the case where the initial state is a Hermite state g. = |z®V)(2®V]|, 2N needs to be expanded in the
orthonormal basis (e, ) which is given by the following lemma.

Lemma 4.4 For allp € N, and z € Z, we obtain in the basis (eq)q:

oo Zfz

la|=p

Proof.
a*(2)P|Q) = a*(z1e1 + ... + zrer)P|Q) = (z1a"(e1) + ... + zra™(ex))?|Q)

|
= Z %zf‘l C2Ea(en) L a" (e )|

And then

O
In the case where the initial state is a twin state, the following lemma is used to obtain an expansion in
the basis (eq).

Lemma 4.5 Let ¢ ,v be in Z and z the state

a*(¢)"a(¥)™
Vertmnplm)!
such that n+m = N.
Then we obtain

=Vl Y (% L!Qg@uﬂ—a)mun_

V=N |a|=n,a<ly

Proof. |
n!
a*(9)" = D —o%a*(e)”
|a]=n :
|
)" = 3 Gl
|Bl=m "
!
a (@)t ()" =Y ”,—’;wwﬁa*w)aa*(e)ﬁ = > Wwwﬁa*(e)a*ﬁ
laf=n,|B|=m la|=n,|B|=m
because of the CCR relations (1).
* N % m / @ B
a ((b) a (w) |Q> — \/7 '+'ﬁ (éoz,(/)ﬂ a * |Q>
nlm! Py 5! ( +6)!
_ VI et (e)
—vaml S eyt

[v[=N, |e|=n,a<y

12



By setting v = a + 3,

A e @)
=il 30 (3 et )T_W\QW

[v|I=N  |al=n,a<ly

0
Further the limit reduced density matrices (6) have to be computed numerically. In order to do this, the
integration over Z of the Wigner measure is discretized. The problem is then reduced to the computation

of the matrix elements of [2%7)(2®P] in the basis (€q)|a|=p-

Compute the matrix elements of |z®)(2%P|, according to Lemma 4.4:

D () '—a
(571l = /B

P P!
(1257) (= ea =\ 72 D2 4/ Gi#es

Then

For the computation of the integral [ |2¥7)(z®P|dpu(z), the Wigner measure is approximated by a convex

combination of gauge invariant delta functions 67 1, where 551 = 217r 02 " 80,6,
For the Wigner measure associated with the Hermite states, p = 62 1, and the discretization is trivial and

exact. it is not needed to be approximated because of the gauge invariance.

In the case of the twin states given by Wy = () a (Wa)?? |Q), where 91,12 € Z, ||¢1]| = ||¢2]] = 1, and

Veritranging!

ny = ng = 5, the Wigner measure is po = i 2” (55 d(b according to [6], with:
Yy = cos(¢)ibo + sin(¢)Y=

o = g(% +1b2), Yz

S

(1/)1 ¥2) .
Numerically the interval [0, 27] is discretized and pg is approximated by = >"" | (5;9:.
The Wigner measure u; propagated at the time ¢ of the twin states is given by :
1 2m

Ht = % 1/;4,(75 d¢ )
where 14 (t) is solution to the Hartree equation at the time ¢ with initial condition ).
Numerically it is now approximated by - 37" | 65:( #) Where zj(t) solves the Hartree equation (7).

Thus the matrix elements of [, |2%?)(2®?|du,(z) are given by the formula:

Z W ()P

And the approximation of the scalar [, |z[*"dug(z) is given by the formula = > | |2]?P.

2®Py(,®P (2
The matsi of 210 — S 3t

can then be computed at any time ¢ numerically with a good
approximation.

13



5 Error estimates

5.1 Error estimate of the composition method

The Baker-Campbell-Hausdorff formula (see [35]) allows to find the order of the composition method which
is 4. Then the Taylor’s formula with 4** order integral remainder and the Cauchy inequalities are used to
estimate the error.

The following proposition gives an estimate of the composition method.

