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The mean field approximation is numerically validated in the bosonic case by considering the time evolution of quantum states and their associated reduced density matrices by many-body Schrödinger dynamics. The model phase-space is finite-dimensional. The results are illustrated with numerical simulations of the evolution of quantum states according to the time, the number of the particles, and the dimension of the phase-space.

Introduction

The mean field approximation is known to be a good way to approximate the many-body Schrödinger dynamics when the number of particles is large enough (see [START_REF] Ammari | Propagation of chaos for many-boson systems in one dimension with a point pair-interaction[END_REF][START_REF] Ammari | Mean field propagation of infinite dimensional Wigner measures with a singular two-body interaction potential[END_REF][START_REF] Bardos | Weak coupling limit of the n-particle Schrödinger equation[END_REF][START_REF] Bardos | Derivation of the Schrödinger-Poisson equation from the quantum N-body problem[END_REF][START_REF] Chen | The quintic NLS as the mean field limit of a boson gas with three-body interactions[END_REF][START_REF] Elgart | Mean field dynamics of boson stars Comm[END_REF][START_REF] Erdös | Derivation of the nonlinear Schrödinger equation from a many body Coulomb system[END_REF][START_REF] Erdös | Derivation of the cubic non-linear Schrödinger equation from quantum dynamics of many-body systems[END_REF][START_REF] Erdös | Derivation of the Gross-Pitaevskii equation for the dynamics of Bose-Einstein condensate[END_REF][START_REF] Fröhlich | Mean-field-and classical limit of many-body Schrödinger dynamics for bosons[END_REF][START_REF] Fröhlich | Atomism and quantization[END_REF][START_REF] Fröhlich | On the Mean-field limit of bosons with Coulomb two-body interaction[END_REF][START_REF] Graffi | Mean-field approximation of quantum systems and classical limit[END_REF][START_REF] Klainerman | On the uniqueness of solutions to the Gross-Pitaevskii hierarchy[END_REF][START_REF] Lieb | The mathematics of the Bose gas and its condensation[END_REF][START_REF] Pickl | A simple derivation of mean field limits for quantum systems[END_REF][START_REF] Ginibre | The classical field limit of scattering theory for nonrelativistic many-boson systems[END_REF][START_REF] Ginibre | The classical field limit of scattering theory for nonrelativistic many-boson systems[END_REF][START_REF] Hepp | The classical limit for quantum mechanical correlation functions[END_REF][START_REF] Spohn | Kinetic equations from Hamiltonian dynamics[END_REF]). It consists in looking for the solutions to the non-linear Schrödinger equation for one particle called the Hartree equation. We are interested in the density matrix associated with the wave function, this matrix satisfies the quantum Liouville equation dual to the Von Neumann equation.The partial trace operators of this matrix, called the reduced density matrices, satisfy a hierarchy of equations. For instance, by considering the case where the initial state for the Schrödinger equation is a Hartree ansatz(a product state) which is suitable for a bosons condensate, the limit, when the number of particles N goes to the infinity of these matrices converge in trace norm to the product of the density matrix associated with the solution to the Hartree equation. And this asymptotic density matrix satisfies the time dependent Hartree equation [START_REF] Bardos | The weak coupling limit for systems of N -→ ∞ quantum particles[END_REF]. When the particles are bosons, the suitable space for the bosons is the symmetric Fock space on the phasespace. Moreover for the sake of numerical computations, a finite-dimensional phase-space will be used instead of an usual phase-space of type L 2 (R d ). So here the phase-space will be Z = 2 ({0, • • • , K}) C K where K is a given integer representing the number of sites. Each particle can live in one of the K sites. For the numerical implementation, an explicit basis of the N -fold sector of the Fock bosonic spaces is specified. This basis allows the numerical computation of the full N -body quantum problem for N large enough to validate various mean field regimes, in spite of a rapidly increasing complexity. The resolution of the N -particles Schrödinger equation will rely on a splitting method, one part for the free Hamiltonian and the other one for the two particles interaction term. For the simulations, the considered real bounded potential associated with the interaction term will be V defined on Z/KZ by V (i) = 1 |i| if i = 0 and V (0) = 0. According to previous results related to the propagation of the Wigner measures [START_REF] Ammari | Mean field limit for bosons and infinite dimensional phase-space analysis[END_REF][START_REF] Ammari | Mean field limit for bosons and propagation of Wigner measures[END_REF][START_REF] Ammari | Mean field propagation of Wigner measures and BBGKY hierarchies for general bosonic states[END_REF][START_REF] Ammari | Mean field propagation of infinite dimensional Wigner measures with a singular two-body interaction potential[END_REF] knowing the Wigner measure at time t = 0 determines the Wigner measure at time t and all asymptotic reduced density matrices. For many examples, like Hermite states, twin Fock states or states studied in quantum information theory (see [START_REF] Ammari | On the rate of convergence for the mean field approximation of many-body quantum dynamics[END_REF]) their Wigner measure as well as the order of convergence of reduced density matrices is known explicitly. The evolution of the Wigner measure, and consequently of the asymptotic density matrices, is evaluated after integrating numerically the mean field non linear Hartree time-dependent equation. In order to preserve numerically quadratic quantities like the symplectic form, the latter is solved with a symplectic 4 th order Runge-Kutta method ( [START_REF] Hairer | Gerhard Geometric numerical integration Springer Series in Computational Mathematics 31 Structure-preserving algorithms for ordinary differential equations[END_REF]). To estimate numerically the error of convergence of the reduced density matrices in the mean field limit, a discretization of a time interval [0, t max ] is considered, in the examples t max = 1 is chosen, then the quantity max t∈[0,tmax] γ (p)

N (t) -γ (p) ∞ (t) 1 is observed. Here γ (p)
N (t) denotes the time-evolved p particles reduced density matrix for N bosons, while γ (p) ∞ (t) is its theoretical limit when N goes to the infinity, and . 1 denoting the trace norm. For the evaluation of the order of convergence, the logarithm of the previous error estimate is drawn according to log(N ). This gives a straight line whose the slope is the order of convergence in 1/N . These numerical results agree very well and illustrate the theoretical analysis carried out in [START_REF] Ammari | On the rate of convergence for the mean field approximation of many-body quantum dynamics[END_REF]. By increasing K, we wish to approach a continuous model. The complexity of the computations increase in the same time that K and N increase because of the dimension of the N -particles bosons Fock space on C K which is a binomial coefficient.

