
HAL Id: hal-01183704
https://hal.science/hal-01183704

Submitted on 10 Aug 2015

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Synthesis of plans or policies for controlling dynamic
systems

G. Verfaillie, C. Pralet, F. Teichteil, G. Infantes, C. Lesire

To cite this version:
G. Verfaillie, C. Pralet, F. Teichteil, G. Infantes, C. Lesire. Synthesis of plans or policies for controlling
dynamic systems. Aerospace Lab, 2012, 4, p. 1-12. �hal-01183704�

https://hal.science/hal-01183704
https://hal.archives-ouvertes.fr

Issue 4 - May 2012 - Synthesis of plans or policies for controlling dynamic systems
 AL04-05 1

Mastering Complexity

Synthesis of plans or policies
for controlling dynamic systems

G. Verfaillie, C. Pralet, V. Vidal,
F. Teichteil, G. Infantes, C. Lesire
(Onera)

E-mail: gerard.verfaillie@onera.fr

To be properly controlled, dynamic systems need plans or policies. Plans are
sequences of actions to be performed, whereas policies associate an action to be

performed with each possible system state. The model-based synthesis of plans or
policies consists in producing them automatically starting from a model of the physical
system to be controlled and from user requirements on the controlled system. This
article is a survey of what exists and what has been done at Onera for the automatic
synthesis of plans or policies for the high-level control of dynamic systems.

A high-level reactive control loop

Aerospace systems have to be controlled to meet the requirements for
which they have been designed. They must be controlled at the lowest
levels. For example, an aircraft must be permanently controlled to be
automatically maintained at a given altitude or to go down to a given
speed. They must be controlled at higher levels too. For example, an
autonomous surveillance UAV must decide on the next area to visit
at the end of each area visit (highest navigation level). After that, it
has to build a feasible trajectory allowing it to reach the chosen area
(intermediate guidance level). Then this trajectory is followed using an
automatic control system (lowest control level).

At any level, automatic control takes the form of a control loop as il-
lustrated by figure 1. At any step, the controller receives observations
from the dynamic system and sends it back commands; commands
result in changes in the dynamic system and then in new observa-
tions and commands at the next step.

Controller

Dynamic system

CommandsObservations

Figure 1 - Control loop of a dynamic system

At the lowest levels, for example for the automatic control of an air-
craft, the dynamic system is usually modelled using a set of differen-
tial equations (domain of continuous automatic control [29]). Howe-

ver, at the highest levels, for example for the automatic navigation of
an UAV, it is more conveniently modelled as a discrete event dynamic
system (domain of discrete automatic control [14]): instantaneous
system transitions occurring at discrete times; if the system is in a
state s and an event e occurs then it moves instantaneously to a new
state s’ and remains in this state until the next event occurs.

In some cases, these transitions can be assumed to be determinis-
tic: there is only one possible state s’ following s and e. In other
cases, due to uncertain changes in the environment, actions of other
uncontrolled agents, or uncertain effects of controller actions, they
are not deterministic: there are several possible states s’ following s
and e. For example, the result of an observation action by an UAV may
depend on atmospheric conditions.

In some cases the controller has access to the whole system state
at each step (full observability). However, in many cases it only has
access to observations that do not allow it to know exactly the cur-
rent system state (partial observability). For example, an automatic
reconfiguration system may not know the precise subsystem res-
ponsible for faulty behavior but it must act in spite of its partial know-
ledge. In certain particular cases no observation is available (null
observability).

In many cases, the system is assumed to run infinitely: in fact, its
death is not considered. However, in some cases it is assumed to
stop when reaching certain conditions. This is the case when we
consider a specific mission for an UAV which ends when the UAV
lands at its base.

User requirements on the behavior of the controlled system may
take several forms. Most generally, they take the form of properties

Issue 4 - May 2012 - Synthesis of plans or policies for controlling dynamic systems
 AL04-05 2

(constraints) to be satisfied by the system trajectory (sequence of
states followed by the system), or of a function of the system tra-
jectory to be optimized. Usual properties are safety and reachability
properties: a safety property must be satisfied at any step whereas
a reachability property must be only satisfied at a certain step. The
requirement that the energy level on board a spacecraft must remain
above a minimum level is an example of a safety property. The fact
that an UAV must visit a given area is an example of a reachability
property.

The most general form of a controller is a policy which associates
with each pair consisting of an observation o and a controller state
cs, another pair consisting of a command c and a new controller state
cs’ (see figure 2).1 The controller state is useful for recording rele-
vant features of past observations and commands, as well as current
objectives. Note that command c and controller state updating cs’
are deterministic whereas system state transition s’ may not be.2 In
the particular case of a finite trajectory with determinism or with non-
determinism without observability (when observability is useless or
impossible), a controller may take the simpler form of a plan which is
a sequence of commands.

Command

c

Observation

o

Controller

state

cs

Controller

state

cs’

System

state

s

System

state

s’

Transition

Updating

<c, cs’> = π(o, cs)

Figure 2: Controller implementing a policy π

The main question of discrete automatic control is then “how to build
a controller (a policy or a plan) that guarantees that requirements on
the controlled system are satisfied, possibly in an optimal way?”.

To do this, three main approaches can be distinguished: (1) manual
design, (2) automatic learning, and (3) automatic synthesis. The
first approach, which is by far the most usual, assumes the exis-
tence of human experts or programmers who are able to define a
controller under the form of decision rules which point out what to
do in each possible situation, for each pair (observation, controller
state). Model checking techniques [18] can then be used to verify
that the resulting controller satisfies requirements. The second
approach, which is being used more and more, consists in auto-
matically learning a controller from experience, that is, from a set
of tuples (observation, controller state, command, effects), which
can be obtained by running the system or by simulating it [47]. The
third approach, which is the most used at Onera for the control of
aerospace systems because it offers the best guarantees in terms
of requirement satisfaction, consists in automatically synthesizing
a controller from a model of the dynamic system, the controller and

 1 This approach of control differs from the approach adopted by the pioneering works on discrete control [53] which consider that the role of control is not to specify a command,
but to restrict the set of acceptable commands.
 2 We do not consider in this article the case of non deterministic controllers which select commands in a non deterministic stochastic manner.

the requirements on the controlled system. This third option is the
approach we develop in this article.

Control synthesis modes

When it is embedded in an aircraft or spacecraft, the controller may
be strongly limited in terms of memory and computing power. In
spite of these limitations it has to make reactive decisions or at
least make decisions by some specified deadlines. For example, the
next area to be visited by an UAV and the trajectory that allows this
area to be reached must be available by the end of the visit of the
current area.

To satisfy these requirements the most usual approach consists in
synthesizing the controller off-line, before execution. As soon as it
has been built, the controller can be implemented and then reacti-
vely executed on board.