Proposition 5.1 Let R > 0, A and B be two anti-adjoint matrices such that (a1 — as2)||A]| — &%HBH <R.
Then

2€R 3&2
||6A+B — \I’A7B|| < " <(a1 —az)|| Al — HBH)

ay a1 p ag azp ag ap . »
where Vo p =e2 Beadpe3 BeF BeadeT B3 Beardes B s the composition method.

Proof.
€A+B . \IJA7B — eAJrB —e 2 LB a1A B azA B alA
— (ATB _ (F B A M2 B ax A 2B a1 A, B
||6A+376%BEGIA€%BBGTQBBG2A O'TQB %B a1 A %BH
_ ‘|67%BefalAef%BeA+B 0a2A 2L B jai A —B”
Then for z € C
A+B
||ez( TB) \I'zA,zB”

< e~ B2 MG Bl gar Im()[ 1Al S 1T ()| B olTm() | (1Al + ] B1)
4 ema2lIm@|Al = 25 Im() 1Bl o | Tm(2) | All , G 1Tm(2)] | B

_ o SR IB] gor (4]l FImE BN (T IAIIBI) 4 g2l Im()l 1Al
_ TN F Bl a4 (T IAIIBI) 4 g2l m()l Al

< 2elImEI(= R Bl+ar| Al) g—as Im(2) || A+ BI)

_ 9pltm(=)|((a1-a2) | A - 252 ||B) |

Let us consider the holomorphic function on C defined by:

fap(z) =P — W 4 5.

Since the composition method is of 4** order then for A € R, the Taylor’s formula with integral remainder
yields:

Ay 4
Fan() = /0 A e

I£45 sg sup I£35(0)]-

14



By the Cauchy’s integral formula, we know for each ¢ € [0, 1]:

£ () z
[ 2520 =3 [, e

5!
1 2m )
<5r [ Wantt+ o
0

< sup |[[fas(?)ll
[Im(z)|<1
< sup  2eIm@I((ar—a2)| A= 22 Bl

[Im(2)|<1

< 9e(m—a2) | A= *32||B]
Hence for all Ap and Bp such that (a; — a2)||Ag| — 222 || Bg|| < R we obtain:
I farBa V) < 2X%® ifA<T.
Let A and B be such that (a1 — as)||Al| — 22|/ B|| < R.

: _ RA _ RB :
By setting Ar = o iai—mzzyey 4 Br = Gaiar—tzey V¢ obtein
(a1 — ap)|| A| — %2 B]| (a1 — a2)|l A = %52 Bl
R R f

and (a1 — a2)||Ag|l - *5*|| Bzl = R.

A=

Ar, B=

Then

- _ Bay
fA,B(l) = fAR,BR <(a1 a2)||A|| 2 ||B||>

R

5
(a1 — a2)||A]l — 52| B]|
R

I£a5D)] < 2¢® (

ell 3as >
<25 (- allal - 22451

5.2 Error estimate of the approximated composition method

%

The composition method is approximated by replacing e~ 2Hd0(-Ak) by its 4*" order Taylor expansion, with

some normalization factor.

Errors estimates for this modified composition method rely on the two following lemmas.

Lemma 5.2 Let E be a normed vector space, J € N*, (f;); and (g;); two maps sequences from E to E such
that for all j € {1,...,J}:

o f; is linear.
o £l = llgs (@)l = [[u]| for all u € E.
evueE  |ull <o=|fiu) —giu)] <o
Forug € E, |lug|| < o set u; = fj(uj—1) and v; = g;j(vj_1) with vo = uo.

Then we deduce ||uy —vs|| < J§ .

15



Proof. Let us proceed by induction on J.
For J =0, |Jug — vo|| = 0 < 04.
Let us assume |luy — vy|| < J§ with the hypotheses fullfilled for j € {1,...,J+1}.

uyp1 — Vi1 = frri(ug) — gryr(vs)
= frr1(us) = fre1(vs) + fre1(vg) — grsa(vy) -

Since fy41 is linear and unitary we obtain:

I frv1(us) = froa(ua)ll = 1foe(ug —va)ll = [Jug —vs|| < J6 .
Moreover [lvs]| = [lgs 0 gs—10...0g1(w)| = |Juol <o,
then
I fre1(vs) —gop(vs)|| <0,
we obtain

lussr — vyl < (J+1)5.

