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Abstract

The mean field approximation is numerically validated in the bosonic case by considering the time
evolution of quantum states and their associated reduced density matrices by many-body Schrödinger
dynamics. The model phase-space is finite-dimensional. The results are illustrated with numerical
simulations of the evolution of quantum states according to the time, the number of the particles, and
the dimension of the phase-space.
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1 Introduction

The mean field approximation is known to be a good way to approximate the many-body Schrödinger
dynamics when the number of particles is large enough (see [2, 6, 9, 10, 15, 19, 20, 21, 22, 24, 25, 26, 32, 37,
43, 46, 29, 30, 33, 50]).
It consists in looking for the solutions to the non-linear Schrödinger equation for one particle called the
Hartree equation. We are interested in the density matrix associated with the wave function, this matrix
satisfies the quantum Liouville equation dual to the Von Neumann equation.The partial trace operators of
this matrix, called the reduced density matrices, satisfy a hierarchy of equations. For instance, by considering
the case where the initial state for the Schrödinger equation is a Hartree ansatz(a product state) which is
suitable for a bosons condensate, the limit, when the number of particles N goes to the infinity of these
matrices converge in trace norm to the product of the density matrix associated with the solution to the
Hartree equation. And this asymptotic density matrix satisfies the time dependent Hartree equation [8].
When the particles are bosons, the suitable space for the bosons is the symmetric Fock space on the phase-
space. Moreover for the sake of numerical computations, a finite-dimensional phase-space will be used instead
of an usual phase-space of type L2(Rd). So here the phase-space will be Z = `2({0, · · · ,K}) ' CK where K
is a given integer representing the number of sites. Each particle can live in one of the K sites.
For the numerical implementation, an explicit basis of the N -fold sector of the Fock bosonic spaces is
specified. This basis allows the numerical computation of the full N -body quantum problem for N large
enough to validate various mean field regimes, in spite of a rapidly increasing complexity.
The resolution of the N -particles Schrödinger equation will rely on a splitting method, one part for the free
Hamiltonian and the other one for the two particles interaction term.
For the simulations, the considered real bounded potential associated with the interaction term will be V
defined on Z/KZ by V (i) = 1

|i| if i 6= 0 and V (0) = 0.

According to previous results related to the propagation of the Wigner measures [3, 4, 5, 6] knowing the
Wigner measure at time t = 0 determines the Wigner measure at time t and all asymptotic reduced density
matrices. For many examples, like Hermite states, twin Fock states or states studied in quantum information
theory (see [1]) their Wigner measure as well as the order of convergence of reduced density matrices is known
explicitly. The evolution of the Wigner measure, and consequently of the asymptotic density matrices, is
evaluated after integrating numerically the mean field non linear Hartree time-dependent equation. In order
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to preserve numerically quadratic quantities like the symplectic form, the latter is solved with a symplectic
4th order Runge-Kutta method ([35]).
To estimate numerically the error of convergence of the reduced density matrices in the mean field limit,
a discretization of a time interval [0, tmax] is considered, in the examples tmax = 1 is chosen, then the

quantity maxt∈[0,tmax]

∥∥∥γ(p)
N (t)− γ(p)

∞ (t)
∥∥∥

1
is observed. Here γ

(p)
N (t) denotes the time-evolved p particles

reduced density matrix for N bosons, while γ
(p)
∞ (t) is its theoretical limit when N goes to the infinity, and

‖.‖1 denoting the trace norm.
For the evaluation of the order of convergence, the logarithm of the previous error estimate is drawn according
to log(N). This gives a straight line whose the slope is the order of convergence in 1/N .
These numerical results agree very well and illustrate the theoretical analysis carried out in [1].
By increasing K, we wish to approach a continuous model. The complexity of the computations increase in
the same time that K and N increase because of the dimension of the N -particles bosons Fock space on CK
which is a binomial coefficient.

2 Framework

The bosons Fock space on an Hilbert space Z is defined as Γs(Z) =
⊕

n≥0

∨nZ where
∨nZ is the symmetric

n-fold Hilbertian tensor product of Z which is the range of the projection defined on the Hilbert tensor
product Z⊗n, by:

Sn(ξ1 ⊗ ξ2 ⊗ ...⊗ ξn) =
1

n!

∑
σ∈Σn

ξσ(1) ⊗ ξσ(2) ⊗ ...⊗ ξσ(n),

where ξi is in Z for each i in [1, n] and Σn is the set of the permutations of n elements.

For z in Z and ε positive, the ε-scaled annihilation and creation operators are defined for all Φ in Z and
n in N by:

a(z)Φ⊗n =
√
εn〈z|Φ〉Φ⊗n−1,

a∗(z)Φ⊗n =
√
ε(n+ 1)Sn+1(|z〉 ⊗ Φ⊗n).

These operators are then extended by linearity and density to
∨nZ.

These operators satisfy the canonical commutation relations (CCR):

[a(z1), a∗(z2)] = ε〈z1, z2〉Id , (1)

[a(z1), a(z2)] = 0 , (2)

[a∗(z1), a∗(z2)] = 0 . (3)

The second quantization of an operator A ∈ L(Z) or a self-adjoint operator (A,D(A)) in Z is defined
by:

dΓ(A)|∨n,algD(A) = ε

n∑
i=1

Id⊗i−1 ⊗A⊗ Id⊗n−i .

The second quantization of IdZ is the number operator:

N|∨nZ = εnId∨nZ .

2.1 Orthogonal basis of the N-fold sector

Use the following notations: ZK = Z/KZ .
For α = (α1, · · · , αK) in NK , the length of α is written |α| = α1 + · · · + αK and the factorial of α
α! = α1! · · ·αK ! .
Let (e1, · · · , eK) be an orthonormal basis of CK .

Set Z = CK . Then an orthonormal basis of
∨N Z can be built from this basis which is labelled by the
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multi-indices α in NK such that |α| = N .

With the creation operators, an orthonormal basis can be written as:

eα :=
a∗(e)α√
ε|α|α!

|Ω〉 :=
1√
ε|α|α!

a∗(e1)α1 · · · a∗(eK)
αK |Ω〉 ,

where |Ω〉 = (1, 0, 0, 0, . . .) is the vacuum of the Fock space.

Then the dimension of
∨N Z is card({α ∈ NK/|α| = N}) =

(
N +K − 1

K − 1

)
.

And card({α ∈ NK/|α| ≤ N}) =
(
N+K
K

)
is the dimension of

⊕N
n=0

∨nZ .

2.2 Hamiltonian

As a binomial number, the dimension of the N particles bosonic sector increases rapidly but not too much,
as N increases (see Table 6.4 for numerical values).The complexity has to be handled carefully if we want
to approach the mean field limit by taking N large or the continuous model by taking K large.
Define ∆K the discrete Laplacian operator on CK by:

∀z ∈ CK , ∀i ∈ Z/KZ, (∆Kz)i = zi+1 + zi−1 .

And let H0 = dΓ(−∆K) be the free Hamiltonian.

The interaction term denoted by V equals:

V =
1

2

∑
(i,j)∈Z2

K

Vija
∗(ei)a

∗(ej)a(ei)a(ej) ,

where Vij = Vji = V (i− j).
In this framework changing the value of V (0) add an irrelevant phase factor in the time evolved wave function.
In the sequel V (0) = 0 is assumed.
Or as a Wick quantized operator (14):

V =
〈
z⊗2,

(1

2

∑
(i,j)∈Z2

K

Vij |ei ⊗ ej〉〈ei ⊗ ej |
)
z⊗2
〉Wick

.