However, synthesizing a controller off-line requires that all the pos-
sible situations be taken into account. Because the number of pos-
sible situations can quickly become astronomical (settings with 10100,
10500, or 101000 possible situations are not rare), difficulties quickly
arise in terms of controller synthesis, memorization, and execution.

To overcome such difficulties an option is available that consists in
synthesizing the controller on-line on-board: given the current context,
the number of situations to be considered can be dramatically re-
duced; if computing resources are sufficient on-board, the synthesis
of a controller dedicated to the current context may be feasible by the
specified deadlines; as long as the current context remains unchan-
ged, this controller remains valid; as soon as the context changes, a
new controller is synthesized. See [60] for a generic implementation
of such an approach. Anytime algorithms [72], which quickly pro-
duce a first solution and try to improve on it as long as computing
time is available, may be appropriate in such a setting.

When the state is fully observable and the possible state evolutions
can be reasonably approximated by a deterministic model, at least
over a limited horizon ahead, an option consists in (i) synthesizing
a simpler controller under the form of a plan over a limited horizon,
(ii) keeping with this plan as long as it remains valid (no violated as-
sumptions and a sufficient horizon ahead taken into account), and (iii)
replanning as soon as it becomes invalid. Such an option (planning/
replanning) is widely used because of its simplicity and efficiency.
See [31] for an example of application to the control of Earth obser-
vation satellites.

Another option, close to the previous one and to the model predic-
tive control [24] approach developed in the domain of continuous
automatic control, consists, at each step, in (i) observing the current
state, (ii) synthesizing a controller in the form of a plan over a limited
horizon (reasoning horizon), (iii) applying only the first command of
this plan (decision horizon), and (iv) starting again at the next step
over a sliding horizon. A simple decision rule (valid, but non optimal)
is applied when no plan has been produced. See [44] for a generic

Issue 4 - May 2012 - Synthesis of plans or policies for controlling dynamic systems
 AL04-05 3

implementation of such an approach and [5] for an example of appli-
cation to the autonomous control of an Earth observation satellite.

Models

The automatic controller synthesis approach requires models of
the dynamic system and of the requirements on the controlled
system.

Model of the dynamic system

Dynamic systems are usually modelled using:
	 •	a	finite	set	S of possible states;
	 •	a	finite	set	O of possible observations;
	 •	a	finite	set	A of possible actions;
	 •	an	initialisation	model	I which defines possible initial states;
	 •	an	observation	model	Om which defines possible state-obser-

vation pairs;
	 •	a	feasibility	model	F which defines feasible state-action pairs;
	 •	a	transition	model	T which defines possible state transitions.

When transitions are deterministic, T is a function from S×A to S.
When they are not deterministic, T is a relation over S×A×S. When
probabilistic information is available, T is a function which associates
with each element of S×A a probability distribution over S. Similarly,
Om may be defined by a function from S to O, by a relation over S×O,
or by a function which associates with each element of S a probability
distribution over O. I may be defined by an element of S, a subset of
S or a probability distribution over S. Finally, F is defined by a relation
over S×A.

It must be emphasized that the transition model is here assumed to be
Markovian: the next state s’ depends only on the current state s and
action a; it does not depend on previous states and actions. When
this assumption is not satisfied it is necessary to add relevant features
of past states and actions in the state definition to get it satisfied. It
must be stressed too that, in this presentation, a state includes the
system state and the controller state. Hence, with regard to figure 2,
the transition model includes system state transition and controller
state updating.

Requirements on the controlled system

Finally, user requirements on the controlled system are modelled
using a requirement model R which may take several forms:
	 •	R may be a subset of S which defines the set of acceptable final
states, also called goal states (reachability property);
	 •	R may be a relation over S×A×S which defines the set of accep-
table transitions (safety property), not to be mistaken for the set T of
possible transitions, previously defined in the model of the dynamic
system;
	 •	R may be a function from S×A×S to the set of reals which asso-
ciates a local reward with each transition; the total reward associated
with a trajectory is then the sum of the local rewards associated with
the successive transitions.

More complex requirements on the system trajectories may be ex-
pressed using temporal logics [20] or non Markovian rewards that are
rewards on state trajectories [63].

Compact representations

Usually, sets S, O, and A of states, observations, and actions are
compactly defined using finite sets of state, observation, and action
variables whose domains of value are finite (factored representa-
tion). For example, if Sv is the set of state variables, S is defined as

()
v Sv

D v
∈∏ , where D(v) is the domain of v. Similarly, initialisation,

observation, feasibility, and transition relations are compactly defined
using constraints [54] or decision diagrams [13]. Initialisation, obser-
vation, and transition probability distributions may also be compactly
defined using Bayesian networks [40], valued constraints [55] or
algebraic decision diagrams [2].

Usual frameworks

For example, in the classical AI planning framework (Artificial Intel-
ligence planning [28]), the initialisation model is defined by a state
(only one possible initial state), the feasibility model by action pre-
conditions, the transition model by deterministic action effects, and
the requirement model by a set of goal states. The objective is to build
a plan that allows a goal state to be reached. Observation is useless
because of determinism. Specific languages, such as PDDL [23, 27],
have been developed in the context of the International Planning Com-
petition (IPC) to allow users to express models in a compact and
natural way.

Another example, in the classical MDP framework (Markov Decision
Processes [52]), is where initialisation and transition models are
defined by probability distributions, there is no observation model
(assumption of full observability) and the requirement model has
the form of additive local rewards. The objective is to build a policy
that maximizes the expected total reward over finite horizons or the
expected discounted total reward over infinite ones (reward geome-
trically decreasing as a function of the step number). In the POMDP
framework (Partially Observable MDP [37]), the observation model is
defined by a probability distribution.

In the goal MDP framework [71, 61], which is a hybrid between AI
planning and MDP, a set of goal states is added to the MDP definition
and local rewards are replaced by costs. The objective is to build a
policy that minimizes the expected total cost to reach a goal state.
Finally, in a framework that can be referred to as the logical MDP fra-
mework [8, 51], initialisation, observation, transition, and requirement
models are defined by relations. The objective is to build a policy that
guarantees that reachability and/or safety requirements are satisfied
in spite of non determinism and partial observability.

Other models

It must be emphasized that, although these models are generic, many
real problems of synthesising plans or policies in the aerospace
domain are more conveniently modeled using different frameworks,
popular in the Operations Research community: scheduling, resource
assignment, knapsack, shortest path, or traveling salesman problems
[3, 39, 43]. For example, the main objective of plan synthesis is to
build a sequence of actions allowing a goal to be reached. However,
when planning activities for an Earth observation satellite, the problem
is not to discover the sequence of basic actions allowing an area a to
be observed: one knows that is necessary to set the instrument ON,

Issue 4 - May 2012 - Synthesis of plans or policies for controlling dynamic systems
 AL04-05 4

to point the satellite towards the beginning of a during a’s visibility
window, to start observing, to memorize data, and then to download
it using a station visibility window. The HTN framework (Hierarchical
Task Network [21, 56]) may be used to describe such a breakdown of
a task into sub-tasks. The main problem is to organize observations
over time and resources in order to perform a maximal subset of them
of maximum value. In these problems, time and resource manage-
ment is central and an explicit representation of the system state may
be useless. See [45] for an example.