Let TL(e) denote the 4" order Taylor expansion of e# around 0.
Let A be in B(0,cg), cg > 0.

Lemma 5.3 Let u be a vector in a normed vector space E and let A be an anti-adjoint operator on E.
Define the application TL(e?) on E which is non linear by:

TL(e)u = TL(eMu if |TL(e®)u| # 0,

ITL(e?)u]

it preserves the norm.
Then |[(TL(e) — TL(e®)ul| < [|TL(e®) — e|[[|u].

Proof.

I (]
ITL(e?)ul

AT o
‘(1 TL@AMH)TL(3

TL(e*)u — TL(e®)u = TL(e™)u

ITL(e*)u — TL(e)u| = H (1 - ”Tgé%w) TL(eA)uH

= [ITL(e*)ul| — |lul|

= |ITL(e*)ul| - [le*ull]

< ||TL(e®)u — etul|
I(TL(e®) = TL(e*))ull < |TL(e*) — e|l|Jull.

16



The 4*" order error of the Taylor expansion gives:

Al
>

=5

1—t)* 1
e~ TL(e)| = <t [ UL e < g g

The following proposition gives an estimate of the approximation of the composition method.

Proposition 5.4 Let A and B be two anti-adjoint matrices and J an integer such that

At 3a2
— (a1 —a)l|All = == Bll) <

and ; 3

az
J 2 (a1 — a2l Al = =~ IIBl) -
Then
¢ ~ e\® 3a At*
le* AP u = (Fac g s ) ul] < (2(5) (<a1—a2>||A|—2|B||) ||A||5> t=

for all vector u, where

agB —~— ayB a1 B a1 B

\AI"A,B = e#ﬁ(eﬂqA)e#eTTL(eazA)e%e 5 ﬁ(ealA)elT

Proof.
Let u be a normed vector.

First for ¢ = 1,2, 3 let us estimate the error:

a;B a;B a;B —~— ) a;B
le = e Ae™> u—e 2 TL(e“)e = ul
by using the fact e™5 is an unitary operator and Lemma 5.3:
a; B a; B —~— a; B — a; B
5 e ey — e TL(emA)e S ul| = [[(*4 — TL(e®4))e s u
_ lasApP _ AP
- 60 T 4
like in the previous proof.
a; B —— a; B

i

Now Lemma 5.2 can be applied with f; = e 2 Betde T B, g, = ¢™5 TL(e%4)e™® and J = 3.

Then 5
[Pa,Bu—Vapul < 1||A||5 :

Secondly let us estimate the error:

le*Pu — T, pu

By using Proposition 5.1 with its hypotheses and the previous estimates:

leA*Bu — U a pul| < eAE = Waplllull + |(Vap — Vap)ul

2eR 3as

3
<2 (o —aatal - 224m1) + 2.

17



By applying that to %A and %B where At = % with J positive integer, we obtain:

t ~ 2€R 3&2 At
[CRTE PP ( = ((al—a2)|A—||B|> ||A||5>

ASL(A+B)

Then by applying Lemma 5.2 with f; = e and g; = @MA’QB, we obtain:

~ 2¢ft 3a Att
e A+ (‘I’A;A,gtB)JUIIS<R5 (- >|A2||B|> ||A||5)t

eaR

By knowing that for all positive integer 7 and positive real a, R — %= is minimal in R, = 7 and
mingsg e};—f = (%)" , the condition
At 3a2
2 (o - aaat - 2211 <5,
that is ; 3
az
7> S ((m - a4l - 22| B])
implies
t ~ e\d 3as Att
s P — (a4 a0 ) ul| < (2 () (<a1 —ay)|A] - ||B||) ||A5> =
_ U
For Q € L(\/? Z), we know according to (15):
wick _ Vnl(n+2-2)! 202 3 @n—2
QViz =" g ¢ Seen(@eld)
=2n(n —1)8,(Q ® Id®"?)
then ‘ ~ - ~
Q'K 21l < 2NN =D IShlllQll < 2N?[Qll = QI -
When QVik =V with
=~ 1
V(el- V ej) = *V;jei V €j 5
the norm ||V|| is bounded from above by ||[V| = 3 max |Vj;| independently of the number N = [1] of

particles.