The considered linear Schrödinger equation is:

iε∂tΨ = HεΨ , (4)

where the complete Hamiltonian is defined on the bosonic Fock space by :

Hε = dΓ(−∆K) + V .

3 Finite dimensional mean field equation

3.1 Energy of the Hamiltonian

The energy of the Hamiltonian corresponds to the symbol of the complete Hamiltonian:

H(z, z̄) = 〈z,−∆Kz〉+
1

2

∑
i 6=j

Vij |zi|2|zj |2 ,

while recalling our convention Vii = V (0) = 0 for all i in ZK .
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3.2 Hartree equation

The mean field equation in Z is written as:

i∂tz = ∂z̄H(z, z̄) .

For each component in CK we obtain:

i∂tzi = ∂z̄iH = ∂z̄i(
∑
i′

|zi′ − zi′−1|2 − 2|zi|2 +
1

2

∑
i′ 6=j

Vi′j |zi′ |2|zj |2)

= ∂z̄i(
∑
i′

(z̄i′ − ¯zi′−1)(zi′ − zi′−1)− 2z̄izi +
1

2

∑
i′ 6=j

Vi′j z̄i′zi′ z̄jzj)

= zi − zi−1 − (zi+1 − zi)− 2zi +
∑
j 6=i

Vijzi|zj |2

= −(zi+1 + zi−1) + (
∑
j 6=i

Vij |zj |2)zi

żi = −i[−(∆Kz)i + (
∑
j 6=i

Vij |zj |2)zi]

By writing z = q + ip where q and p belong to RK , it becomes:

q̇i = −(pi+1 + pi−1) +
∑
j 6=i

Vij(q
2
j + p2

j )pi

ṗi = −
(
− (qi+1 + qi−1) +

∑
j 6=i

Vij(q
2
j + p2

j )qi

)

A 4th or 6th order Gauss RK method is used by using the coefficients given in [35] to solve the Hartree
equation.
A symplectic method is used to preserve the quadratic part of the energy, the symplectic form and the phase
space volume.

3.3 Wigner measures

For f ∈ Z the field operator is defined by Φ(f) = 1√
2
(a∗(f) + a(f)) which is essentially self-adjoint on

Γfin(Z) =
⊕alg

n∈N
∨nZ

The Weyl operator is defined by W (f) = eiΦ(f).

Let (%ε)ε∈E be a family of normal states on Γz(Z) with E ⊂ (0,+∞), 0 ∈ E .
A measure µ is a Wigner measure for this family, µ ∈M(%ε, ε ∈ E), if there exists E ′ ⊂ E , 0 ∈ E ′ such that

∀f ∈ Z , lim
ε∈E′ ,ε→0

Tr
[
%εW (

√
2πf)

]
=

∫
Z
e2iπRe 〈f,z〉 dµ(z) ,

see [42].
The following result valid for separable Hilbert spaces Z, apply to our finite dimensional Z ' CK .

Theorem 3.1 [3]. If (%ε)ε∈E satisfies the uniform estimate Tr[%εN
δ] ≤ Cδ < +∞ for some δ > 0 fixed,

M(%ε, ε ∈ E) is not empty and made of Borel probability measures (Z separable) such that
∫
Z |z|

2δdµ(z) ≤ Cδ.

For each p in N, the reduced density matrix associated with a state %ε is a trace class operator in L1(
∨pZ)

defined by the duality relation:

Tr
[
γpε b̃
]

=
Tr
[
%εb

Wick
]

Tr [%ε(|z|2p)Wick]
(5)

4



where b̃ ∈ L(
∨pZ).

The asymptotic reduced density matrix associated with the Wigner measure µ equals:

γp0 =

∫
Z |z

⊗p〉〈z⊗p|dµ(z)∫
Z |z|2pdµ(z)

. (6)

In finite dimension, if the family (%ε)ε∈E satisfies M(%ε, ε ∈ E) = {µ} then the (PI)-condition (see [3]):

∀p ∈ N , lim
ε∈E,ε→0

Tr [%εN
p] =

∫
Z
|z|2p dµ(z)

is always satisfied.

3.4 Reduced density matrices

Theorem 3.2 [5]. If the family (%ε)ε∈E satisfies M(%ε, ε ∈ E) = {µ} with the (PI)-condition:

∀p ∈ N , lim
ε∈E,ε→0

Tr [%εN
p] =

∫
Z
|z|2p dµ(z) ,

then Tr
[
%εb

Wick
]

converges to
∫
Z b(z) dµ(z) for all polynomial b(z) and

lim
ε∈E ,ε→0

‖γpε − γ
p
0‖L1 = 0

for all p ∈ N.

Theorem 3.3 [5, 6, 42]. AssumeM(%ε, ε ∈ (0, ε̄) = {µ0} and the condition (PI) . ThenM(e−i
t
εHε%εe

i tεHε , ε ∈
(0, ε̄)) = {µt}. The measure µt = Φ(t, 0)∗µ0 is the push-forward measure of the initial measure µ0 where
Φ(t, 0) is the hamiltonian flow associated with the equation

i∂tzk(t) = −∆Kzk(t) +
∑
j

Vkj |zj |2zk . (7)

After propagation of the Wigner measures, for any p ∈ N, the convergence of the reduced densiy matrices
is obtained at any time t: ∥∥∥γpε (t)−

∫
Z |z

⊗p〉〈z⊗p|dµt(z)∫
Z |z|2pdµ0(z)

∥∥∥
L1
−→ 0.

Theorem 3.4 [1]. Let (α(n))n∈N∗ be a sequence of positive numbers with limα(n) = ∞ and such that

(α(n)
n )n∈N∗ is bounded. Let (%n)n∈N∗ and (γ

(p)
∞ )p∈N∗ be two sequences of density matrices with %n ∈ L 1(

∨nZ)

and γ
(p)
∞ ∈ L 1(

∨pZ) for each n, p ∈ N∗. Assume that there exist C0 > 0, C > 2 and γ ≥ 1 such that for all
n, p ∈ N∗ with n ≥ γp: ∥∥∥γ(p)

n − γ(p)
∞

∥∥∥
1
≤ C0

Cp

α(n)
. (8)

Then for any T > 0 there exists CT > 0 such that for all t ∈ [−T, T ] and all n, p ∈ N∗ with n ≥ γp,∥∥∥γ(p)
n (t)− γ(p)

∞ (t)
∥∥∥

1
≤ CT

Cp

α(n)
, (9)

where

γ(p)
∞ (t) =

∫
Z
|z⊗p〉〈z⊗p| dµt(z) ,

with µt = (Φt)]µ0 is the push-forward of the initial measure µ0 by the well defined and continuous Hartree
flow Φt on Z.
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4 Numerical methods

4.1 Method to solve the Hartree equation

To solve the mean field equation (7), a Runge-Kutta method is used.

Let bi, aij (i, j = 1, . . . , s) be real numbers and ci =
∑s
j=1 aij .

An s-stage Runge-Kutta method with a time step h to solve a first-order ordinary equation y′ = f(t, y) ,
y(t0) = y0 is given by:

ki = f(t0 + cih, y0 + h

s∑
j=1

aijkj) , i = 1, . . . , s

y1 = y0 + h

s∑
i=1

biki

represented as:
c1 a11 . . . a1s

...
...

...
cs as1 . . . ass

b1 . . . bs

.