Framework

The bosons Fock space on an Hilbert space Z is defined as Γ s (Z) = n≥0 n Z where n Z is the symmetric n-fold Hilbertian tensor product of Z which is the range of the projection defined on the Hilbert tensor product Z ⊗n , by:

S n (ξ 1 ⊗ ξ 2 ⊗ ... ⊗ ξ n ) = 1 n! σ∈Σn ξ σ(1) ⊗ ξ σ(2) ⊗ ... ⊗ ξ σ(n) ,
where ξ i is in Z for each i in [1, n] and Σ n is the set of the permutations of n elements.

For z in Z and ε positive, the ε-scaled annihilation and creation operators are defined for all Φ in Z and n in N by:

a(z)Φ ⊗n = √ εn z|Φ Φ ⊗n-1 , a * (z)Φ ⊗n = ε(n + 1)S n+1 (|z ⊗ Φ ⊗n ).
These operators are then extended by linearity and density to n Z.

These operators satisfy the canonical commutation relations (CCR):

[a(z 1 ), a * (z 2 )] = ε z 1 , z 2 Id , (1) 
[a(z 1 ), a(z 2 )] = 0 ,

[a * (z 1 ), a * (z 2 )] = 0 . (2) 
The second quantization of an operator A ∈ L(Z) or a self-adjoint operator (A, D(A)) in Z is defined by:

dΓ(A) |∨ n,alg D(A) = ε n i=1 Id ⊗i-1 ⊗ A ⊗ Id ⊗n-i .
The second quantization of Id Z is the number operator:

N |∨ n Z = εnId ∨ n Z .

Orthogonal basis of the N -fold sector

Use the following notations:

Z K = Z/KZ . For α = (α 1 , • • • , α K ) in N K , the length of α is written |α| = α 1 + • • • + α K and the factorial of α α! = α 1 ! • • • α K ! . Let (e 1 , • • • , e K ) be an orthonormal basis of C K . Set Z = C K .
Then an orthonormal basis of N Z can be built from this basis which is labelled by the multi-indices α in N K such that |α| = N .

With the creation operators, an orthonormal basis can be written as:

e α := a * (e) α √ ε |α| α! |Ω := 1 √ ε |α| α! a * (e 1 ) α1 • • • a * (e K ) α K |Ω ,
where |Ω = (1, 0, 0, 0, . . .) is the vacuum of the Fock space.

Then the dimension of

N Z is card({α ∈ N K /|α| = N }) = N + K -1 K -1 .
And card({α

∈ N K /|α| ≤ N }) = N +K K is the dimension of N n=0 n Z .

Hamiltonian

As a binomial number, the dimension of the N particles bosonic sector increases rapidly but not too much, as N increases (see Table 6.4 for numerical values).The complexity has to be handled carefully if we want to approach the mean field limit by taking N large or the continuous model by taking K large. Define ∆ K the discrete Laplacian operator on C K by:

∀z ∈ C K , ∀i ∈ Z/KZ, (∆ K z) i = z i+1 + z i-1 .
And let H 0 = dΓ(-∆ K ) be the free Hamiltonian.

The interaction term denoted by V equals:

V = 1 2 (i,j)∈Z 2 K V ij a * (e i )a * (e j )a(e i )a(e j ) ,
where

V ij = V ji = V (i -j).
In this framework changing the value of V (0) add an irrelevant phase factor in the time evolved wave function.

In the sequel V (0) = 0 is assumed. Or as a Wick quantized operator [START_REF] Chen | Rate of convergence towards Hartree dynamics[END_REF]:

V = z ⊗2 , 1 2 
(i,j)∈Z 2 K V ij |e i ⊗ e j e i ⊗ e j | z ⊗2 W ick .
The considered linear Schrödinger equation is:

iε∂ t Ψ = H ε Ψ , (4) 
where the complete Hamiltonian is defined on the bosonic Fock space by :

H ε = dΓ(-∆ K ) + V .
3 Finite dimensional mean field equation

Energy of the Hamiltonian

The energy of the Hamiltonian corresponds to the symbol of the complete Hamiltonian:

H(z, z) = z, -∆ K z + 1 2 i =j V ij |z i | 2 |z j | 2 ,
while recalling our convention V ii = V (0) = 0 for all i in Z K .

Hartree equation

The mean field equation in Z is written as:

i∂ t z = ∂ z H(z, z) .
For each component in C K we obtain:

i∂ t z i = ∂ zi H = ∂ zi ( i |z i -z i -1 | 2 -2|z i | 2 + 1 2 i =j V i j |z i | 2 |z j | 2 ) = ∂ zi ( i ( zi -zi -1 )(z i -z i -1 ) -2 zi z i + 1 2 i =j V i j zi z i zj z j ) = z i -z i-1 -(z i+1 -z i ) -2z i + j =i V ij z i |z j | 2 = -(z i+1 + z i-1 ) + ( j =i V ij |z j | 2 )z i żi = -i[-(∆ K z) i + ( j =i V ij |z j | 2 )z i ]
By writing z = q + ip where q and p belong to R K , it becomes:

qi = -(p i+1 + p i-1 ) + j =i V ij (q 2 j + p 2 j )p i ṗi = --(q i+1 + q i-1 ) + j =i V ij (q 2 j + p 2 j )q i
A 4 th or 6 th order Gauss RK method is used by using the coefficients given in [START_REF] Hairer | Gerhard Geometric numerical integration Springer Series in Computational Mathematics 31 Structure-preserving algorithms for ordinary differential equations[END_REF] to solve the Hartree equation.

A symplectic method is used to preserve the quadratic part of the energy, the symplectic form and the phase space volume.

Wigner measures

For f ∈ Z the field operator is defined by Φ

(f ) = 1 √ 2 (a * (f ) + a(f )) which is essentially self-adjoint on Γ f in (Z) = alg n∈N n Z
The Weyl operator is defined by W (f ) = e iΦ(f ) . Let ( ε ) ε∈E be a family of normal states on Γ z (Z) with E ⊂ (0, +∞), 0 ∈ E. A measure µ is a Wigner measure for this family,

µ ∈ M( ε , ε ∈ E), if there exists E ⊂ E, 0 ∈ E such that ∀f ∈ Z , lim ε∈E ,ε→0 Tr ε W ( √ 2πf ) = Z e 2iπRe f,z dµ(z) ,
see [START_REF] Liard | Mean field limit for bosons with compact kernels interactions by Wigner measures transportation[END_REF].

The following result valid for separable Hilbert spaces Z, apply to our finite dimensional Z C K .