Moreover [|dI'(A),\~ z|| < eN|[A[| = [|A], therefore [[dI'(-Ak)[| < [|Ak| = 2.
Finally by applying the last proposition with A = —idI'(—Ag) and B = —iV, an error estimate is obtained
for the complete evolution:

30,2

e\d
e~ e — (U_ atiar (o, ain) ull < (2 () ((al—azann—uw) ||AK||5)

At4

Pratically, the time step is chosen according to N and ¢ so that the above error is negligeable.
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6 Numerical simulations

For all the numerical simulations the final time is chosen to be t,,,, = 1, the number of time steps for the
4*h order Runge-Kutta method applied to solve the mean field equation is 100.

The loop of the number of particles is performed numerically from Ny, = 2 to Ny = 20 particles, and
only for an even number of particles.

In the Fortran program the computations were performed by parallelizing the loop in the computation of
the product sparse matrix-vector dI'(—A g )u with Openmp on 8 threads.

1)

Results and orders of convergence for 7.’ and 7?)

For each type of states, the following graphics show for the reduced density matrices and for K = 10
sites:

1) The logarithm of the error in trace norm log(max;eo, 1 H'y](\’;)(t) — 4w (t) Hl) according to the logarithm

of the number of particles NV in the cases p =1 and 2.

A straight line is obtained whose the slope is the order of the error in 1/N.

These numerical experiments also valid the idea that for rather smooth but non trivial N-body bosonic
system, the mean field asymptotics start to be relevant at N = 4. The numerical plot agree perfectly
with the theoretical results of [1].

2) In the case p = 1 the density of particles on each site k € {1,..., K} given by fy,(c}f) (t) for N = 20
particles and for the mean field limit at the same times t = 0 and ¢ = 1.

3) The correlations in terms of the 1 and 2 particles reduced density matrices, for N = 20 particles and
the mean field at the time ¢ = 1. Depending on the case, this plot shows with which accuracy the
mean field also catches some quantum correlations.

6.1 Hermite states

For the Hermite states 2% the vector z is given by z = %((1 +1i)er +ies).

Logl( 11;:L:{_||",-_"\"[f} ",-'\“[?‘}” ) according to Log(N) \N € [2,20], K =10, p=1
1E[0.1 1

—— LOG ERROR IN TRACE NORM

Ermor=0.135 7 SLOPE: -0.950451 04541585103 108753

q Time evolved densities of particles on each sites k. given N and mean field
4 _ density of particles at =0 for p=1 and mean field

o.os2 e density of particles at t=1 for p=1 on each sites and N=20

1 1 ——  density of particies at t=1 for p=1 and mean field

02

LER]
9 07+
06
05

04+

Ak k) 2k R)

03+
02+

1 0.1
Ermo=0.011 T T T T T T T 1 7
05 . : . . ;

1.0 1.8 20 25 20 0.0 !

Log(N) ! ! ¢

s
;\.

(a) Log-log plot for Hermite states. p=1, K=10. (b) Compared densities of particles at times t=0 and t=1
Numerical slope -0,9804
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LrJ_q[’m_zL,Lt||“,- Nt ",-K":[?‘}||l} according to Log(N) . N € [2,20] . K =10, p=2
e,

Eno=0.36 7 —— LOG ERROR IN TRACE HORM
q SLOPE:-0.96936430035280507 42013
022 (24— (W00
a 13:
0.02
0.04:
0.03
Erro=0.01 1 T T T T T T T 1
05 1.0 1.5 20 2.5 20
Log(N)
(c) Log-log plot for Hermite states. p=2, K=10. (d) Mean field(white) and 20-body quantum(blue) correlations
Numerical slope -0,9693 at time t =1

6.2 Twin states

i _ a"()"a" (ih2)™? _ 1 : —
For the twin states Uy = g |Q2), 1 = \/5(61 +ie3) and 92 = es.