Here the system is autonomous, and according to [35] the coefficients used for the Gauss RK method are:
0

1/2 1/2
1/2 0 1/2
1 0 0 1

1/6 2/6 2/6 1/6

,

0
1/3 1/3
2/3 -1/3 1
1 1 -1 1

1/8 3/8 3/8 1/8

or
1/2−

√
3/6 1/4 1/4−

√
3/6

1/2 +
√

3/6 1/4 +
√

3/6 1/4
1/2 1/2

.
In our case, the function f corresponds to f(z) = −i

(
−∆Kzk +

∑
j Vkj |zj |2zk

)
.

As a function in R2K by replacing z by q + ip,

f(q, p) = fq(q, p) + ifp(q, p)

fqi(q, p) = −(pi+1 + pi−1) +
∑
j 6=i

Vij(q
2
j + p2

j )pi

fpi(q, p) = qi+1 + qi−1 −
∑
j 6=i

Vij(q
2
j + p2

j )qi

For an implicit Runge-Kutta method, a Newton method is applied to find the coefficients ki for each step

of the RK method to the function gy0 : (ki)i=1,···s 7→
(
ki − f(y0 + h

∑s
j=1 aijkj)

)
i=1,···s

.

Given the time step h small enough, the starting point of the Newton method is chosen by setting
ki = f(y0) for all i.

To apply the Newton’s method the differential of f is computed by using the following partial derivatives
of f :

∂fqi
∂qk

= (1− δi,k)2Vikqkpi

∂fpi
∂qk

= δi+1,k + δi−1,k + (δi,k − 1)2Vikqkqi − δi,k
∑
j 6=i

Vij(q
2
j + p2

j )

∂fqi
∂pk

= −(δi+1,k + δi−1,k) + (1− δi,k)2Vikpkpi + δi,k
∑
j 6=i

Vij(q
2
j + p2

j )

∂fpi
∂pk

= (1− δi,k)2Vikpkqi

6



Then the differential of gy0 is:

Dgy0
((ki)i=1,··· ,s) =

Id2K − hailDf(y0 + h

s∑
j=1

aijkj)


i,l=1,··· ,s

where gy0 is considered as a function from R2Ks.

4.2 Resolution of the Schrödinger equation in
∨N Z

4.2.1 Composition method

For a given Ψ in
∨N Z, the full N -body evolved state e−i

t
εHεΨ is computed in the basis (eα)|α|=N . After

writing Ψ =
∑
|α|=N Ψαeα a modified splitting method for which the numerical error is carefully controlled

(see 5), involves only multiplications by the diagonal matrix e−i
t
εpV and the sparse matrix dΓ(−∆K).

In order to handle the high complexity of the problem (see table 6.4) no matrix, but only vectors or the
sparse matrices dΓ(−∆K) and the matrix (Vij)i,j are stored.

The complete evolution e−i
t
εHε is computed by a composition method based on the Strang splitting method:

e−i
t
εHε = lim

p→∞

(
e−i

t
2εpVe−i

t
εpH0e−i

t
2εpV

)p
.

The 4th order composition method is given by:

e−i
t
εHε = lim

p→∞

(
e−i

a3t
2εpVe−i

a3t
εp H0e−i

a3t
2εpVe−i

a2t
2εpVe−i

a2t
εp H0e−i

a2t
2εpVe−i

a1t
2εpVe−i

a1t
εp H0e−i

a1t
2εpV

)p
,

where the coefficients of the method are satisfying the two equations (see [35]):

a1 + a2 + a3 = 1 (10)

a3
1 + a3

2 + a3
3 = 0 (11)

and are given by:

a1 = a3 =
1

2− 21/3
, a2 = − 21/3

2− 21/3
. (12)

4.2.2 Computation of the free evolution e−i
t
εdΓ(−∆K)

The numerical computation of e−i
t
εdΓ(−∆K) = Γ(eit∆K ), relies on the following two remarks:

• the dimension of the N -fold sectors
(
N+K−1
K−1

)
prevents the storage of any square matrix.

• the matrix of Γ(eit∆K ) is actually non trivial sparse matrix in the basis (eα).

The matrix of ∆K is given by:

∆K =



0 1 0 · · · 0 1

1
. . .

. . .
. . . 0

0
. . .

. . .
. . .

. . .
...

...
. . .

. . .
. . .

. . . 0

0
. . .

. . .
. . . 1

1 0 · · · 0 1 0


,
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We are interested in the matrix of the second quantization of the discrete Laplacian on the basis of the
bosons space to implement it numerically as a sparse matrix containing only 2K

(
N+K−2
K−2

)
elements whereas

a full matrix contains
(
N+K−1
K−1

)2
.

Then e−i
∆t
ε dΓ(−∆K) will be computed at each time step by a 4th order Taylor expansion.

This expansion is then replaced in the composition method.

For an operator A : CK −→ CK , A = (Ai,j)i,j ,

dΓ(A)|
∨n CK =

K∑
i,j=1

Ai,ja
∗(ei)a(ej) .

This yields:

dΓ(−∆K) = −
K∑
j=1

a∗(ej+1)a(ej) + a∗(ej)a(ej+1) . (13)

Lemma 4.1 For all multi-indices γ and α the following equality holds:

a(e)γa∗(e)α|Ω〉 = δγ≤αε
|γ| α!

(α− γ)!
a∗(e)α−γ |Ω〉 .

Proof.

a(e)γa∗(e)α = a(e1)γ1 . . . a(eK)γKa∗(e1)α1 . . . a∗(eK)αK

=

K∏
i=1

a(ei)
γia∗(ei)

αi which is a commutative product because of CCR (1)

=

K⊗
i=1

a(ei)
γia∗(ei)

αi

by using the following separation of the variables: Γ(Z) = Γ(Ce1)⊗ . . .⊗ Γ(CeK) .

In this space let |Ω〉 be |Ω1〉 ⊗ . . .⊗ |ΩK〉.

Let us consider γi ≥ 1 and αi ≥ 1,

a(ei)
γia∗(ei)

αi |Ωi〉 = a(ei)
γi−1a(ei)a

∗(ei)
αi |Ωi〉

= a(ei)
γi−1a∗(ei)

αia(ei)|Ωi〉+ a(ei)
γi−1[a(ei), a

∗(ei)
αi ]|Ωi〉

= εαia(ei)
γi−1a∗(ei)

αi−1|Ωi〉 .

By induction, we obtain

a(ei)
γia∗(ei)

αi |Ωi〉 = αiε× (αi − 1)ε× . . .× 2ε× εa(ei)
γi−αi |Ωi〉 = 0 ,when αi < γi

and

a(ei)
γia∗(ei)

αi |Ωi〉 = αiε× (αi − 1)ε× . . .× (αi − (γi − 1))εa∗(ei)
αi−γi |Ωi〉

= εγi
αi!

(αi − γi)!
a∗(ei)

αi−γi |Ωi〉 ,when γi ≤ αi.

8



The above separation of variables leads under the condition γ ≤ α to:

a(e)γa∗(e)α|Ω〉 = ⊗Ki=1a(ei)
γia∗(ei)

αi |Ωi〉

=
( K∏
i=1

εγiαi!

(αi − γi)!

)
⊗Ki=1 a

∗(ei)
αi−γi |Ωi〉

= ε|γ|
α!

(α− γ)!

( K∏
i=1

a∗(ei)
αi−γi

)
(|Ω1〉 ⊗ . . .⊗ |ΩK〉)

= ε|γ|
α!

(α− γ)!
a∗(e)α−γ |Ω〉 .