Theorem 3.1 [3]. If ( ε ) ε∈E satisfies the uniform estimate Tr[ ε N δ ] ≤ C δ < +∞ for some δ > 0 fixed, M( ε , ε ∈ E) is not empty and made of Borel probability measures (Z separable) such that Z |z| 2δ dµ(z) ≤ C δ .
For each p in N, the reduced density matrix associated with a state ε is a trace class operator in L 1 ( p Z) defined by the duality relation:

Tr γ p ε b = Tr ε b W ick Tr [ ε (|z| 2p ) W ick ] ( 5 
)
where b ∈ L( p Z). The asymptotic reduced density matrix associated with the Wigner measure µ equals:

γ p 0 = Z |z ⊗p z ⊗p |dµ(z) Z |z| 2p dµ(z) . (6) 
In finite dimension, if the family ( ε ) ε∈E satisfies M( ε , ε ∈ E) = {µ} then the (P I)-condition (see [START_REF] Ammari | Mean field limit for bosons and infinite dimensional phase-space analysis[END_REF]):

∀p ∈ N , lim ε∈E,ε→0 Tr [ ε N p ] = Z |z| 2p dµ(z)
is always satisfied.

Reduced density matrices

Theorem 3.2 [START_REF] Ammari | Mean field propagation of Wigner measures and BBGKY hierarchies for general bosonic states[END_REF]. If the family ( ε ) ε∈E satisfies M( ε , ε ∈ E) = {µ} with the (P I)-condition:

∀p ∈ N , lim ε∈E,ε→0 Tr [ ε N p ] = Z |z| 2p dµ(z) , then Tr ε b W ick converges to Z b(z) dµ(z) for all polynomial b(z) and lim ε∈E ,ε→0 γ p ε -γ p 0 L 1 = 0 for all p ∈ N. Theorem 3.3 [5, 6, 42]. Assume M( ε , ε ∈ (0, ε) = {µ 0 } and the condition (P I) . Then M(e -i t ε Hε ε e i t ε Hε , ε ∈ (0, ε)) = {µ t }.
The measure µ t = Φ(t, 0) * µ 0 is the push-forward measure of the initial measure µ 0 where Φ(t, 0) is the hamiltonian flow associated with the equation

i∂ t z k (t) = -∆ K z k (t) + j V kj |z j | 2 z k . ( 7 
)
After propagation of the Wigner measures, for any p ∈ N, the convergence of the reduced densiy matrices is obtained at any time t:

γ p ε (t) -Z |z ⊗p z ⊗p |dµ t (z) Z |z| 2p dµ 0 (z) L 1 -→ 0. Theorem 3.4 [1]. Let (α(n)) n∈N * be a sequence of positive numbers with lim α(n) = ∞ and such that ( α(n) n ) n∈N * is bounded. Let ( n ) n∈N * and (γ (p) ∞ ) p∈N * be two sequences of density matrices with n ∈ L 1 ( n Z) and γ (p) ∞ ∈ L 1 ( p Z) for each n, p ∈ N * . Assume that there exist C 0 > 0, C > 2 and γ ≥ 1 such that for all n, p ∈ N * with n ≥ γp: γ (p) n -γ (p) ∞ 1 ≤ C 0 C p α(n) . ( 8 
)
Then for any T > 0 there exists C T > 0 such that for all t ∈ [-T, T ] and all n, p ∈ N * with n ≥ γp,

γ (p) n (t) -γ (p) ∞ (t) 1 ≤ C T C p α(n) , (9) 
where

γ (p) ∞ (t) = Z |z ⊗p z ⊗p | dµ t (z) ,
with µ t = (Φ t ) µ 0 is the push-forward of the initial measure µ 0 by the well defined and continuous Hartree flow Φ t on Z.

4 Numerical methods

Method to solve the Hartree equation

To solve the mean field equation ( 7), a Runge-Kutta method is used.

Let b i , a ij (i, j = 1, . . . , s) be real numbers and c i = s j=1 a ij . An s-stage Runge-Kutta method with a time step h to solve a first-order ordinary equation y = f (t, y) , y(t 0 ) = y 0 is given by:

k i = f (t 0 + c i h, y 0 + h s j=1 a ij k j ) , i = 1, . . . , s y 1 = y 0 + h s i=1 b i k i represented as: c 1 a 11 . . . a 1s . . . . . . . . . c s a s1 . . . a ss b 1 . . . b s .
Here the system is autonomous, and according to [START_REF] Hairer | Gerhard Geometric numerical integration Springer Series in Computational Mathematics 31 Structure-preserving algorithms for ordinary differential equations[END_REF] the coefficients used for the Gauss RK method are:

0 1/2 1/2 1/2 0 1/2 1 0 0 1 1/6 2/6 2/6 1/6 , 0 1/3 1/3 2/3 -1/3 1 1 1 -1 1 1/8 3/8 3/8 1/8 or 1/2 - √ 3/6 1/4 1/4 - √ 3/6 1/2 + √ 3/6 1/4 + √ 3/6 1/4 1/2 1/2 .
In our case, the function

f corresponds to f (z) = -i -∆ K z k + j V kj |z j | 2 z k .
As a function in R 2K by replacing z by q + ip, f (q, p) = f q (q, p) + if p (q, p)

f qi (q, p) = -(p i+1 + p i-1 ) + j =i V ij (q 2 j + p 2 j )p i f pi (q, p) = q i+1 + q i-1 - j =i V ij (q 2 j + p 2 j )q i
For an implicit Runge-Kutta method, a Newton method is applied to find the coefficients k i for each step of the RK method to the function g y0 :

(k i ) i=1,•••s → k i -f (y 0 + h s j=1 a ij k j ) i=1,•••s .
Given the time step h small enough, the starting point of the Newton method is chosen by setting k i = f (y 0 ) for all i.

To apply the Newton's method the differential of f is computed by using the following partial derivatives of f :

∂f qi ∂q k = (1 -δ i,k )2V ik q k p i ∂f pi ∂q k = δ i+1,k + δ i-1,k + (δ i,k -1)2V ik q k q i -δ i,k j =i V ij (q 2 j + p 2 j ) ∂f qi ∂p k = -(δ i+1,k + δ i-1,k ) + (1 -δ i,k )2V ik p k p i + δ i,k j =i V ij (q 2 j + p 2 j ) ∂f pi ∂p k = (1 -δ i,k )2V ik p k q i
Then the differential of g y0 is:

Dg y0 ((k i ) i=1,••• ,s ) =   Id 2K -ha il Df (y 0 + h s j=1 a ij k j )   i,l=1,••• ,s
where g y0 is considered as a function from R 2Ks .