Log( max
teli,1)

|",-'\l'[?‘} 1-';\“[?‘}||L:J according to Log(N) \N € [2,20], K=10, p=1

—— LOG ERROR IN TRACE MORM
SLOFE: -0.9555695390119795560136

Error=0 135
_- Time evolved densities of particles on each sites k, given N and mean field
0082 . density of particles at £0 for p=1 and mean field
1 10 density of particles at =1 for p=1 on each sites and N=20
- 1 ——  density of particles att=1 for p=1 and mean field
4 .
0049 1
4 .
J -
0,030 = 1
] < oe
4 054
0,018 =]
J o 04
] R
0.011-
J 024
4 0.1+
Enor=0.006 T T T T 1 1
0.5 10 15 20 25 3.0 oo T T p o
Log(N) ke
(e) Log-log plot for twin states. p=1, K=10. (f) Compared densities of particles at times t=0 and t=1

Numerical slope -0,9855
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Log( max
tef,1

(1) — 7

Error=1.648 7

[r‘}”t) according to Log(N) N € [2,.20] . K =10, p=2

—— LO% ERROR IN TRACE NORM
SLOFE: -1.05659737 1113962891087

Error=0.049 T T T T T T T 1
0.5 10 15 2.0 2.5 2.0

Log(N)

(g) Log-log plot for twin states. p=2, K=10.
Numerical slope -1,0566

6.3 W states

— (i a0

(h) Mean field(white) and 20-body quantum(blue) correla-
tions at time t =1

For the Wq states ¥ = MKD, P = %(61 +ieg) and 9 = es.

en1tnanIny!

In this case the state is given by S’N(w?”l ® w§"2)7 with nqy +n9 = N, ny = N — ¢ and ny = ¢ fixed for

the mean field. )
The associated Wigner measure is 631.
In these simulations g = 2.

L8)])) aceording to Log(N), N€ [2,20],K = 10,p = 1

Ermor=2.22 4
—— LOG ERROR IN TRACE NORM
SLOPE:-0.9843127152017461245402

Error=0.20 T T T T T T T T T T T 1
0.6 [aR-] 1 12 1.4 1.6 18 2 22 2.4 28 28 3

Lo N

(i) Log-log plot for Wq states. p=1, K=10.
Numerical slope -0,9843
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Time evelved densities of partieles on el sites &, given & and mean feld

density of particles at t=0 far p=1 and mean field
density of particles at t=1 for p=1 on each sites and H=20
0.8+
density of particles at t=1 for p=1 and mean field
LER
07+
= 08
- 05
" 04
03
024
0.1 7,—,7
04— T i T T T T T T T T 1
o 1 2 El 4 5 6 7 a @ o 1 a2

(j) Compared densities of particles at times t=0 and t=1



Lo e |45 (0) = 42001 acerding to Log(X), e

Ermom2.22 o
—— LOG ERROR IN TRACE NORM

SLOPE: -0.8448503700347693422760

— (i a0

1.22 A

0.82 A

0.67 A

0.65 o

0.45 o

Error=0.37 T T T T T T T T T T T 1
0.6 [aR:] 1 12 14 1.6 18 2 2z 2.4 28 28 3

Lod N)

(k) Log-log plot for Wq states. p=2, K=10. (1) Mean field(white) and 20-body quantum(blue) correlations
Numerical slope -0,9449 at time t =1

6.4 Other states
A case when the order of convergence is equal to 1/2.(see[1])
In this case 0. = [65") (63| with 6y = Krer +1/1— kea.

. . . 1
The associated Wigner measure is 87 .