It must be however stressed that standard Operations Research problems
rarely allow real problems to be completely and precisely modelled. For
example, many problems are over-constrained scheduling problems with
complex time and resource constraints to be satisfied and a complex
optimization function to be optimized. See [30] for an example.

It must be emphasized too that many problems in the aerospace
domain combine action planning [28] and motion planning [42]. For
example, inserting the visit of an area into the activity plan of an UAV
requires checking the feasibility of the trajectory allowing the UAV
to reach this area and to compute the effects of this movement, for
example in terms of energy. See [33] for the proposal of a generic
scheme for cooperation between action and motion planning.

To sum up, many real problems appear to be complex hybrids of action
planning, motion planning, and task scheduling. The CNT framework
(Constraint Network on Timelines [67]) has been developed to try and
model them as well as possible. It extends the basic CSP framework
(Constraint Satisfaction Problem [54]) by defining horizon variables that
represent the unknown number of steps in system trajectories and by
defining dynamic constraints as functions which associate a set of clas-
sical CSP constraints with each assignment of the horizon variables.

Optimality equations

Optimality equations, also called Bellman equations [6], allow satis-
ficing or optimal policies to be characterized. In the MDP framework
over infinite horizons, they can be defined as follows.

Let I(s) be the probability of being initially in state s, F(s,a) be a Boo-
lean function which returns true when action a is feasible in state s,
T(s,a,s’) be the probability of being in state s’ after applying action a
in state s, R(s,a,s’) be the local reward associated with this transition,
and ∈[0,1[be the discount factor.

Let V*(s,a) be the optimal expected total reward it is possible to obtain
when starting from state s and applying action a, V*(s) be the optimal
expected total reward it is possible to obtain when starting from state s,
V* be the optimal expected total reward it is possible to obtain taking
into account the possible initial states, and π* be an optimal policy. It
can be shown that the following equations must be satisfied:

*

*
'

* *
/ (,)

* *
/ (,)

* *

, / (,) : (,)
(, , ').((, , ') . ('))

: () max (,)

: () arg max (,)

(). ()

s S

a A F s a

a A F s a

s S

s S a A F s a V s a
T s a s R s a s V s

s S V s V s a

s S s V s a

V I s V s

γ

π

∈

∈

∈

∈

∀ ∈ ∀ ∈

= +

∀ ∈ =

∀ ∈ =

=

∑

∑

While the values V*(s,a), V*(s), and V* are the only solutions of this
set of equations, several associated optimal policies are possible.

In the goal MDP framework, there is no discount factor, V*(s)=0 for
any goal state s, and maximization is replaced by minimization.

In the logical MDP framework, these equations can be reformulated
as follows.

Let I(s) be true when s is a possible initial state, F(s,a) be true when
action a is feasible in state s, T(s,a,s’) be true when s’ is a possible
state after applying action a in state s, and R(s,a,s’) be true when this
transition is acceptable (safety properties).

Let V*(s,a) be true when it is possible to satisfy the safety properties
when starting from state s and applying action a, V*(s) be true when
it is possible to satisfy the safety properties when starting from state
s, and π* be a satisfying policy. It can be shown that the following
equations must be satisfied:

*

*
'

* *
/ (,)

* *
/ (,)

*

, / (,) : (,)
((, , ') ((, , ') ('))

: () (,)

: () argtrue (,)

: () ()

s S

a A F s a

a A F s a

s S a A F s a V s a
T s a s R s a s V s

s S V s V s a

s S s V s a

s S I s V s

π

∈

∈

∈

∀ ∈ ∀ ∈

= ∧ → ∧

∀ ∈ = ∨

∀ ∈ =

∀ ∈ →

Algorithms

Dynamic programming

Dynamic programming algorithms [6] make direct use of the opti-
mality equations to produce satisfying or optimal policies. The most
popular variant, referred to as value iteration, approximates better and
better values V*(s), starting from any initial values V0(s). In the clas-
sical MDP framework, at each algorithm iteration step i>0, values are
updated in the following way:

1'

/ (,)

, / (,) : (,)
(, , ').((, , ') . ('))

: () max (,)

i

is S

i a A F s a i

s S a A F s a V s a
T s a s R s a s V s

s S V s V s a

γ −∈

∈

∀ ∈ ∀ ∈

= +

∀ ∈ =

∑

It can be shown that values Vi(s) asymptotically converge to V*(s).
Practically, the algorithm stops when max | |s S i i-1V (s) -V (s)∈ is below
a given threshold. When it stops at step i, a policy π can be extracted
using the following equation:

/ (,): () arg max (,)a A F s a is S s V s aπ ∈∀ ∈ =

In the logical MDP framework, initial values V0(s) are all true and
convergence is reached in a finite number of iterations.

These algorithms are the most natural way of getting an optimal
policy when the number of states remains reasonably small. Howe-
ver, because the number of states is an exponential function of the
number of state variables, they may quickly become impracticable.

Issue 4 - May 2012 - Synthesis of plans or policies for controlling dynamic systems
 AL04-05 5

To overcome such a difficulty, special structures can be used inside
dynamic programming algorithms. In the logical MDP framework,
binary decision diagrams (BDD [13]), allowing a Boolean function of
Boolean variables to be represented, can be used to represent rela-
tions compactly and manipulate them [17]. This technique can be
extended to classical MDP using algebraic decision diagrams (ADD
[2]), allowing a real function of Boolean variables to be represented.

Heuristic search

Whereas dynamic programming algorithms consider all possible
states, heuristic search algorithms consider only those that are rea-
chable from the possible initial states by following the policies that
are considered: a potentially very small subset of the set of possible
states.

Although these algorithms are not limited to AI Planning problems,
they can be easily presented in this framework. In AI Planning, we
have one possible initial state, positive action costs, deterministic
transitions, and a set of goal states. The problem can be formulated
as a shortest path problem in a weighted oriented graph where nodes
are associated with states, arcs with transitions, positive weights with
action costs: a shortest path is sought from the node associated with
the unique initial state to any node associated with a goal state.

Efficient algorithms exist to produce shortest paths from an initial
node n0 to any node in weighted graphs with positive weights, such
as the well-known Dijkstra algorithm [19]. Let W(n,n') be the weight
of the edge from node n to node n'. This algorithm incrementally
builds a tree of shortest paths from n0 to any node n, rooted in n0. At
each algorithm step, with any node n, are associated an upper bound
V(n) on the minimum length to go from n0 to n, and the parent node
P(n) of n in the current tree. Values V(n) are initialized with +∞,
except 0 for the initial node. Parent nodes P(n) are initialized with ∅.
At each algorithm step, the algorithm visits a new node. The selected
node is a node of minimum value V(n). For each node n' that has
not been visited yet and can be reached directly from n, such that
V(n)+W(n,n')<V(n'), V(n') is updated to V(n)+W(n,n') and P(n')
to n. The algorithm stops when all nodes have been visited. It is gua-
ranteed that, for each node n, V(n) is then the minimum distance from
n0 to n. The associated shortest path can be built backward using
P(n). This algorithm visits only the nodes that are reachable from n0.