�

Proposition 4.2 For all multi-indices α and β, the matrix elements of dΓ(−∆K) are given by:

dΓ(−∆K)α,β = −ε
∑
i

(δ+
β−ei,α−ei+1

√
βi(βi+1 + 1) + δ+

β−ei+1,α−ei

√
βi+1(βi + 1)) ,

where δ+
α,β = δα,β1NK (α) for α and β multi-indices in ZK .

Proof.
According to (13) and to Lemma 4.1, we obtain:

a∗(ei+1)a(ei)a
∗(e)α|Ω〉 =δei≤αε

α!

(α− ei)!
a∗(e)ei+1+α−ei |Ω〉

=δ1≤αiεαia
∗(e)ei+1+α−ei |Ω〉 ,

and

a∗(ei)a(ei+1)a∗(e)α|Ω〉 =δei+1≤αε
α!

(α− ei+1)!
a∗(e)ei+α−ei+1 |Ω〉

=δ1≤αi+1
εαi+1a

∗(e)ei+α−ei+1 |Ω〉 .

Then

〈eα, dΓ(−∆K)eβ〉 = −

〈
eα,

(
K∑
i=1

a∗(ei+1)a(ei) + a∗(ei)a(ei+1)

)
eβ

〉
=

−ε√
α!β!ε2N

∑
i

〈
a∗(e)αΩ|

(
δ1≤βiβia

∗(e)β+ei+1−ei + δ1≤βi+1
βi+1a

∗(e)β+ei−ei+1
)

Ω
〉

=
−ε

εN
√
α!β!

∑
i

(δ+
β−ei,α−ei+1

βiε
N
√
α!(β − ei + ei+1)!

+ δ+
β−ei+1,α−eiβi+1ε

N
√
α!(β − ei+1 + ei)!)

=
−ε√
β!

∑
i

(δ+
β−ei,α−ei+1

βi
√

(β − ei + ei+1)! + δ+
β−ei+1,α−eiβi+1

√
(β − ei+1 + ei)!)

= −ε
∑
i

(δ+
β−ei,α−ei+1

βi

√
βi+1 + 1

βi
+ δ+

β−ei+1,α−eiβi+1

√
βi + 1

βi+1
)

dΓ(−∆K)α,β = −ε
∑
i

(δ+
β−ei,α−ei+1

√
βi(βi+1 + 1) + δ+

β−ei+1,α−ei

√
βi+1(βi + 1)) .
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�
Numerically only the indices of the multi-indices α and β corresponding to the nonzero components of

dΓ(−∆K) with their values, are stored in an array.
In the algorithm instead of running over the multi-indices α or β with a length N , the multi-indices β′ with
a length N−1 are run over. And for each i in [1,K], the changes of multi-indices β′ = β−ei or β′ = β−ei+1

are used, then the indices of the corresponding multi-indices α and β with length N are looked for.
Therefore an array composed of 2K

(
N+K−2
K−2

)
triplets of elements is numerically stored.

4.2.3 Computation of the interaction factor e−i
t
εV

Denote a#
j = a#(ej) and Ni = a∗i ai .

By using the relations CCR (1):

a∗i a
∗
jaiaj = a∗i (aia

∗
j − εδij)aj = a∗i aia

∗
jaj − εδija∗i aj

= NiNj − εδijNi = Ni(Nj − εδij) .

Then V can be rewritten as:

V =
1

2

∑
(i,j)∈Z2

K

VijNi(Nj − εδij) .

And since Nieα = εαieα then V is diagonal in the basis (eα)α:

Veα =

1

2

∑
(i,j)∈Z2

K

Vijεαi(εαj − εδij)

 eα

=

ε2

2

∑
(i,j)∈Z2

K

Vijαi(αj − δij)

 eα

and

e−i
t
εVeα = e

−i tε
(
ε2

2

∑
(i,j)∈Z2

K
Vijαi(αj−δij)

)
eα

= e
−it ε2

(∑
i6=j Vijαiαj+

∑
i∈ZK

Viiαi(αi−1)
)
eα .

4.3 Numerical computation of the reduced density matrices

Consider bWick = a∗(e)δa(e)γ with |δ| = |γ| and its associated homogeneous polynomial:

b(z) = z̄δzγ = z̄δ11 . . . z̄δKK zγ1

1 . . . zγKK .

Let us compute the quantity Tr(%εb
Wick) when %ε is a normal state. Using an orthonormal basis of the

N -fold sector
∨N Z, %ε is a linear combination of operators |Φ〉〈Ψ|. It suffices to compute Tr(|Φ〉〈Ψ|bWick) =

〈Ψ, bWickΦ〉.

Lemma 4.3 Set bWick = a∗(e)δa(e)γ with |δ| = |γ| and let Φ and Ψ be in
∨N Z then:

〈Ψ, bWickΦ〉 = ε|γ|
∑

|α′|=N−|δ|

Ψ̄α′+δΦα′+γ

√
(α′ + δ)!(α′ + γ)!

α′!

in the orthonormal basis
(
a∗(e)α√
εNα!
|Ω〉
)
|α|=N

of
∨N Z.
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Proof. Given Ψ and Φ in the N-particles bosons space and the formula 4.1

a∗(e)δa(e)γa∗(e)α|Ω〉 = δγ≤αε
|γ| α!

(α− γ)!
a∗(e)δ+α−γ |Ω〉 ,

we can write :

〈Ψ, bWickΦ〉 = 〈
∑
|α|=N

Ψα
a∗(e)α√
εNα!

Ω , ε|γ|
∑

|β|=N,β≥γ

Φβ

√
β!

εN/2(β − γ)!
a∗(e)δ+β−γ |Ω〉

=
ε|γ|

εN

∑
|α|=N

Ψ̄α

∑
|β|=N,β≥γ

Φβ

√
β!√

α!(β − γ)!
〈a∗(e)αΩ, a∗(e)δ+β−γ |Ω〉

= ε|γ|
∑

|α|=N,α≥δ

Ψ̄αΦα+γ−δ

√
(α+ γ − δ)!√
α!(α− δ)!

α!

= ε|γ|
∑

|α|=N,α≥δ

Ψ̄αΦα+γ−δ

√
α!(α+ γ − δ)!

(α− δ)!

= ε|γ|
∑

|α′|=N−|δ|

Ψ̄α′+δΦα′+γ

√
(α′ + δ)!(α′ + γ)!

α′!
.

because
〈a∗(e)αΩ, a∗(e)δ+β−γ |Ω〉 6= 0

if and only if α = δ + β − γ so β = α+ γ − δ and β ≥ γ means α− δ ≥ 0.
The last line is obtained by a change of multi-indices by setting for each α, α′ = α − δ because α ≥ δ, and
then |α′| = |α| − |δ| = N − |δ|. �

Numerically, all multi-indices of NK with length not larger than a given Nmax are stored in the lexico-
graphic order.
For our algorithms, we pay attention to preserve this lexicographic order (or reverse).
For a given N ≤ Nmax, the list of relevant multi-indices (with length N) is extracted and handled in the
lexicographic order.

For a given δ, numerically the above summation is performed over multi-indices α′ such that |α′| = N−|δ|
in the lexicographic order.
Then for each α′, the multi-indices α of length N written as α = α′ + δ are looked for. These α are exactly
the multi-indices such that α ≥ δ and |α| = N .
Note in particular that the mapping α′ 7→ α′ + δ preserves the lexicographic order.

First let us compute the matrix elements of γpε in the orthonormal basis (eα)α.

The matrix element corresponding to the line β and column α is:

〈a∗(e)β√
εpβ!

Ω
∣∣∣γpε a∗(e)α√

εpα!