LrJ_{,l[rlI}_i‘L_F |"| ] '*"-\“[f}”L) according to Log(N) . N € [2,20], K=10, p=1
[N
——  LO% ERROR IN TRACE NORM
SLOPE: -0.47 1185103640200 1764253
Error=1.481-
_- Time evolved densities of particles on each sites k, given NV and mean field
12z _ density of particles att=0 for p=1 and mean field
1 10 density of particles at =1 for p=1 on each sites and H=20
- 1 ——  density of particles att=1 far p=1 and mean field
4 e
- ]
0.8
J 07
0818 = 1
J < ng
i ‘ 05
0670 =
4 2 04+
] EaEE
0,548 1
J 024
4 0.1
Eror=0.443 T T T T T T 1 1
05 10 1.5 20 25 30 DDU N M H N o A
Log(N) k
(m) Log-log plot. p=1, K=10. Numerical slope -0,4711 (n) Compared densities of particles at times t=0 and t=1
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Log{ max |",-"\"[?‘} ";K‘”[?‘}” ) according to Log(N) .N € [2,20], K=10, p=2
tefi).1 1
——  LOS ERROR IN TRACE NORM
Eno=1822 SLOPE: -0 45240094037 78836467 150
1,491
1221
.
0818
0,670
Erro=0.549% T T T T T T T 1
05 10 15 20 25 20
Log(N)
(o) Log-log plot. p=2, K=10. Numerical slope -0,4524 (p) Mean field(white) and 20-body quantum(blue) correla-

tions at time t = 1
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Appendix

Class of symbols [3, 4, 5, 6]. For any p,q € N, define &, , to be the space of homogeneous complex-
valued polynomials on % such that b € &2, , if and only if there exists a (unique) bounded operator

be ZL(VP%,Vvi%) such that for all z € 2

b(z) = (229,b2%7) . (14)
Wick _ n'(n +q— p)' % 7 ®(n—p)
b [vnz = 1[p,+oo) (H)W 9 Sﬂ,—p+q (b ®1 p ) y (15)

where b denotes the operator associated with the symbol b according to (14).
The composition method based on the Strang splitting with the coefficients (12) is of 4" order (see [35]).

Dimension of \/N CK. (N;;,Kl_ 1) for K in [1,10] and N in [1,20]:

K=11| 2 3 4 5 6 7 8 9 10
N=1 1 2 3 4 5 6 7 8 9 10
2 1 3 6 10 15 21 28 36 45 55
3 1 4 | 10 20 35 56 84 120 165 220
4 1 5 | 15 35 70 126 210 330 495 715
5 1 6 21 56 126 252 462 792 1287 2002
6 1 7 28 84 210 462 924 1716 3003 5005
7 1 8 | 36 | 120 330 792 1716 3432 6435 11440
8 1 9 45 165 495 1287 3003 6435 12870 24310
9 1 10 | 55 | 220 715 2002 5005 11440 24310 | 48620
10 1 11 | 66 286 1001 3003 8008 19448 43758 92378
11 1 12| 78 | 364 | 1365 | 4368 | 12376 | 31824 75582 | 167960
12 1 13 | 91 455 1820 6188 18564 50388 125970 | 293930
13 1 14 | 105 | 560 | 2380 | 8568 | 27132 | 77520 | 203490 | 497420
14 1 15 | 120 | 680 3060 | 11628 | 38760 | 116280 | 319770 | 817190
15 1 16 | 136 | 816 | 3876 | 15504 | 54264 | 170544 | 490314 | 1307504
16 1 17 | 153 | 969 4845 | 20349 | 74613 | 245157 | 735471 | 2042975
17 1 18 | 171 | 1140 | 5985 | 26334 | 100947 | 346104 | 1081575 | 3124550
18 1 19 | 190 | 1330 | 7315 | 33649 | 134596 | 480700 | 1562275 | 4686825
19 1 20 | 210 | 1540 | 8855 | 42504 | 177100 | 657800 | 2220075 | 6906900
20 1 21 | 231 | 1771 | 10626 | 53130 | 230230 | 888030 | 3108105 | 10015005
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