However, when we search for shortest paths from an initial node
to a set of goal nodes, more efficient algorithms exist, such as the
well-known A* algorithm [35]. This algorithm works as the Dijks-
tra algorithm does, except that values V(n) are replaced by values
V'(n) which are the sum of two values: a value V(n) which is an
upper bound on the minimum distance from n0 to n, and a value
H(n) which is a lower bound on the minimum distance from n to
any goal node. Values V(n) are initialized and updated the same way
as they are in the Dijkstra algorithm. As for values H(n), they are
assumed to be given by an admissible (optimistic) heuristic function,
null for any goal node. At each algorithm step, the selected node is a
node of minimum value V'(n). If the heuristic function is monotone
(∀n,n': H(n)≤H(n')+W(n,n')) then a node cannot be revisited, but if
it is not then a node may be visited several times. The algorithm stops
when the selected node is a goal node. It is guaranteed that the value
V(n) of this node is the minimum distance from the initial node to any

goal node. With regard to the Dijkstra algorithm, the main advantage
of this algorithm is its focus on goal states via the heuristic function.
Its efficiency strongly depends on this heuristic. The better the heu-
ristic function H(n) approximates the minimum distance from n to
any goal node, the fewer nodes are visited. The Dijkstra algorithm is a
particular case of A* where the heuristic function is null for any node.

The most efficient algorithms for solving AI planning problems, such
as HSP (Heuristic Search Planner [11]) or FF (Fast Forward [36]),
combine sophisticated variants of A* with powerful heuristic com-
putations.3 The heuristic function is automatically built by solving
specific problem relaxations at each node of the search. Some of
these heuristics are admissible (thus yielding optimal plans) as the
optimum of any problem relaxation is a lower bound on the optimum
of the original problem. The YAHSP planner (Yet Another Heuristic
Search Planner [68]) uses variants of these principles as well as a
lookahead strategy which causes the planner to focus more quickly
on promising parts of the graph. It must be stressed that the graph is
never explicitly built. It is only explored as and when required by the
effective search.

Heuristic search can be generalized to planning under uncertainty. For
example, the LAO* algorithm [34] solves goal MDP problems via a
combination of heuristic forward search and dynamic programming.
The RFF algorithm (Robust FF [59]) solves the same problems using
successive calls to FF: a deterministic model of the goal MDP is first
built by considering the most likely initial state and, for each state and
each feasible action, the most likely transition; a plan is built using this
deterministic model; then, this plan, which is a partial policy, is simu-
lated using the original non deterministic model; for each reachable
state s that is not covered by the current policy, a plan is built from s
using the deterministic model, and so on until all reachable states or
nearly of them are covered by the current policy. If all reachable states
are covered then the resulting policy guarantees goal reachability but
may not be optimal.

Greedy search

Greedy search is a very simple technique for dealing with combinato-
rial optimization problems. It consists in making successive choices,
following a given heuristic, without ever reconsidering previous
choices. For example, in AI planning, it is possible to systematically
choose as a next node a node n that minimizes the heuristic function
H(n). It is clear that this method offers no guarantee in terms of goal
reachability and optimality.

However, repeated greedy searches, combined with learning, can
offer these guarantees. For example, the LRTA* algorithm (Learning
Real Time A* [41]) solves shortest path problems by performing
a sequence of greedy searches. Each search starts from the initial
node n0 and greedily uses a heuristic function V which is a lower
bound on the minimum distance to a goal node. V is initialized by
any admissible (optimistic) heuristic. When the current node is n, a
node n' that minimizes W(n,n')+V(n') is selected, V(n) is updated to
W(n,n')+V(n'), and n' becomes the current node. The search stops
when the current node is a goal node. A new search can start using
the current heuristic function V. It can be shown that, search after
search, this function converges to the minimum cost to reach a goal
node. This algorithm can be straightforwardly generalized to planning

 3 In fact, FF combines tree search with hill climbing local search.

Issue 4 - May 2012 - Synthesis of plans or policies for controlling dynamic systems
 AL04-05 6

under uncertainty. See the RTDP algorithm (Real Time Dynamic Pro-
gramming [4]) which solves goal MDP problems and can be seen as
a special way of exploiting Bellman optimality equations. This use of
simulations of the dynamic system to learn good policies is genera-
lized by reinforcement learning techniques [57].

Iterated stochastic greedy search [12] is another interesting variant
where heuristic choices are randomized and greedy searches are
repeated. See [48, 5] for examples of application to planning for Earth
observation satellites.

Local search

Local search [1] is a very powerful technique for the approximate
solving of combinatorial optimization problems. Starting from any
solution, it improves on it iteratively by searching for a better solution
in the neighbourhood of the current solution: a small set of solutions
that differ slightly from the current one. Although it cannot guarantee
optimality, this method is generally able to produce high quality solu-
tions quickly thanks to so-called meta-heuristics such as simulated
annealing, tabu search, or evolutionary algorithms which allow a
search to escape from so-called local minima: no better solution in
the neighbourhood of the current solution.

It has been successfully applied to AI planning [26]. In [9], classical
planners and evolutionary algorithms are combined to produce high
quality plans. It is widely used to deal with scheduling problems with
time and resource constraints. See [45] for an example of applica-
tion to the problem of scheduling observations performed by an agile
satellite.

Constraint-based approaches

The SAT and CSP frameworks (Boolean SATisfiability [10] and
Constraint Satisfaction Problem [54]) are widely used to model and
solve problems where one searches for assignments to a given set of
variables that satisfy a given set of constraints and optimize a given
criterion. To model AI planning problems, we can associate one SAT/
CSP variable with each state or action variable at each step. However,
the difficulty is that the number of steps in a plan, and thus the num-
ber of SAT/CSP variables, is unknown.

This is why SAT and CSP techniques have been first used to solve
planning problems over a given number of steps [38, 64]. One can
start with only one step and increment the number of steps each time
a plan has not been found, until a plan is finally found.

In the CNT framework (Constraint Network on Timelines [67]), this
unknown number of steps is taken into account inside the constraint-
based model via the use of so-called horizon variables. See [49, 50]
for optimal and anytime associated algorithms.

In [69] an alternative constraint-based formulation is proposed with
variables associated with each possible action, present or not in the
plan.

These constraint-based approaches are not limited to AI planning pro-
blems. They can be used for planning under uncertainty. See [51, 66]
for two approaches applicable to the logical MDP framework.