∣∣∣Ω〉 = Tr
(
γpε (t)

∣∣∣a∗(e)α√
εpα!

Ω
〉〈a∗(e)β√

εpβ!
Ω
∣∣∣)

=
Tr(%ε(t)b

Wick)

εpN(N − 1) . . . (N − p+ 1)

according to the duality relation (5) of the reduced density matrices with b̃ =
∣∣∣a∗(e)α√

εpα!
Ω
〉〈

a∗(e)β√
εpβ!

Ω
∣∣∣, and

b(z) = 〈z⊗p, b̃z⊗p〉 ∈ Pp,p .

If b̃ =
∣∣∣a∗(e)α√

εpα!
Ω
〉〈

a∗(e)β√
εpβ!

Ω
∣∣∣, its Wick quantized is :

bWick =
p!√
α!β!

a∗(e)αa(e)β .
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And then

γpε (t)(β, α) =
p!√
α!β!

Tr(%ε(t)a
∗(e)αa(e)β)

εpN(N − 1) . . . (N − p+ 1)
.

Then owing to Lemma 4.3, all the elements of the matrices γpε can be numerically computed.

In the case where the initial state is a Hermite state %ε = |z⊗N 〉〈z⊗N |, z⊗N needs to be expanded in the
orthonormal basis (eα) which is given by the following lemma.

Lemma 4.4 For all p ∈ N, and z ∈ Z, we obtain in the basis (eα)α:

z⊗p =
∑
|α|=p

√
p!

α!
zαeα .

Proof.

a∗(z)p|Ω〉 = a∗(z1e1 + . . .+ zKeK)p|Ω〉 = (z1a
∗(e1) + . . .+ zKa

∗(eK))p|Ω〉

=
∑
|α|=p

p!

α!
zα1

1 . . . zαKK a∗(e1)α1 . . . a∗(eK)αK |Ω〉

=
∑
|α|=p

p!

α!
zαa∗(e)α|Ω〉 .

And then

z⊗p =
a∗(z)p√
εpp!
|Ω〉 =

∑
|α|=p

√
p!

α!
zαeα .

�
In the case where the initial state is a twin state, the following lemma is used to obtain an expansion in

the basis (eα).

Lemma 4.5 Let φ , ψ be in Z and z the state

a∗(φ)na∗(ψ)m√
εn+mn!m!

|Ω〉

such that n+m = N .
Then we obtain

z =
√
n!m!

∑
|γ|=N

( ∑
|α|=n,α≤γ

√
γ!

α!(γ − α)!
φαψγ−α

) a∗(e)γ√
εNγ!

|Ω〉 .

Proof.

a∗(φ)n =
∑
|α|=n

n!

α!
φαa∗(e)α

a∗(ψ)m =
∑
|β|=m

m!

β!
ψβa∗(e)β

a∗(φ)na∗(ψ)m =
∑

|α|=n,|β|=m

n!m!

α!β!
φαψβa∗(e)αa∗(e)β =

∑
|α|=n,|β|=m

n!m!

α!β!
φαψβa∗(e)α+β

because of the CCR relations (1).

a∗(φ)na∗(ψ)m√
n!m!

|Ω〉 =
∑

|α|=n,|β|=m

√
n!m!

√
(α+ β)!

α!β!
φαψβ

a∗(e)α+β√
(α+ β)!

|Ω〉

=
√
n!m!

∑
|γ|=N,|α|=n,α≤γ

√
γ!

α!(γ − α)!
φαψγ−α

a∗(e)γ√
γ!
|Ω〉 .
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By setting γ = α+ β,

z =
√
n!m!

∑
|γ|=N

( ∑
|α|=n,α≤γ

√
γ!

α!(γ − α)!
φαψγ−α

) a∗(e)γ√
εNγ!

|Ω〉 .

�
Further the limit reduced density matrices (6) have to be computed numerically. In order to do this, the

integration over Z of the Wigner measure is discretized. The problem is then reduced to the computation
of the matrix elements of |z⊗p〉〈z⊗p| in the basis (eα)|α|=p.

Compute the matrix elements of |z⊗p〉〈z⊗p|, according to Lemma 4.4:

〈z⊗p|a
∗(e)α√
εpα!

|Ω〉 =

√
p!

α!
z̄α

Then

(|z⊗p〉〈z⊗p|)eα =

√
p!

α!
z̄α
∑
|β|=p

√
p!

β!
zβeβ

=
∑
|β|=p

p!√
α!β!

z̄αzβeβ .

For the computation of the integral
∫
Z |z

⊗p〉〈z⊗p|dµ(z), the Wigner measure is approximated by a convex

combination of gauge invariant delta functions δS
1

z , where δS
1

z = 1
2π

∫ 2π

0
δeiθzdθ.

For the Wigner measure associated with the Hermite states, µ = δS
1

z , and the discretization is trivial and
exact. it is not needed to be approximated because of the gauge invariance.

In the case of the twin states given by ΨN = a∗(ψ1)n1a∗(ψ2)n2√
εn1+n2n1!n2!

|Ω〉, where ψ1 , ψ2 ∈ Z, ‖ψ1‖ = ‖ψ2‖ = 1, and

n1 = n2 = N
2 , the Wigner measure is µ0 = 1

2π

∫ 2π

0
δS

1

ψφ
dφ according to [6], with:

ψφ = cos(φ)ψ0 + sin(φ)ψπ
2
,

ψ0 =

√
2

2
(ψ1 + ψ2), ψπ

2
= i

√
2

2
(ψ1 − ψ2) .

Numerically the interval [0, 2π] is discretized and µ0 is approximated by 1
m

∑m
k=1 δ

S1

zk
.

The Wigner measure µt propagated at the time t of the twin states is given by :

µt =
1

2π

∫ 2π

0

δS
1

ψφ(t)dφ ,

where ψφ(t) is solution to the Hartree equation at the time t with initial condition ψφ.

Numerically it is now approximated by 1
m

∑m
k=1 δ

S1

zk(t) where zk(t) solves the Hartree equation (7).

Thus the matrix elements of
∫
Z |z

⊗p〉〈z⊗p|dµt(z) are given by the formula:

1

m

m∑
k=1

p!√
α!β!

z̄k(t)αzk(t)β .

And the approximation of the scalar
∫
Z |z|

2pdµ0(z) is given by the formula 1
m

∑m
k=1 |zk|2p.

The matrix of γpε (t) −
∫
Z |z

⊗p〉〈z⊗p|dµt(z)∫
Z |z|2pdµ0(z)

can then be computed at any time t numerically with a good

approximation.
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5 Error estimates

5.1 Error estimate of the composition method

The Baker-Campbell-Hausdorff formula (see [35]) allows to find the order of the composition method which
is 4. Then the Taylor’s formula with 4th order integral remainder and the Cauchy inequalities are used to
estimate the error.
The following proposition gives an estimate of the composition method.

Proposition 5.1 Let R > 0, A and B be two anti-adjoint matrices such that (a1 − a2)‖A‖ − 3a2

2 ‖B‖ ≤ R.
Then

‖eA+B −ΨA,B‖ ≤
2eR

R5

(
(a1 − a2)‖A‖ − 3a2

2
‖B‖

)5

where ΨA,B = e
a1
2 Bea1Ae

a1
2 Be

a2
2 Bea2Ae

a2
2 Be

a1
2 Bea1Ae

a1
2 B is the composition method.