4.2 Resolution of the Schrödinger equation in N Z

Composition method

For a given Ψ in N Z, the full N -body evolved state e -i t ε Hε Ψ is computed in the basis (e α ) |α|=N . After writing Ψ = |α|=N Ψ α e α a modified splitting method for which the numerical error is carefully controlled (see 5), involves only multiplications by the diagonal matrix e -i t εp V and the sparse matrix dΓ(-∆ K ). In order to handle the high complexity of the problem (see table 6.4) no matrix, but only vectors or the sparse matrices dΓ(-∆ K ) and the matrix (V ij ) i,j are stored. The complete evolution e -i t ε Hε is computed by a composition method based on the Strang splitting method:

e -i t ε Hε = lim p→∞ e -i t 2εp V e -i t εp H0 e -i t 2εp V p .
The 4 th order composition method is given by:

e -i t ε Hε = lim p→∞ e -i a 3 t 2εp V e -i a 3 t εp H0 e -i a 3 t 2εp V e -i a 2 t 2εp V e -i a 2 t εp H0 e -i a 2 t 2εp V e -i a 1 t 2εp V e -i a 1 t εp H0 e -i a 1 t 2εp V p ,
where the coefficients of the method are satisfying the two equations (see [START_REF] Hairer | Gerhard Geometric numerical integration Springer Series in Computational Mathematics 31 Structure-preserving algorithms for ordinary differential equations[END_REF]):

a 1 + a 2 + a 3 = 1 ( 10 
)
a 3 1 + a 3 2 + a 3 3 = 0 ( 11 
)
and are given by:

a 1 = a 3 = 1 2 -2 1/3 , a 2 = - 2 1/3 2 -2 1/3 . (12) 

Computation of the free evolution e

-i t ε dΓ(-∆ K )
The numerical computation of e -i t ε dΓ(-∆ K ) = Γ(e it∆ K ), relies on the following two remarks:

• the dimension of the N -fold sectors N +K-1 K-1
prevents the storage of any square matrix.

• the matrix of Γ(e it∆ K ) is actually non trivial sparse matrix in the basis (e α ).

The matrix of ∆ K is given by: 

∆ K =             0 1 0 • • • 0 
1 0 • • • 0 1 0             ,
We are interested in the matrix of the second quantization of the discrete Laplacian on the basis of the bosons space to implement it numerically as a sparse matrix containing only 2K N +K-2 K-2 elements whereas a full matrix contains N +K-1 K-1 2 .

Then e -i ∆t ε dΓ(-∆ K ) will be computed at each time step by a 4 th order Taylor expansion. This expansion is then replaced in the composition method.

For an operator A :

C K -→ C K , A = (A i,j ) i,j , dΓ(A) | n C K = K i,j=1
A i,j a * (e i )a(e j ) .

This yields:

dΓ(-∆ K ) = - K j=1
a * (e j+1 )a(e j ) + a * (e j )a(e j+1 ) .

(
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Lemma 4.1 For all multi-indices γ and α the following equality holds:

a(e) γ a * (e) α |Ω = δ γ≤α ε |γ| α! (α -γ)! a * (e) α-γ |Ω .
Proof.

a(e) γ a * (e) α = a(e 1 ) γ1 . . . a(e K ) γ K a * (e 1 ) α1 . . . a * (e

K ) α K = K i=1
a(e i ) γi a * (e i ) αi which is a commutative product because of CCR (1)

= K i=1
a(e i ) γi a * (e i ) αi by using the following separation of the variables: Γ(Z) = Γ(Ce 1 ) ⊗ . . . ⊗ Γ(Ce K ) .

In this space let |Ω be |Ω 1 ⊗ . . . ⊗ |Ω K .

Let us consider γ i ≥ 1 and

α i ≥ 1, a(e i ) γi a * (e i ) αi |Ω i = a(e i ) γi-1 a(e i )a * (e i ) αi |Ω i = a(e i ) γi-1 a * (e i ) αi a(e i )|Ω i + a(e i ) γi-1 [a(e i ), a * (e i ) αi ]|Ω i = εα i a(e i ) γi-1 a * (e i ) αi-1 |Ω i .
By induction, we obtain

a(e i ) γi a * (e i ) αi |Ω i = α i ε × (α i -1)ε × . . . × 2ε × εa(e i ) γi-αi |Ω i = 0 , when α i < γ i and a(e i ) γi a * (e i ) αi |Ω i = α i ε × (α i -1)ε × . . . × (α i -(γ i -1))εa * (e i ) αi-γi |Ω i = ε γi α i ! (α i -γ i )! a * (e i ) αi-γi |Ω i , when γ i ≤ α i .
The above separation of variables leads under the condition γ ≤ α to:

a(e) γ a * (e) α |Ω = ⊗ K i=1 a(e i ) γi a * (e i ) αi |Ω i = K i=1 ε γi α i ! (α i -γ i )! ⊗ K i=1 a * (e i ) αi-γi |Ω i = ε |γ| α! (α -γ)! K i=1 a * (e i ) αi-γi (|Ω 1 ⊗ . . . ⊗ |Ω K ) = ε |γ| α! (α -γ)! a * (e) α-γ |Ω .
Proposition 4.2 For all multi-indices α and β, the matrix elements of dΓ(-∆ K ) are given by:

dΓ(-∆ K ) α,β = -ε i (δ + β-ei,α-ei+1 β i (β i+1 + 1) + δ + β-ei+1,α-ei β i+1 (β i + 1)) , where δ + α,β = δ α,β 1 N K (α) for α and β multi-indices in Z K . Proof.
According to [START_REF] Chen | Second order corrections to mean field evolution for weakly interacting bosons in the case of three-body interactions[END_REF] and to Lemma 4.1, we obtain: Then