Applications

In this section we show some selected examples of plan or policy
synthesis problems we have had to deal with in the aerospace do-
main.

Search and rescue mission with an unmanned helicopter

For some years, Onera has been using the ReSSAC platform (see
figure 3) for studying, developing, experimenting, and demonstrating
the autonomous capabilities of an unmanned helicopter [22]. In such
a setting, Onera researchers considered a mission of search and res-
cue of a person in a given area.

Figure 3 - An Onera ReSSAC unmanned helicopter

After taking off from its base and reaching the search area, the heli-
copter takes, at high altitude, a wide picture of this area and extracts
possible landing sub-areas. Before landing in any of these sub-areas,
it must explore it at lower altitude in order to be sure that landing is
safe. After landing in any sub-area, the searched person reaches the
helicopter, which takes off to come back to its base.

The mission goal is to come back to the base with the searched per-
son. Fuel is limited. For any sub-area, there is uncertainty about the
fuel consumed in its exploration and about the possibility of landing
safely in it. The problem is to determine in which order sub-areas are
visited.

Because of uncertainties, producing a plan off-line to be executed by
the helicopter is not a valid approach. A policy has to be produced
either off-line from the initial state, or on-line from the current state.
The problem has been modeled in the MDP framework. State va-
riables include discrete Boolean variables pointing out whether or not
a given area has already been explored and a continuous variable
representing the current level of fuel. Action variables include a dis-
crete variable representing the next sub-area to be visited. Transition
probabilities are assumed to be available. There is no reward except
when the helicopter comes back to its base with the searched person.
All state variables are observable, but some of them are continuous.
The result is thus a hybrid MDP [32].

To solve it, a hybrid version of the RTDP algorithm (Real Time Dy-
namic Programming [4]), called HRTDP for Hybrid RTDP [58], has

Issue 4 - May 2012 - Synthesis of plans or policies for controlling dynamic systems
 AL04-05 7

been developed. HRTDP works as RTDP does, using greedy search,
sampling, and learning, except that value functions which associate
a value with each discrete-continuous state are approximated using
regressors, and policies which associate an action with each dis-
crete-continuous state are approximated using classifiers.4

We are currently working on more complex missions involving target
recognition, identification, and tracking by an unmanned helicopter,
for which we are making use of POMDP techniques [15].

Planning airport ground movements

At airports, aircraft must move safely from their landing runway to
their assigned gate and, in the opposite direction, from their gate to
their assigned runway.

To assist airport controllers, safe ground movement plans can be
automatically built, taking into account a given set of flights over a
given temporal horizon ahead.

To build such plans, the airport (see figure 4) is modelled as an
oriented weighted graph where vertices represent runway access
points, gates, or taxiway intersections, arcs represent taxiways, and
weights represent taxiway lengths. In the proposed approach [46],
flight movements are planned flight after flight, according to their star-
ting time order. For each flight, a movement plan is built, taking into
account the plans built for the previous flights. For each flight, the
problem is to find a shortest path in the graph in terms of time, taking
into account time separation constraints between aircraft at each ver-
tex of the graph. An algorithm is used to solve it optimally. The result
is a path in the graph, with a precise time associated with each vertex
in the path.

These plans are too rigid and do not take into account the uncer-
tainty about aircraft arrival and departure times and about aircraft
ground speed. To overcome such a difficulty, in a second version
of the algorithm, precise times associated with each flight and each
vertex are replaced by time intervals. The resulting plan is flexible
and remains valid as long as these time intervals are adhered to by
the aircraft.

Management of an autonomous Earth surveillance and observa-
tion satellite

For some years, Onera, CNES, and LAAS-CNRS have been involved
in a joint project called AGATA [16] which aims at developing tech-
niques for improving spacecraft autonomy. A target mission in this
project was a fictitious mission, called HotSpot, using a constella-
tion of small satellites for surveillance and observation of hotspots
(forest fires or volcanic eruptions) at the Earth’s surface [48] (see
figure 5).

Figure 5 - Track on the ground of the HotSpot detection instrument
(12 satellite constellation) within a 25 minute period

Figure 4 - A map of the Roissy Charles de Gaulle airport

 4 A regressor allows a function to be approximated. When this function takes discrete values, one speaks of classifier.

Issue 4 - May 2012 - Synthesis of plans or policies for controlling dynamic systems
 AL04-05 8

Each satellite is assumed to be equipped with a large aperture detec-
tion instrument, able to detect hotspots at the Earth surface. In the
event of detection an alarm is sent to the ground via relay geostatio-
nary satellites. Each satellite is also equipped with a small aperture
observation instrument, able to observe areas where hotspots have
been detected or of any other areas whose observation is required by
the ground mission center. Observation data is recorded on board and
downloaded when the satellite is within a visibility window of a ground
reception station. Decisions must be made on board on which areas
to be observed, which data to be downloaded, and when downloads
occur (when selected, observations occur at specific times with no
temporal flexibility).

In this problem, uncertainty is due to the possible presence of
hotspots. However, we do not have at our disposal any model of this
uncertainty. This is why we adopted a planning/replanning approach
(see § “Control synthesis modes”). Each observation and download
plan is built over a given temporal horizon ahead, takes into account
the known observation requests, and ignores the possible future
requests that might follow hotspot detection. In case of detection of
any unexpected event, a new plan is built.

To implement such an approach, we developed a generic reactive/de-
liberative control architecture [44] where a reactive module receives
information from the environment, triggers a deliberative module with
all the necessary information (starting state, requests, temporal hori-
zon), and makes final decisions, and where the deliberative module
performs anytime planning [72] and sends plans to the reactive mo-
dule each time a better plan is found.

Because plans must be produced quickly, we developed an iterated
stochastic greedy search. Each greedy search is performed chrono-
logically from the starting state and produces a candidate plan. At
each step, the algorithm makes a heuristic choice and checks that all
the physical constraints are met. Observations and data downloads
which can be performed in parallel are taken into account, as well
as energy and memory profiles. Heuristic choices are randomized to
explore plans in a neighbourhood around a reference plan (the plan
that is produced by strictly following heuristics).

Autonomous decision about data downloading

Onera has been studying the problem of data downloading for a CNES
electromagnetic surveillance mission using a constellation of satel-
lites (see figure 6). In this mission, ground electromagnetic sources
are tracked by satellites, data is recorded on board and then downloa-
ded to ground reception centers [65].

Figure 6 - The Elisa satellite constellation designed as a technological
demonstration of electromagnetic surveillance capabilities from space

The main difficulty in this problem is that the volume of data that
results from the tracking of a ground area is uncertain and that the
variance of the probability distribution is very large. In such condi-
tions, building data downloading plans off-line on the ground, which
is how this is usually done, may be problematic. If maximum volumes
are taken into account then downloading windows may be under-
used due to actual volumes being less than their maximum value. If
mean volumes are taken into account then some downloads may be
impossible due to actual volumes being greater than their mean value.
In this problem, it is assumed that, for each ground area, a proba-
bility distribution on the volume of data generated by its tracking is
available. In such conditions, if the tracking plan is known, an MDP
model of the data downloading problem can be built. Solving it would
produce a policy which would say which data is to be downloaded as
a function of current time and memory state (data currently present in
memory). However, the fact that the resulting MDP is a hybrid MDP
[32] with a huge number of continuous variables (volume of each
data in memory) has prevented us, at least for the moment, from
following this approach.