Proof.

eA+B −ΨA,B = eA+B − e
a1
2 Bea1Ae

a1
2 Be

a2
2 Bea2Ae

a2
2 Be

a1
2 Bea1Ae

a1
2 B

= eA+B − e
a1
2 Bea1Ae

a1+a2
2 Bea2Ae

a2+a1
2 Bea1Ae

a1
2 B

‖eA+B − e
a1
2 Bea1Ae

a1
2 Be

a2
2 Bea2Ae

a2
2 Be

a1
2 Bea1Ae

a1
2 B‖

= ‖e−
a1+a2

2 Be−a1Ae−
a1
2 BeA+B − ea2Ae

a2+a1
2 Bea1Ae

a1
2 B‖

Then for z ∈ C

‖ez(A+B) −ΨzA,zB‖

≤ e−
a1+a2

2 |Im(z)|‖B‖ea1|Im(z)|‖A‖e
a1
2 |Im(z)|‖B‖e|Im(z)|(‖A‖+‖B‖)

+ e−a2|Im(z)|‖A‖e−
a2+a1

2 |Im(z)|‖B‖ea1|Im(z)|‖A‖e
a1
2 |Im(z)|‖B‖

= e−
a1+a2

2 |Im(z)|‖B‖ea1|Im(z)|‖A‖e
a1
2 |Im(z)|‖B‖(e|Im(z)|(‖A‖+‖B‖) + e−a2|Im(z)|‖A‖)

= e|Im(z)|(− a2
2 ‖B‖+a1‖A‖)(e|Im(z)|(‖A‖+‖B‖) + e−a2|Im(z)|‖A‖)

≤ 2e|Im(z)|(− a2
2 ‖B‖+a1‖A‖)e−a2|Im(z)|(‖A‖+‖B‖)

= 2e|Im(z)|((a1−a2)‖A‖− 3a2
2 ‖B‖) .

Let us consider the holomorphic function on C defined by:

fA,B(z) = ezA+zB −ΨzA,zB .

Since the composition method is of 4th order then for λ ∈ R, the Taylor’s formula with integral remainder
yields:

fA,B(λ) =

∫ λ

0

(λ− t)4

4!
f

(5)
A,B(t)dt

‖fA,B(λ)‖ ≤ λ5

5!
sup
t∈[0,λ]

‖f (5)
A,B(t)‖ .
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By the Cauchy’s integral formula, we know for each t ∈ [0, 1]:

∥∥∥f (5)
A,B(t)

5!

∥∥∥ =
∥∥∥ 1

2iπ

∫
|z−t|=1

fA,B(z)

(z − t)6
dz
∥∥∥

≤ 1

2π

∫ 2π

0

‖fA,B(t+ eiθ)‖dθ

≤ sup
|Im(z)|≤1

‖fA,B(z)‖

≤ sup
|Im(z)|≤1

2e|Im(z)|((a1−a2)‖A‖− 3a2
2 ‖B‖)

≤ 2e(a1−a2)‖A‖− 3a2
2 ‖B‖ .

Hence for all AR and BR such that (a1 − a2)‖AR‖ − 3a2

2 ‖BR‖ ≤ R we obtain:

‖fAR,BR(λ)‖ ≤ 2λ5eR , if λ ≤ 1 .

Let A and B be such that (a1 − a2)‖A‖ − 3a2

2 ‖B‖ ≤ R.

By setting AR = RA

(a1−a2)‖A‖− 3a2
2 ‖B‖

and BR = RB

(a1−a2)‖A‖− 3a2
2 ‖B‖

, we obtain

A =
(a1 − a2)‖A‖ − 3a2

2 ‖B‖
R

AR , B =
(a1 − a2)‖A‖ − 3a2

2 ‖B‖
R

BR

and (a1 − a2)‖AR‖ − 3a2

2 ‖BR‖ = R.

Then

fA,B(1) = fAR,BR

(
(a1 − a2)‖A‖ − 3a2

2 ‖B‖
R

)

‖fA,B(1)‖ ≤ 2eR

(
(a1 − a2)‖A‖ − 3a2

2 ‖B‖
R

)5

≤ 2
eR

R5

(
(a1 − a2)‖A‖ − 3a2

2
‖B‖

)5

.

�

5.2 Error estimate of the approximated composition method

The composition method is approximated by replacing e−i
∆t
ε dΓ(−∆K) by its 4th order Taylor expansion, with

some normalization factor.

Errors estimates for this modified composition method rely on the two following lemmas.

Lemma 5.2 Let E be a normed vector space, J ∈ N∗, (fj)j and (gj)j two maps sequences from E to E such
that for all j ∈ {1, . . . , J}:

• fj is linear.

• ‖fj(u)‖ = ‖gj(u)‖ = ‖u‖ for all u ∈ E.

• ∀u ∈ E ‖u‖ ≤ %⇒ ‖fj(u)− gj(u)‖ ≤ δ

For u0 ∈ E, ‖u0‖ ≤ % set uj = fj(uj−1) and vj = gj(vj−1) with v0 = u0.
Then we deduce ‖uJ − vJ‖ ≤ Jδ .
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Proof. Let us proceed by induction on J .
For J = 0, ‖u0 − v0‖ = 0 ≤ 0δ.
Let us assume ‖uJ − vJ‖ ≤ Jδ with the hypotheses fullfilled for j ∈ {1, . . . , J + 1}.

uJ+1 − vJ+1 = fJ+1(uJ)− gJ+1(vJ)

= fJ+1(uJ)− fJ+1(vJ) + fJ+1(vJ)− gJ+1(vJ) .

Since fJ+1 is linear and unitary we obtain:

‖fJ+1(uJ)− fJ+1(vJ)‖ = ‖fJ+1(uJ − vJ)‖ = ‖uJ − vJ‖ ≤ Jδ .

Moreover ‖vJ‖ = ‖gJ ◦ gJ−1 ◦ . . . ◦ g1(u0)‖ = ‖u0‖ ≤ % ,

then
‖fJ+1(vJ)− gJ+1(vJ)‖ ≤ δ ,

we obtain
‖uJ+1 − vJ+1‖ ≤ (J + 1)δ .

�

Let TL(eA) denote the 4th order Taylor expansion of eA around 0.
Let A be in B(0, cR), cR > 0.

Lemma 5.3 Let u be a vector in a normed vector space E and let A be an anti-adjoint operator on E.
Define the application T̃L(eA) on E which is non linear by:

T̃L(eA)u =
‖u‖

‖TL(eA)u‖
TL(eA)u if ‖TL(eA)u‖ 6= 0,

it preserves the norm.
Then ‖(TL(eA)− T̃L(eA))u‖ ≤ ‖TL(eA)− eA‖‖u‖.

Proof.

TL(eA)u− T̃L(eA)u = TL(eA)u− ‖u‖
‖TL(eA)u‖

TL(eA)u

=

(
1− ‖u‖
‖TL(eA)u‖

)
TL(eA)u

‖TL(eA)u− T̃L(eA)u‖ =
∥∥∥(1− ‖u‖

‖TL(eA)u‖

)
TL(eA)u

∥∥∥
= |‖TL(eA)u‖ − ‖u‖|
= |‖TL(eA)u‖ − ‖eAu‖|
≤ ‖TL(eA)u− eAu‖

‖(TL(eA)− T̃L(eA))u‖ ≤ ‖TL(eA)− eA‖‖u‖.

�
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The 4th order error of the Taylor expansion gives:

‖eA − TL(eA)‖ =

∥∥∥∥∥
∞∑
i=5

Ai

i!

∥∥∥∥∥ ≤ ‖A‖5
∫ 1

0

(1− t)4

4!
‖etA‖dt ≤ ‖A‖5 1

5!
.