a * (e i+1 )a(e i )a * (e) α |Ω =δ ei≤α ε α! (α -e i )! a * (e) ei+1+α-ei |Ω =δ 1≤αi εα i a * (e) ei+1+α-ei |Ω ,
e α , dΓ(-∆ K )e β = -e α , K i=1 a * (e i+1 )a(e i ) + a * (e i )a(e i+1 ) e β = -ε α!β!ε 2N i a * (e) α Ω| δ 1≤βi β i a * (e) β+ei+1-ei + δ 1≤βi+1 β i+1 a * (e) β+ei-ei+1 Ω = -ε ε N √ α!β! i (δ + β-ei,α-ei+1 β i ε N α!(β -e i + e i+1 )! + δ + β-ei+1,α-ei β i+1 ε N α!(β -e i+1 + e i )!) = -ε √ β! i (δ + β-ei,α-ei+1 β i (β -e i + e i+1 )! + δ + β-ei+1,α-ei β i+1 (β -e i+1 + e i )!) = -ε i (δ + β-ei,α-ei+1 β i β i+1 + 1 β i + δ + β-ei+1,α-ei β i+1 β i + 1 β i+1 ) dΓ(-∆ K ) α,β = -ε i (δ + β-ei,α-ei+1 β i (β i+1 + 1) + δ + β-ei+1,α-ei β i+1 (β i + 1)) .
Numerically only the indices of the multi-indices α and β corresponding to the nonzero components of dΓ(-∆ K ) with their values, are stored in an array. In the algorithm instead of running over the multi-indices α or β with a length N , the multi-indices β with a length N -1 are run over. And for each i in [1, K], the changes of multi-indices β = β -e i or β = β -e i+1 are used, then the indices of the corresponding multi-indices α and β with length N are looked for. Therefore an array composed of 2K N +K-2 K-2 triplets of elements is numerically stored.

Computation of the interaction factor e

-i t ε V Denote a # j = a # (e j ) and N i = a * i a i .
By using the relations CCR (1):

a * i a * j a i a j = a * i (a i a * j -εδ ij )a j = a * i a i a * j a j -εδ ij a * i a j = N i N j -εδ ij N i = N i (N j -εδ ij ) .
Then V can be rewritten as:

V = 1 2 (i,j)∈Z 2 K V ij N i (N j -εδ ij ) .
And since N i e α = εα i e α then V is diagonal in the basis (e α ) α :

Ve α =   1 2 (i,j)∈Z 2 K V ij εα i (εα j -εδ ij )   e α =   ε 2 2 (i,j)∈Z 2 K V ij α i (α j -δ ij )   e α and e -i t ε V e α = e -i t ε ε 2 2 (i,j)∈Z 2 K Vij αi(αj -δij ) e α = e -it ε 2 i =j Vij αiαj + i∈Z K
Viiαi(αi-1) e α .

Numerical computation of the reduced density matrices

Consider b W ick = a * (e) δ a(e) γ with |δ| = |γ| and its associated homogeneous polynomial:

b(z) = zδ z γ = zδ1 1 . . . zδ K K z γ1 1 . . . z γ K K .
Let us compute the quantity Tr( ε b W ick ) when ε is a normal state. Using an orthonormal basis of the N -fold sector 

Ψ, b W ick Φ = ε |γ| |α |=N -|δ| Ψα +δ Φ α +γ (α + δ)!(α + γ)! α ! in the orthonormal basis a * (e) α √ ε N α! |Ω |α|=N of N Z.
Proof. Given Ψ and Φ in the N-particles bosons space and the formula 4.1

a * (e) δ a(e) γ a * (e) α |Ω = δ γ≤α ε |γ| α! (α -γ)! a * (e) δ+α-γ |Ω ,
we can write : Numerically, all multi-indices of N K with length not larger than a given N max are stored in the lexicographic order. For our algorithms, we pay attention to preserve this lexicographic order (or reverse). For a given N ≤ N max , the list of relevant multi-indices (with length N ) is extracted and handled in the lexicographic order.

Ψ, b W ick Φ = |α|=N Ψ α a * (e) α √ ε N α! Ω , ε |γ| |β|=N,β≥γ Φ β √ β! ε N/2 (β -γ)! a * (e) δ+β-γ |Ω = ε |γ| ε N |α|=N Ψα |β|=N,β≥γ Φ β √ β! √ α!(β -γ)! a * (e) α Ω, a * (e) δ+β-γ |Ω = ε |γ| |α|=N,α≥δ Ψα Φ α+γ-δ (α + γ -δ)! √ α!(α -δ)! α! = ε |γ| |α|=N,α≥δ Ψα Φ α+γ-δ α!(α + γ -δ)! (α -δ)! = ε |γ| |α |=N -|δ| Ψα +δ Φ α +γ (α + δ)!(α + γ)! α ! .
For a given δ, numerically the above summation is performed over multi-indices α such that |α | = N -|δ| in the lexicographic order. Then for each α , the multi-indices α of length N written as α = α + δ are looked for. These α are exactly the multi-indices such that α ≥ δ and |α| = N . Note in particular that the mapping α → α + δ preserves the lexicographic order. First let us compute the matrix elements of γ p ε in the orthonormal basis (e α ) α .

The matrix element corresponding to the line β and column α is:

a * (e) β √ ε p β! Ω γ p ε a * (e) α √ ε p α! Ω = Tr γ p ε (t) a * (e) α √ ε p α! Ω a * (e) β √ ε p β! Ω = Tr( ε (t)b W ick ) ε p N (N -1) . . . (N -p + 1)
according to the duality relation ( 5 

If b = a * (e) α √ ε p α! Ω a * (e) β √ ε p β! Ω , its Wick quantized is : b W ick = p! √ α!β! a * (e) α a(e) β .
And then

γ p ε (t)(β, α) = p! √ α!β! Tr( ε (t)a * (e) α a(e) β ) ε p N (N -1) . . . (N -p + 1)
.

Then owing to Lemma 4.3, all the elements of the matrices γ p ε can be numerically computed.

In the case where the initial state is a Hermite state ε = |z ⊗N z ⊗N |, z ⊗N needs to be expanded in the orthonormal basis (e α ) which is given by the following lemma. Lemma 4.4 For all p ∈ N, and z ∈ Z, we obtain in the basis (e α ) α :

z ⊗p = |α|=p p! α! z α e α .
Proof.

a * (z) p |Ω = a * (z 1 e 1 + . . . + z K e K ) p |Ω = (z 1 a * (e 1 ) + . . . + z K a * (e K )) p |Ω = |α|=p p! α! z α1 1 . . . z α K K a * (e 1 ) α1 . . . a * (e K ) α K |Ω = |α|=p p! α! z α a * (e) α |Ω .
And then

z ⊗p = a * (z) p √ ε p p! |Ω = |α|=p p! α! z α e α .
In the case where the initial state is a twin state, the following lemma is used to obtain an expansion in the basis (e α ). Lemma 4.5 Let φ , ψ be in Z and z the state

a * (φ) n a * (ψ) m √ ε n+m n!m! |Ω such that n + m = N . Then we obtain z = √ n!m! |γ|=N |α|=n,α≤γ √ γ! α!(γ -α)! φ α ψ γ-α a * (e) γ ε N γ! |Ω . Proof. a * (φ) n = |α|=n n! α! φ α a * (e) α a * (ψ) m = |β|=m m! β! ψ β a * (e) β a * (φ) n a * (ψ) m = |α|=n,|β|=m n!m! α!β! φ α ψ β a * (e) α a * (e) β = |α|=n,|β|=m n!m! α!β! φ α ψ β a * (e) α+β
because of the CCR relations [START_REF] Ammari | On the rate of convergence for the mean field approximation of many-body quantum dynamics[END_REF].