More pragmatically we adopted a planning/replanning approach,
close to the one used to solve the previous HotSpot problem (see
the previous subsection). Each plan is built over a given sequence
of downloading windows ahead and takes into account the known
volumes for the data already in memory and the mean volumes for the
others. Each time the tracking of a ground area ends and the genera-
ted volume is known, a new plan is built. Plans are built greedily by
inserting data downloads one after the other. At each step, a down-
load of the highest priority and, in the case of equality, of the highest
ratio between its value and its duration is selected and inserted in
the plan at the earliest possible moment (classical heuristics used to
solve knapsack problems [39]).

Simulations show the superiority in terms of actual downloads of on-
line on-board planning/replanning compared to off-line planning on
the ground.

Challenges

Algorithmic efficiency

Algorithmic efficiency is the key issue for dealing with plan or policy
synthesis problems. Most of the problems we address are not po-
lynomial, but NP-hard or Pspace-hard according to the complexity
theory in computer science [25]. This means that the worst-case time
complexity of any known optimal algorithm grows at least exponenti-
ally with problem size (what is usually referred to as the combinatorial
explosion) and that there is no serious hope of discovering polynomial
algorithms. Thus, if the combinatorial explosion is unavoidable, the
priority becomes to delay it as far as possible.

This is the role of many of the techniques we are working on, as a
large number of other researchers are, such as efficient data struc-
tures, intelligent search strategies, intelligent sampling, high quality
heuristics, constraint propagation and bound computing, explanation
and learning, decomposition, symmetry breaking, incremental local
moves, portfolios of algorithms, and the efficient use of multi-core
processor architectures.

Issue 4 - May 2012 - Synthesis of plans or policies for controlling dynamic systems
 AL04-05 9

Generic vs. specific algorithms

In fact, in most of the applications we have had to deal with we did not
use generic algorithms but developed specific ones, tuned for solving
the specific problem at hand. The two main reasons for that are that
(i) generic frameworks and algorithms are often unable to handle spe-
cific features of the problem and (ii) generic algorithms do not take
into account problem specificities and are thus often too inefficient.
However, this approach is very consuming in terms of engineer wor-
king time. Moreover, any small change in the problem definition may
compel engineers to revisit the whole algorithm.

As a consequence, one of the challenges we have to face is the design
of really generic modeling frameworks and of associated efficient generic
algorithms, for at least some important problem classes to be identified.
These algorithms should be tunable as much as possible as a function of
the problem at hand. If we succeed then engineers could limit their work
to problem analysis and modeling and to algorithm tuning.

Constraints and criteria

User requirements on the controlled system are usually of the form
of constraints to be satisfied or of criteria to be optimized on all the
possible system trajectories. However, some modeling frameworks
such as temporal logics, classical AI planning, or logical MDP focus on
constraint satisfaction, whereas other frameworks such as classical or
goal MDP focus on criterion optimization. It would be very interesting
to build a more general framework where various kinds of constraints
and criteria on trajectories could together be represented and handled,
in order to be able, for example, to synthesize safe optimal controllers.

Discrete and continuous variables

In most of the work on the problem of plan or policy synthesis for
the high-level control of dynamic systems, time, state, and action
variables are assumed to have discrete and finite domains of values.

On the other hand, for work in the domain of continuous automa-
tic control, it is continuous, time, state, and command variables that
are considered. A challenge would be to put up a bridge between
the discrete and continuous worlds in order to address problems of
control of hybrid systems that can only be modeled using discrete/
continuous time, state, and command variables.

Centralized and decentralized control

In this article, we have limited ourselves to problems where the
control is centralized: whatever its dimension is, the physical system
is controlled by a unique controller which receives all the observations
and sends all the commands. However, in many situations, distributed
control is either mandatory or desirable. This is the case when a fleet
of vehicles (aircraft, spacecraft, ground robots, ground stations …)
needs to be controlled in spite of non-permanent inter-vehicle com-
munications. In this case, local decisions must be made by each
vehicle with only a local view of the system. This kind of problem has
already been formalized, using the Dec-MDP framework (Decentra-
lized Markov Decision Processes [7]), where each agent has a local
view of the system state and can only make local decisions, or the
DCSP framework (Distributed Constraint Satisfaction Problem [70]),
where decision variables are distributed among agents. Nevertheless,
a lot of work remains to be done in this domain in terms of relevant
modeling frameworks and efficient algorithms.

Human beings in the control loop

Finally, the presence of human beings who want to have the best view
of the system state, want to control the system at the highest level,
and want to be able to make their own decisions at any moment, is
another challenge. Indeed, while it is sensible to assume that we have
at our disposal models of the dynamics of artificial physical systems,
this is no longer the case with human beings who may intervene as
they wish, within the limits of the man-machine interaction system.
See [62] in this issue of Aerospace Lab

Issue 4 - May 2012 - Synthesis of plans or policies for controlling dynamic systems
 AL04-05 10