The following proposition gives an estimate of the approximation of the composition method.

Proposition 5.4 Let A and B be two anti-adjoint matrices and J an integer such that

∆t

ε
((a1 − a2)‖A‖ − 3a2

2
‖B‖) ≤ 5

and

J ≥ t

5ε
((a1 − a2)‖A‖ − 3a2

2
‖B‖) .

Then

‖e tε (A+B)u− (Ψ̃ ∆t
ε A,

∆t
ε B

)Ju‖ ≤

(
2
(e

5

)5
(

(a1 − a2)‖A‖ − 3a2

2
‖B‖

)5

+
3

4
‖A‖5

)
t
∆t4

ε5
‖u‖

for all vector u, where

Ψ̃A,B = e
a1B

2 T̃L(ea1A)e
a1B

2 e
a2B

2 T̃L(ea2A)e
a2B

2 e
a1B

2 T̃L(ea1A)e
a1B

2 .

Proof.
Let u be a normed vector.

First for i = 1, 2, 3 let us estimate the error:

‖e
aiB

2 eaiAe
aiB

2 u− e
aiB

2 T̃L(eaiA)e
aiB

2 u‖

by using the fact e
aiB

2 is an unitary operator and Lemma 5.3:

‖e
aiB

2 eaiAe
aiB

2 u− e
aiB

2 T̃L(eaiA)e
aiB

2 u‖ = ‖(eaiA − T̃L(eaiA))e
aiB

2 u‖

≤ ‖aiA‖
5

60
≤ ‖A‖

5

4
.

like in the previous proof.

Now Lemma 5.2 can be applied with fi = e
ai
2 BeaiAe

ai
2 B , gi = e

aiB

2 T̃L(eaiA)e
aiB

2 and J = 3.

Then

‖ΨA,Bu− Ψ̃A,Bu‖ ≤
3

4
‖A‖5 .

Secondly let us estimate the error:

‖eA+Bu− Ψ̃A,Bu‖

By using Proposition 5.1 with its hypotheses and the previous estimates:

‖eA+Bu− Ψ̃A,Bu‖ ≤ ‖eA+B −ΨA,B‖‖u‖+ ‖(ΨA,B − Ψ̃A,B)u‖

≤ 2eR

R5

(
(a1 − a2)‖A‖ − 3a2

2
‖B‖

)5

+
3

4
‖A‖5 .
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By applying that to ∆t
ε A and ∆t

ε B where ∆t = t
J with J positive integer, we obtain:

‖e∆t
ε (A+B)u− Ψ̃ ∆t

ε A,
∆t
ε B

u‖ ≤

(
2eR

R5

(
(a1 − a2)‖A‖ − 3a2

2
‖B‖

)5

+
3

4
‖A‖5

)
∆t5

ε5
.

Then by applying Lemma 5.2 with fj = e
∆t
ε (A+B) and gj = Ψ̃ ∆t

ε A,
∆t
ε B

, we obtain:

‖e tε (A+B)u− (Ψ̃ ∆t
ε A,

∆t
ε B

)Ju‖ ≤

(
2eR

R5

(
(a1 − a2)‖A‖ − 3a2

2
‖B‖

)5

+
3

4
‖A‖5

)
t
∆t4

ε5
.

By knowing that for all positive integer τ and positive real a, R 7→ eaR

Rτ is minimal in Rmin = τ
a and

minR>0
eaR

Rτ = (aeτ )τ , the condition

∆t

ε

(
(a1 − a2)‖A‖ − 3a2

2
‖B‖

)
≤ 5 ,

that is

J ≥ t

5ε
((a1 − a2)‖A‖ − 3a2

2
‖B‖) ,

implies

‖e tε (A+B)u− (Ψ̃ ∆t
ε A,

∆t
ε B

)Ju‖ ≤

(
2
(e

5

)5
(

(a1 − a2)‖A‖ − 3a2

2
‖B‖

)5

+
3

4
‖A‖5

)
t
∆t4

ε5
.

�
For Q̃ ∈ L(

∨2Z), we know according to (15):

QWick
|
∨n Z =

√
n!(n+ 2− 2)!

(n− 2)!
ε

2+2
2 Sn−2+2(Q̃⊗ Id⊗n−2)

= ε2n(n− 1)Sn(Q̃⊗ Id⊗n−2) ,

then
‖QWick
|
∨N Z‖ ≤ ε2N(N − 1)‖SN‖‖Q̃‖ ≤ ε2N2‖Q̃‖ = ‖Q̃‖ .

When QWick = V with

Ṽ(ei ∨ ej) =
1

2
Vijei ∨ ej ,

the norm ‖V‖ is bounded from above by ‖Ṽ‖ = 1
2 max |Vij | independently of the number N = b 1

εc of
particles.

Moreover ‖dΓ(A)|
∨N Z‖ ≤ εN‖A‖ = ‖A‖ , therefore ‖dΓ(−∆K)‖ ≤ ‖∆K‖ = 2.

Finally by applying the last proposition with A = −idΓ(−∆K) and B = −iV, an error estimate is obtained
for the complete evolution:

‖e− it
εHεu− (Ψ̃−∆t

ε idΓ(−∆K),−∆t
ε iV)Ju‖ ≤

(
2
(e

5

)5
(

(a1 − a2)‖∆K‖ −
3a2

2
‖Ṽ‖

)5

+
3

4
‖∆K‖5

)
t
∆t4

ε5
.

Pratically, the time step is chosen according to N and t so that the above error is negligeable.
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6 Numerical simulations

For all the numerical simulations the final time is chosen to be tmax = 1, the number of time steps for the
4th order Runge-Kutta method applied to solve the mean field equation is 100.
The loop of the number of particles is performed numerically from Nmin = 2 to Nmax = 20 particles, and
only for an even number of particles.
In the Fortran program the computations were performed by parallelizing the loop in the computation of
the product sparse matrix-vector dΓ(−∆K)u with Openmp on 8 threads.

Results and orders of convergence for γ
(1)
ε and γ

(2)
ε

For each type of states, the following graphics show for the reduced density matrices and for K = 10
sites:

1) The logarithm of the error in trace norm log(maxt∈[0,1]

∥∥∥γ(p)
N (t)− γ(p)

∞ (t)
∥∥∥

1
) according to the logarithm

of the number of particles N in the cases p = 1 and 2.
A straight line is obtained whose the slope is the order of the error in 1/N .
These numerical experiments also valid the idea that for rather smooth but non trivial N -body bosonic
system, the mean field asymptotics start to be relevant at N = 4. The numerical plot agree perfectly
with the theoretical results of [1].

2) In the case p = 1 the density of particles on each site k ∈ {1, . . . ,K} given by γ
(1)
kk (t) for N = 20

particles and for the mean field limit at the same times t = 0 and t = 1.

3) The correlations in terms of the 1 and 2 particles reduced density matrices, for N = 20 particles and
the mean field at the time t = 1. Depending on the case, this plot shows with which accuracy the
mean field also catches some quantum correlations.

6.1 Hermite states

For the Hermite states z⊗N the vector z is given by z = 1√
3
((1 + i)e1 + ie3).

(a) Log-log plot for Hermite states. p=1, K=10.
Numerical slope -0,9804

(b) Compared densities of particles at times t=0 and t=1
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(c) Log-log plot for Hermite states. p=2, K=10.
Numerical slope -0,9693

(d) Mean field(white) and 20-body quantum(blue) correlations
at time t = 1

6.2 Twin states

For the twin states ΨN = a∗(ψ1)n1a∗(ψ2)n2√
εn1+n2n1!n2!

|Ω〉, ψ1 = 1√
2
(e1 + ie3) and ψ2 = e2.