a * (φ) n a * (ψ) m √ n!m! |Ω = |α|=n,|β|=m √ n!m! (α + β)! α!β! φ α ψ β a * (e) α+β (α + β)! |Ω = √ n!m! |γ|=N,|α|=n,α≤γ √ γ! α!(γ -α)! φ α ψ γ-α a * (e) γ √ γ! |Ω . By setting γ = α + β, z = √ n!m! |γ|=N |α|=n,α≤γ √ γ! α!(γ -α)! φ α ψ γ-α a * (e) γ ε N γ! |Ω .
Further the limit reduced density matrices [START_REF] Ammari | Mean field propagation of infinite dimensional Wigner measures with a singular two-body interaction potential[END_REF] have to be computed numerically. In order to do this, the integration over Z of the Wigner measure is discretized. The problem is then reduced to the computation of the matrix elements of |z ⊗p z ⊗p | in the basis (e α ) |α|=p .

Compute the matrix elements of |z ⊗p z ⊗p |, according to Lemma 4.4:

z ⊗p | a * (e) α √ ε p α! |Ω = p! α! zα Then (|z ⊗p z ⊗p |)e α = p! α! zα |β|=p p! β! z β e β = |β|=p p! √ α!β! zα z β e β .
For the computation of the integral Z |z ⊗p z ⊗p |dµ(z), the Wigner measure is approximated by a convex combination of gauge invariant delta functions δ S 1 z , where δ S 1 z = 1 2π 2π 0 δ e iθ z dθ.

For the Wigner measure associated with the Hermite states, µ = δ S 1 z , and the discretization is trivial and exact. it is not needed to be approximated because of the gauge invariance. In the case of the twin states given by Ψ N = a * (ψ1

) n 1 a * (ψ2) n 2 √ ε n 1 +n 2 n1!n2!
|Ω , where ψ 1 , ψ 2 ∈ Z, ψ 1 = ψ 2 = 1, and

n 1 = n 2 = N 2 , the Wigner measure is µ 0 = 1 2π 2π 0 δ S 1
ψ φ dφ according to [START_REF] Ammari | Mean field propagation of infinite dimensional Wigner measures with a singular two-body interaction potential[END_REF], with:

ψ φ = cos(φ)ψ 0 + sin(φ)ψ π 2 , ψ 0 = √ 2 2 (ψ 1 + ψ 2 ), ψ π 2 = i √ 2 2 (ψ 1 -ψ 2 ) .
Numerically the interval [0, 2π] is discretized and µ 0 is approximated by 1 m m k=1 δ S 1 z k . The Wigner measure µ t propagated at the time t of the twin states is given by :

µ t = 1 2π 2π 0 δ S 1 ψ φ (t) dφ ,
where ψ φ (t) is solution to the Hartree equation at the time t with initial condition ψ φ .

Numerically it is now approximated by

1 m m k=1 δ S 1 z k (t)
where z k (t) solves the Hartree equation [START_REF]Rate of Convergence Towards the Hartree von Neumann Limit in the Mean-Field Regime[END_REF].

Thus the matrix elements of Z |z ⊗p z ⊗p |dµ t (z) are given by the formula:

1 m m k=1 p! √ α!β! zk (t) α z k (t) β .
And the approximation of the scalar Z |z| 2p dµ 0 (z) is given by the formula

1 m m k=1 |z k | 2p . The matrix of γ p ε (t) -Z |z ⊗p z ⊗p |dµt(z) Z |z| 2p dµ0(z)
can then be computed at any time t numerically with a good approximation.

Error estimates 5.1 Error estimate of the composition method

The Baker-Campbell-Hausdorff formula (see [START_REF] Hairer | Gerhard Geometric numerical integration Springer Series in Computational Mathematics 31 Structure-preserving algorithms for ordinary differential equations[END_REF]) allows to find the order of the composition method which is 4. Then the Taylor's formula with 4 th order integral remainder and the Cauchy inequalities are used to estimate the error. The following proposition gives an estimate of the composition method. Proposition 5.1 Let R > 0, A and B be two anti-adjoint matrices such that (a 1 -a 2 ) A -3a2 2 B ≤ R. Then 

e A+B -Ψ A,B ≤ 2e R R 5 (a 1 -a 2 ) A -
≤ 2e |Im(z)|(-a 2 2 B +a1 A ) e -a2|Im(z)|( A + B ) = 2e |Im(z)|((a1-a2) A -3a 2 2 B ) .
Let us consider the holomorphic function on C defined by:

f A,B (z) = e zA+zB -Ψ zA,zB .
Since the composition method is of 4 th order then for λ ∈ R, the Taylor's formula with integral remainder yields: 4 4! f

f A,B (λ) = λ 0 (λ -t)
A,B (t)dt

f A,B (λ) ≤ λ 5 5! sup t∈[0,λ] f (5) 
A,B (t) .

By the Cauchy's integral formula, we know for each t ∈ [0, 1]:

f (5) A,B (t) 5! = 1 2iπ |z-t|=1 f A,B (z) (z -t) 6 dz ≤ 1 2π 2π 0 f A,B (t + e iθ ) dθ ≤ sup |Im(z)|≤1 f A,B (z) ≤ sup |Im(z)|≤1 2e |Im(z)|((a1-a2) A -3a 2 2 B ) ≤ 2e (a1-a2) A -3a 2 2 B .
Hence for all A R and B R such that (a 1 -a 2 ) A R -3a2 2 B R ≤ R we obtain:

f A R ,B R (λ) ≤ 2λ 5 e R , if λ ≤ 1 .
Let A and B be such that (a 1 -a 2 ) A -3a2 2 B ≤ R.

By setting A R = RA (a1-a2) A - 3a 2 2 B and B R = RB (a1-a2) A - 3a 2 2

B

, we obtain

A = (a 1 -a 2 ) A -3a2 2 B R A R , B = (a 1 -a 2 ) A -3a2 2 B R B R and (a 1 -a 2 ) A R -3a2 2 B R = R. Then f A,B (1) = f A R ,B R (a 1 -a 2 ) A -3a2 2 B R f A,B (1) ≤ 2e R (a 1 -a 2 ) A -3a2 2 B R 5 ≤ 2 e R R 5 (a 1 -a 2 ) A - 3a 2 2 B 5 .