References

[1] E. AARTS, J. LENSTRA, eds. - Local Search in Combinatorial Optimization. John Wiley & Sons, 1997.
[2] R. I. BAHAR, E. FROHM, C. GAONA, G. HACHTEL, E. MACII, A. PARDO, F. SOMENZI - Algebraic Decision Diagrams and their Applications. Proc. of the
IEEE/ACM International Conference on Computer-aided Design (ICCAD-93), 1993.
[3] P. BAPTISTE, C. LE PAPE, W. NUIJTEN - Constraint-based Scheduling: Applying Constraint Programming to Scheduling Problems. Kluwer Academic
Publishers, 2001.
[4] A. BARTO, S. BRADTKE, S. SINGH - Learning to Act using Real-time Dynamic Programming. Artificial Intelligence, 72 (1995), pp. 81–138.
[5] G. BEAUMET, G. VERFAILLIE, M. CHARMEAU - Feasibility of Autonomous Decision Making on Board an Agile Earth-Observing Satellite. Computational
Intelligence, 27 (2011), pp. 123–139.
[6] R. BELLMAN - Dynamic Programming. Princeton University Press, 1957.
[7] D. BERNSTEIN, R. GIVAN, N. IMMERMAN, S. ZILBERSTEIN - The Complexity of Decentralized Control of Markov Decision Processes. Mathematics of
Operations Research, 27 (2002), pp. 819–840.
[8] P. BERTOLI, A. CIMATTI, M. ROVERI, P. TRAVERSO - Planning in Nondeterministic Domains under Partial Observability via Symbolic Model Checking.
Proc. of the 17th International Joint Conference on Artificial Intelligence (IJCAI-01), Seattle, WA, USA, 2001, pp. 473–478.
[9] J. BIBAI, P. SAVÉANT, M. SCHOENAUER, V. VIDAL - An Evolutionary Metaheuristic Based on State Decomposition for Domain-Independent Satisficing
Planning. Proc. of the 20th International Conference on Automated Planning and Scheduling (ICAPS-10), Toronto, Canada, 2010.
[10] A. BIERE, M. HEULE, H. VAN MAAREN, T. WALSH, eds. - Handbook of Satisfiability. IOS Press, 2009.
[11] B. BONET, H. GEFFNER - Planning as Heuristic Search. Artificial Intelligence, 129 (2001), pp. 5–33.
[12] J. BRESINA - Heuristic-Biased Stochastic Sampling. Proc. of the 13th National Conference on Artificial Intelligence (AAAI-96), Portland, OR, USA,
1996, pp. 271–278.
[13] R. BRYANT - Graph-Based Algorithms for Boolean Function Manipulation. IEEE Transactions on Computers, C-35 (1986), pp. 677–691.
[14] C. CASSANDRAS, S. LAFORTUNE - Introduction to Discrete Event Systems. Springer, 2008.
[15] C. P. C. CHANEL, J.-L. FARGES, F. TEICHTEIL-KÖNIGSBUCH, G. INFANTES - POMDP Solving: What Rewards do you Really Expect at Execution? Proc.
of 5th European Starting AI Researcher Symposium (STAIRS-10), Lisbon, Portugal, 2010.
[16] M.-C. CHARMEAU, E. BENSANA - AGATA: A Lab Bench Project for Spacecraft Autonomy. in Proc. of the 8th International Symposium on Artificial
Intelligence, Robotics, and Automation for Space (i-SAIRAS-05), Munich, Germany, 2005.
[17] A. CIMATTI, M. PISTORE, M. ROVERI, P. TRAVERSO - Weak, Strong, and Strong Cyclic Planning via Symbolic Model Checking. Artificial Intelligence,
147 (2003), pp. 35–84.
[18] E. CLARKE, O. GRUMBERG, D. PELED - Model Checking. MIT Press, 1999.
[19] E. DIJKSTRA - A Note on Two Problems in Connection with Graphs. Numerische Mathematik, 1 (1959), pp. 269–271.
[20] E. EMERSON - Temporal and Modal Logic. Handbook of Theoretical Computer Science, Volume B: Formal Models and Semantics, J. van Leeuwen, ed.,
Elsevier, 1990, pp. 995–1072.
[21] K. EROL, J. HENDLER, D. NAU - UMCP: A Sound and Complete Procedure for Hierarchical Task-Network Planning. Proc. of the 2nd International
Conference on Artificial Intelligence Planning and Scheduling (AIPS-94), Chicago, IL, USA, 1994, pp. 249–254.
[22] P. FABIANI, V. FUERTES, G. LE BESNERAIS, A. PIQUEREAU, R. MAMPEY, F. TEICHTEIL-KÖNIGSBUCH - Ressac: Flying an Autonomous Helicopter in a
Non-Cooperative Uncertain World. Proc. of the AHS Specialist Meeting on Unmanned Rotorcraft, 2007.
[23] M. FOX, D. LONG - PDDL2.1: An Extension to PDDL for Expressing Temporal Planning Domains. Journal of Artificial Intelligence Research, 20 (2003),
pp. 61–124.
[24] C. GARCIA, D. PRETT, M. MORARI - Model Predictive Control: Theory and Practice. A Survey, Automatica, 25 (1989), pp. 335–348.
[25] M. GAREY, D. JOHNSON - Computers and Intractability : A Guide to the Theory of NP-Completeness. W.H. Freeman and Company, 1979.
[26] A. GEREVINI, A. SAETTI, I. SERINA - Planning through Stochastic Local Search and Temporal Action Graphs in LPG. Journal of Artificial Intelligence
Research, 20 (2003), pp. 239–290.
[27] E. GEREVINI, P. HASLUM, D. LONG, A. SAETTI, Y. DIMOPOULOS - Deterministic Planning in the Fifth International Competition: PDDL3 and Experimen-
tal Evaluation of the Planners. Artificial Intelligence, 173 (2009), pp. 619–668.
[28] M. GHALLAB, D. NAU, P. TRAVERSO - Automated Planning: Theory and Practice. Morgan Kaufmann, 2004.
[29] F. GOLNARAGHI, B. KUO - Automatic Control Systems. John Wiley & Sons, 2009.
[30] R. GRASSET-BOURDEL, G. VERFAILLIE, A. FLIPO - Building a Really Executable Plan for a Constellation of Agile Earth Observation Satellites. Proc. of
the 7th International Workshop on Planning and Scheduling for Space (IWPSS-11), Darmstadt, Germany, 2011.
[31] R. GRASSET-BOURDEL, G. VERFAILLIE, A. FLIPO - Planning and Replanning for a Constellation of Agile Earth Observation Satellites. Proc. of the
ICAPS-11 Workshop on «Scheduling and Planning Applications» (SPARK-11), Freiburg, Germany, 2011.
[32] C. GUESTRIN, M. HAUSKRECHT, B. KVETON - Solving Factored MDPs with Continuous and Discrete Variables. Proc. of the 20th International Confe-
rence on Uncertainty in Artificial Intelligence (UAI-04), Banff, Canada, 2004.
[33] J. GUITTON, J.-L. FARGES - Towards a Hybridization of Task and Motion Planning for Robotic Architectures. Proc. of the IJCAI-09 Workshop on «Hybrid
Control of Autonomous Systems», Pasadena, CA, USA, 2009.
[34] E. HANSEN, S. ZILBERSTEIN - LAO*: A Heuristic Search Algorithm that Finds Solutions with Loops. Artificial Intelligence, 129 (2001), pp. 35–62.
[35] P. HART, N. NILSSON, B. RAPHAEL - A Formal Basis for the Heuristic Determination of Minimum Cost Paths. IEEE Transactions on Systems Science
and Cybernetics, 4 (1968), pp. 100–107.
[36] J. HOFFMANN, B. NEBEL - The FF planning system: Fast Plan Generation through Heuristic Search. Journal of Artificial Intelligence Research, 14
(2001), pp. 253–302.