(e) Log-log plot for twin states. p=1, K=10.
Numerical slope -0,9855

(f) Compared densities of particles at times t=0 and t=1
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(g) Log-log plot for twin states. p=2, K=10.
Numerical slope -1,0566

(h) Mean field(white) and 20-body quantum(blue) correla-
tions at time t = 1

6.3 Wq states

For the Wq states ΨN = a∗(ψ1)n1a∗(ψ2)n2√
εn1+n2n1!n2!

|Ω〉, ψ1 = 1√
2
(e1 + ie3) and ψ2 = e2.

In this case the state is given by SN (ψ⊗n1
1 ⊗ ψ⊗n2

2 ), with n1 + n2 = N , n1 = N − q and n2 = q fixed for
the mean field.
The associated Wigner measure is δS

1

ψ1
.

In these simulations q = 2.

(i) Log-log plot for Wq states. p=1, K=10.
Numerical slope -0,9843

(j) Compared densities of particles at times t=0 and t=1

21



(k) Log-log plot for Wq states. p=2, K=10.
Numerical slope -0,9449

(l) Mean field(white) and 20-body quantum(blue) correlations
at time t = 1

6.4 Other states

A case when the order of convergence is equal to 1/2.(see[1])

In this case %ε = |φ⊗NN 〉〈φ⊗NN | with φN = 1√
N
e1 +

√
1− 1

N e2.

The associated Wigner measure is δS
1

e2 .

(m) Log-log plot. p=1, K=10. Numerical slope -0,4711 (n) Compared densities of particles at times t=0 and t=1
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(o) Log-log plot. p=2, K=10. Numerical slope -0,4524 (p) Mean field(white) and 20-body quantum(blue) correla-
tions at time t = 1
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Appendix

Class of symbols [3, 4, 5, 6]. For any p, q ∈ N, define Pp,q to be the space of homogeneous complex-
valued polynomials on Z such that b ∈ Pp,q if and only if there exists a (unique) bounded operator

b̃ ∈ L (∨pZ ,∨qZ ) such that for all z ∈ Z :

b(z) = 〈z⊗q, b̃ z⊗p〉 . (14)

bWick
|∨nZ = 1[p,+∞)(n)

√
n!(n+ q − p)!

(n− p)!
ε
p+q

2 Sn−p+q
(
b̃⊗ 1⊗(n−p)

)
, (15)

where b̃ denotes the operator associated with the symbol b according to (14).
The composition method based on the Strang splitting with the coefficients (12) is of 4th order (see [35]).

Dimension of
∨N CK :

(
N +K − 1

K − 1

)
for K in [1, 10] and N in [1, 20]:

K = 1 2 3 4 5 6 7 8 9 10
N = 1 1 2 3 4 5 6 7 8 9 10
2 1 3 6 10 15 21 28 36 45 55
3 1 4 10 20 35 56 84 120 165 220
4 1 5 15 35 70 126 210 330 495 715
5 1 6 21 56 126 252 462 792 1287 2002
6 1 7 28 84 210 462 924 1716 3003 5005
7 1 8 36 120 330 792 1716 3432 6435 11440
8 1 9 45 165 495 1287 3003 6435 12870 24310
9 1 10 55 220 715 2002 5005 11440 24310 48620
10 1 11 66 286 1001 3003 8008 19448 43758 92378
11 1 12 78 364 1365 4368 12376 31824 75582 167960
12 1 13 91 455 1820 6188 18564 50388 125970 293930
13 1 14 105 560 2380 8568 27132 77520 203490 497420
14 1 15 120 680 3060 11628 38760 116280 319770 817190
15 1 16 136 816 3876 15504 54264 170544 490314 1307504
16 1 17 153 969 4845 20349 74613 245157 735471 2042975
17 1 18 171 1140 5985 26334 100947 346104 1081575 3124550
18 1 19 190 1330 7315 33649 134596 480700 1562275 4686825
19 1 20 210 1540 8855 42504 177100 657800 2220075 6906900
20 1 21 231 1771 10626 53130 230230 888030 3108105 10015005
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[26] J. Fröhlich, A. Knowles, S. Schwarz. On the Mean-field limit of bosons with Coulomb two-body
interaction Comm. Math. Phys. 288, No. 3 (2009), 1023–1059.

[27] P. Gérard. Microlocal defect measures. Comm. Partial Differential Equations 16 (1991), no. 11, 1761-
1794.

[28] P. Gérard, P.A. Markowich, N.J. Mauser, F. Poupaud. Homogenization limits and Wigner transforms.
Comm. Pure Appl. Math. 50 no. 4 (1997), 323–379.

[29] J. Ginibre, G. Velo. The classical field limit of scattering theory for nonrelativistic many-boson systems.
I. Comm. Math. Phys. 66 (1979), 37–76.

[30] J. Ginibre, G. Velo. The classical field limit of scattering theory for nonrelativistic many-boson systems.
II. Comm. Math. Phys. 68, (1979), 45–68.

[31] M. Grillakis, M. Machedon, D. Margetis. Second-order corrections to mean field evolution of weakly
interacting bosons. I. Comm. Math. Phys. 294, (2010), no 1, 273–301.

[32] S. Graffi, A. Martinez, M. Pulvirenti. Mean-field approximation of quantum systems and classical
limit. Math. Models Methods Appl. Sci. 13 No. 1 (2003), 59–73.

[33] K. Hepp. The classical limit for quantum mechanical correlation functions. Comm. Math. Phys. 35
(1974), 265–277.

[34] R. L. Hudson. Analogs of de Finetti’s theorem and interpretative problems of quantum mechanics.
Found. Phys., 11(9-10):805–808, 1981.

[35] Hairer, Ernst and Lubich, Christian and Wanner, Gerhard Geometric numerical integration Springer
Series in Computational Mathematics 31 Structure-preserving algorithms for ordinary differential
equations,Springer-Verlag (2002)

[36] R. L. Hudson and G. R. Moody. Locally normal symmetric states and an analogue of de Finetti’s
theorem. Z. Wahrscheinlichkeitstheorie und Verw. Gebiete,33(4):343–351, 1975/76.

[37] S. Klainerman, M. Machedon. On the uniqueness of solutions to the Gross-Pitaevskii hierarchy. Comm.
Math. Phys. 279, (2008).

[38] A. Knowles, P. Pickl. Mean-field dynamics: singular potentials and rate of convergence. Comm. Math.
Phys. 298 (2010), 101–138.

26



[39] C. J. Lennard. C1 is uniformly Kadec-Klee. Proc. Amer. Math. Soc. 109 (1990), 71–77.

[40] M. Lewin, P.T. Nam, N. Rougerie. Remarks on the quantum de Finetti theorem for bosonic systems.
Appl. Math. Res. Express (AMRX), in press, 2014.

[41] M. Lewin, P.T. Nam, N. Rougerie. Derivation of Hartree’s theory for generic mean-field Bose gases.
Adv. Math., 254, (2014), 570–621.

[42] Q. Liard, B. Pawilowski. Mean field limit for bosons with compact kernels interactions by Wigner
measures transportation. J. Math. Phys. 55, 092304 (2014).

[43] E.H. Lieb, R. Seiringer, J.P. Solovej, J. Yngvason. The mathematics of the Bose gas and its conden-
sation. Birkhäuser (2005).
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