Error estimate of the approximated composition method

The composition method is approximated by replacing e -i ∆t ε dΓ(-∆ K ) by its 4 th order Taylor expansion, with some normalization factor.

Errors estimates for this modified composition method rely on the two following lemmas.

Lemma 5.2 Let E be a normed vector space, J ∈ N * , (f j ) j and (g j ) j two maps sequences from E to E such that for all j ∈ {1, . . . , J}:

• f j is linear. • f j (u) = g j (u) = u for all u ∈ E. • ∀u ∈ E u ≤ ⇒ f j (u) -g j (u) ≤ δ
For u 0 ∈ E, u 0 ≤ set u j = f j (u j-1 ) and v j = g j (v j-1 ) with v 0 = u 0 .

Then we deduce u J -v J ≤ Jδ .

The 4 th order error of the Taylor expansion gives:

e A -T L(e A ) = ∞ i=5 A i i! ≤ A 5 1 0
(1 -t) 4 4! e tA dt ≤ A 5 1 5! .

The following proposition gives an estimate of the approximation of the composition method.

Proposition 5.4 Let A and B be two anti-adjoint matrices and J an integer such that

∆t ε ((a 1 -a 2 ) A - 3a 2 2 B ) ≤ 5 and J ≥ t 5ε ((a 1 -a 2 ) A - 3a 2 2 B )
.

Then e t ε (A+B) u -( Ψ ∆t ε A, ∆t ε B ) J u ≤ 2 e 5 5 (a 1 -a 2 ) A - 3a 2 2 B 5 + 3 4 A 5 t ∆t 4 ε 5 u
for all vector u, where Proof.

Ψ A,B = e a 1 B 2 T L(e a1A )e
Let u be a normed vector.

First for i = 1, 2, 3 let us estimate the error: and J = 3.

Then Ψ A,B u -Ψ A,B u ≤ 3 4 A 5 .
Secondly let us estimate the error:

e A+B u -Ψ A,B u
By using Proposition 5.1 with its hypotheses and the previous estimates:

e A+B u -Ψ A,B u ≤ e A+B -Ψ A,B u + (Ψ A,B -Ψ A,B )u ≤ 2e R R 5 (a 1 -a 2 ) A - 3a 2 2 B 5 + 3 4 A 5 .
By applying that to ∆t ε A and ∆t ε B where ∆t = t J with J positive integer, we obtain:

e ∆t ε (A+B) u -Ψ ∆t ε A, ∆t ε B u ≤ 2e R R 5 (a 1 -a 2 ) A - 3a 2 2 B 5 + 3 4 A 5 ∆t 5 ε 5 .
Then by applying Lemma 5.2 with f j = e ∆t ε (A+B) and g j = Ψ ∆t ε A, ∆t ε B , we obtain:

e t ε (A+B) u -( Ψ ∆t ε A, ∆t ε B ) J u ≤ 2e R R 5 (a 1 -a 2 ) A - 3a 2 2 B 5 + 3 4 A 5 t ∆t 4 ε 5 .
By knowing that for all positive integer τ and positive real a, R → e aR R τ is minimal in R min = τ a and min R>0

e aR R τ = ( ae τ ) τ , the condition ∆t ε (a 1 -a 2 ) A - 3a 2 2 B ≤ 5 , that is J ≥ t 5ε ((a 1 -a 2 ) A - 3a 2 2 B ) , implies e t ε (A+B) u -( Ψ ∆t ε A, ∆t ε B ) J u ≤ 2 e 5 5 (a 1 -a 2 ) A - 3a 2 2 B 5 + 3 4 A 5 t ∆t 4 ε 5 .
For Q ∈ L( 2 Z), we know according to [START_REF] Chen | The quintic NLS as the mean field limit of a boson gas with three-body interactions[END_REF]:

Q W ick | n Z = n!(n + 2 -2)! (n -2)! ε 2+2 2 S n-2+2 ( Q ⊗ Id ⊗n-2 ) = ε 2 n(n -1)S n ( Q ⊗ Id ⊗n-2 ) , then Q W ick | N Z ≤ ε 2 N (N -1) S N Q ≤ ε 2 N 2 Q = Q . When Q W ick = V with V(e i ∨ e j ) = 1 2 V ij e i ∨ e j , the norm V is bounded from above by V = 1 2 max |V ij | independently of the number N = 1 ε of particles. Moreover dΓ(A) | N Z ≤ εN A = A , therefore dΓ(-∆ K ) ≤ ∆ K = 2.
Finally by applying the last proposition with A = -idΓ(-∆ K ) and B = -iV, an error estimate is obtained for the complete evolution:

e -it ε Hε u -( Ψ -∆t ε idΓ(-∆ K ),-∆t ε iV ) J u ≤ 2 e 5 5 (a 1 -a 2 ) ∆ K - 3a 2 2 V 5 + 3 4 ∆ K 5 t ∆t 4 ε 5 .
Pratically, the time step is chosen according to N and t so that the above error is negligeable.

Numerical simulations

For all the numerical simulations the final time is chosen to be t max = 1, the number of time steps for the 4 th order Runge-Kutta method applied to solve the mean field equation is 100. The loop of the number of particles is performed numerically from N min = 2 to N max = 20 particles, and only for an even number of particles.

In the Fortran program the computations were performed by parallelizing the loop in the computation of the product sparse matrix-vector dΓ(-∆ K )u with Openmp on 8 threads.

Results and orders of convergence for γ

(1) ε and γ

(2) ε

For each type of states, the following graphics show for the reduced density matrices and for K = 10 sites:

1) The logarithm of the error in trace norm log(max t∈[0,1] γ (p)

N (t) -γ (p) ∞ (t) 1
) according to the logarithm of the number of particles N in the cases p = 1 and 2. A straight line is obtained whose the slope is the order of the error in 1/N . These numerical experiments also valid the idea that for rather smooth but non trivial N -body bosonic system, the mean field asymptotics start to be relevant at N = 4. The numerical plot agree perfectly with the theoretical results of [START_REF] Ammari | On the rate of convergence for the mean field approximation of many-body quantum dynamics[END_REF].

2) In the case p = 1 the density of particles on each site k ∈ {1, . . . , K} given by γ (1) kk (t) for N = 20 particles and for the mean field limit at the same times t = 0 and t = 1.

3) The correlations in terms of the 1 and 2 particles reduced density matrices, for N = 20 particles and the mean field at the time t = 1. Depending on the case, this plot shows with which accuracy the mean field also catches some quantum correlations.

Hermite states

For the Hermite states z ⊗N the vector z is given by z = 1 (m) Log-log plot. p=1, K=10. Numerical slope -0,4711 (n) Compared densities of particles at times t=0 and t=1

  and a * (e i )a(e i+1 )a * (e) α |Ω =δ ei+1≤α ε α! (α -e i+1 )! a * (e) ei+α-ei+1 |Ω =δ 1≤αi+1 εα i+1 a * (e) ei+α-ei+1 |Ω .

  N Z, ε is a linear combination of operators |Φ Ψ|. It suffices to compute Tr(|Φ Ψ|b W ick ) = Ψ, b W ick Φ . Lemma 4.3 Set b W ick = a * (e) δ a(e) γ with |δ| = |γ| and let Φ and Ψ be in N Z then:

  because a * (e) α Ω, a * (e) δ+β-γ |Ω = 0 if and only if α = δ + β -γ so β = α + γ -δ and β ≥ γ means α -δ ≥ 0. The last line is obtained by a change of multi-indices by setting for each α, α = α -δ because α ≥ δ, and then |α | = |α| -|δ| = N -|δ|.

  ) of the reduced density matrices with b = a * (e) α √ ε p α! Ω a * (e) β √ ε p β! Ω , and b(z) = z ⊗p , bz ⊗p ∈ P p,p .
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 511221111221212221122122222111 is the composition method.Proof. e A+B -Ψ A,B = e A+B -e a Then for z ∈ C e z(A+B) -Ψ zA,zB ≤ e -a 1 +a 2 2 |Im(z)| B e a1|Im(z)| A e a |Im(z)| B e |Im(z)|( A + B ) + e -a2|Im(z)| A e -a 2 +a 1 2 |Im(z)| B e a1|Im(z)| A e a |Im(z)| B = e -a 1 +a 2 2 |Im(z)| B e a1|Im(z)| A e a |Im(z)| B (e |Im(z)|( A + B ) + e -a2|Im(z)| A ) = e |Im(z)|(-a 2 2 B +a1 A ) (e |Im(z)|( A + B ) + e -a2|Im(z)| A )

2 ube applied with f i = e a i 2 B e aiA e a i 2 B , g i = e a i B 2 T

 2222 = (e aiA -T L(e aiA ))e L(e aiA )e a i B 2

√ 3 (

 3 (1 + i)e 1 + ie 3 ).

1 √ 2 (e 1 + 1 √N e 1

 12111 (a) Log-log plot for Hermite states. p=1, K=10. Numerical slope -0,9804 (b) Compared densities of particles at times t=0 and t=1 (c) Log-log plot for Hermite states. p=2, K=10. Numerical slope -0,9693 (d) Mean field(white) and 20-body quantum(blue) correlations at time t = 16.2 Twin statesFor the twin statesΨ N = a * (ψ1) n 1 a * (ψ2) n 2 √ ε n 1 +n 2 n1!n2! |Ω , ψ 1 = ie 3 ) and ψ 2 = e 2 .(e) Log-log plot for twin states. p=1, K=10. Numerical slope -0,9855 (f) Compared densities of particles at times t=0 and t=1 (k) Log-log plot for Wq states. p=2, K=10. Numerical slope -0,9449 (l) Mean field(white) and 20-body quantum(blue) correlations at time t = 16.4 Other statesA case when the order of convergence is equal to 1/2.(see[START_REF] Ammari | On the rate of convergence for the mean field approximation of many-body quantum dynamics[END_REF])In this case ε = |φ ⊗N N φ ⊗N N | with φ N = + 1 -1 N e 2. associated Wigner measure is δ S 1 e2 .
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Proof. Let us proceed by induction on J. For J = 0, u 0 -v 0 = 0 ≤ 0δ. Let us assume u J -v J ≤ Jδ with the hypotheses fullfilled for j ∈ {1, . . . , J + 1}.

Since f J+1 is linear and unitary we obtain:

Let T L(e A ) denote the 4 th order Taylor expansion of e A around 0. Let A be in B(0, c R ), c R > 0.

Lemma 5.3 Let u be a vector in a normed vector space E and let A be an anti-adjoint operator on E. Define the application T L(e A ) on E which is non linear by:

T L(e A )u if T L(e A )u = 0, it preserves the norm. Then (T L(e A ) -T L(e A ))u ≤ T L(e A ) -e A u .

Proof. 

T L(e

Wq states

For the Wq states

In this case the state is given by S N (ψ ⊗n1

), with n 1 + n 2 = N , n 1 = N -q and n 2 = q fixed for the mean field. The associated Wigner measure is δ S 1 ψ1 . In these simulations q = 2.

(i) Log-log plot for Wq states. p=1, K=10.

Numerical slope -0,9843 (j) Compared densities of particles at times t=0 and t=1

Appendix

Class of symbols [START_REF] Ammari | Mean field limit for bosons and infinite dimensional phase-space analysis[END_REF][START_REF] Ammari | Mean field limit for bosons and propagation of Wigner measures[END_REF][START_REF] Ammari | Mean field propagation of Wigner measures and BBGKY hierarchies for general bosonic states[END_REF][START_REF] Ammari | Mean field propagation of infinite dimensional Wigner measures with a singular two-body interaction potential[END_REF]. For any p, q ∈ N, define P p,q to be the space of homogeneous complexvalued polynomials on Z such that b ∈ P p,q if and only if there exists a (unique) bounded operator b ∈ L (∨ p Z , ∨ q Z ) such that for all z ∈ Z :

where b denotes the operator associated with the symbol b according to [START_REF] Chen | Rate of convergence towards Hartree dynamics[END_REF].

The composition method based on the Strang splitting with the coefficients ( 12) is of 4 th order (see [START_REF] Hairer | Gerhard Geometric numerical integration Springer Series in Computational Mathematics 31 Structure-preserving algorithms for ordinary differential equations[END_REF]). [START_REF] Ammari | On the rate of convergence for the mean field approximation of many-body quantum dynamics[END_REF][START_REF] Bardos | Derivation of the Schrödinger-Poisson equation from the quantum N-body problem[END_REF] and N in [START_REF] Ammari | On the rate of convergence for the mean field approximation of many-body quantum dynamics[END_REF][START_REF] Erdös | Derivation of the nonlinear Schrödinger equation from a many body Coulomb system[END_REF]: 

Dimension of