Issue 4 - May 2012 - Synthesis of plans or policies for controlling dynamic systems
 AL04-05 11

[37] L. KAELBLING, M. LITTMAN, A. CASSANDRA - Planning and Acting in Partially Observable Stochastic Domains. Artificial Intelligence, 101 (1998),
pp. 99–134.
[38] H. KAUTZ, B. SELMAN - Planning as Satisfiability. Proc. of the 10th European Conference on Artificial Intelligence (ECAI-92), Vienna, Austria, 1992,
pp. 359–363.
[39] H. KELLERER, U. PFERSCHY, D. PISINGER - Knapsack Problems. Springer, 2004.
[40] K. KORB, A. NICHOLSON - Bayesian Artificial Intelligence. Chapman and Hall, 2004.
[41] R. KORF - Real-Time Heuristic Search. Artificial Intelligence, 42 (1990), pp. 189–211.
[42] S. LAVALLE - Planning Algorithms. Cambridge University Press, 2006.
[43] E. LAWLER, J. LENSTRA, A. R. KAN, D. SHMOYS, eds. - The Traveling Salesman Problem: A Guided Tour of Combinatorial Optimization. John Wiley
& Sons, 1985.
[44] M. LEMAÎTRE, G. VERFAILLIE - Interaction between Reactive and Deliberative Tasks for on-line Decision-Making. Proc. of the ICAPS-07 Workshop on
«Planning and Plan Execution for Real-world Systems», Providence, RI, USA, 2007.
[45] M. LEMAÎTRE, G. VERFAILLIE, F. JOUHAUD, J.-M. LACHIVER, N. BATAILLE - Selecting and Scheduling Observations of Agile Satellites. Aerospace
Science and Technology, 6 (2002), pp. 367–381.
[46] C. LESIRE - Iterative Planning of Airport Ground Movements. Proc. of the 4th International Conference on Research in Air Transportation (ICRAT-10),
Budapest, Hungary, 2010, pp. 147–154.
[47] T. MITCHELL - Machine Learning. McGraw Hill, 1997.
[48] C. PRALET, G. VERFAILLIE - Decision upon Observations and Data Downloads by an Autonomous Earth Surveillance Satellite. Proc. of the 9th Inter-
national Symposium on Artificial Intelligence, Robotics, and Automation for Space (i-SAIRAS-08), Los Angeles, CA, USA, 2008.
[49] C. PRALET, G. VERFAILLIE - Using Constraint Networks on Timelines to Model and Solve Planning and Scheduling Problems. in Proc. of the 18th
International Conference on Automated Planning and Scheduling (ICAPS-08), Sydney, Australia, 2008, pp. 272–279.
[50] C. PRALET, G. VERFAILLIE - Forward Constraint-based Algorithms for Anytime Planning. Proc. of the 19th International Conference on Automated
Planning and Scheduling (ICAPS-09), Thessaloniki, Greece, 2009.
[51] C. PRALET, G. VERFAILLIE, M. LEMAÎTRE, G. INFANTES - Constraint-based Controller Synthesis in Non-deterministic and Partially Observable
Domains. Proc. of the 19th European Conference on Artificial Intelligence (ECAI-10), Lisbon, Portugal, 2010, pp. 681–686.
[52] M. PUTERMAN - Markov Decision Processes, Discrete Stochastic Dynamic Programming. John Wiley & Sons, 1994.
[53] P. RAMADGE, W. WONHAM - The Control of Discrete Event Systems. Proc. of the IEEE, 77 (1989), pp. 81–98.
[54] F. ROSSI, P. V. BEEK, T. WALSH, eds. - Handbook of Constraint Programming. Elsevier, 2006.
[55] T. SCHIEX, H. FARGIER, G. VERFAILLIE - Valued Constraint Satisfaction Problems : Hard and Easy Problems. in Proc. of the 14th International Joint
Conference on Artificial Intelligence (IJCAI-95), Montréal, Canada, 1995, pp. 631–637.
[56] P. SCHMIDT, F. TEICHTEIL-KÖNIGSBUCH, P. FABIANI - Taking Advantage of Domain Knowledge in Optimal Hierarchical Deepening Search Planning.
Proc. of the ICAPS-11 Workshop on «Knowledge Engineering for Planning and Scheduling» (KEPS-11), Freiburg, Germany, 2011.
[57] R. SUTTON, A. BARTO - Reinforcement Learning. MIT Press, 1998.
[58] F. TEICHTEIL-KÖNIGSBUCH, G. INFANTES - Anytime Planning in Hybrid Domains using Regression, Forward Sampling and Local Backups. Proc. of the
the 4th ICAPS Workshop on «Planning and Plan Execution for Real-World Systems» (ICAPS-09), Thessaloniki, Greece, 2009.
[59] F. TEICHTEIL-KONIGSBUCH, U. KUTER, G. INFANTES - Incremental Plan Aggregation for Generating Policies in MDPs. Proc. of the 9th Conference on
Autonomous Agents and Multi-Agent Systems (AAMAS-10), Toronto, Canada, 2010.
[60] F. TEICHTEIL-KÖNIGSBUCH, C. LESIRE, G. INFANTES - A Generic Framework for Anytime Execution-driven Planning in Robotics. Proc. of the IEEE
International Conference on Robotics and Automation (ICRA 2011), Shanghai, China, 2011.
[61] F. TEICHTEIL-KÖNIGSBUCH, V. VIDAL, G. INFANTES - Extending Classical Planning Heuristics to Probabilistic Planning with Dead-Ends. Proc. of the
25th National Conference on Artificial Intelligence (AAAI-11), San Francisco, CA, USA, 2011, pp. 1017–1022.
[62] C. TESSIER, F. DEHAIS - Authority Management and Conflict Solving in Human-Machine Systems. Aerospace Lab, issue 4, AL04-08 (2012).
[63] S. THIÉBAUX, C. GRETTON, J. SLANEY, D. PRICE, F. KABANZA - Decision-Theoretic Planning with non-Markovian Rewards. Journal of Artificial Intel-
ligence Research, 25 (2006), pp. 17–74.
[64] P. VAN BEEK, X. CHEN - CPlan: A Constraint Programming Approach to Planning. Proc. of the 16th National Conference on Artificial Intelligence (AAAI-
99), Orlando, FL, USA, 1999, pp. 585–590.
[65] G. VERFAILLIE, G. INFANTES, M. LEMAÎTRE, N. THÉRET, T. NATOLOT - On-Board Decision-Making on Data Downloads. Proc. of the 7th International
Workshop on Planning and Scheduling for Space (IWPSS-11), Darmstadt, Germany, 2011.
[66] G. VERFAILLIE, C. PRALET - Constraint Programming for Controller Synthesis. Proc. of the 17th International Conference on Principles and Practice
of Constraint Programming (CP-11), Perugia, Italy, 2011, pp. 100–114.
[67] G. VERFAILLIE, C. PRALET, M. LEMAÎTRE - How to Model Planning and Scheduling Problems using Timelines. The Knowledge Engineering Review,
25 (2010), pp. 319–336.
[68] V. VIDAL - A Lookahead Strategy for Heuristic Search Planning. Proc. of the 14th International Conference on Automated Planning and Scheduling
(ICAPS-04), Whistler, Canada, 2004, pp. 150–159.
[69] V. VIDAL, H. GEFFNER - Branching and Pruning: an Optimal Temporal POCL Planner Based on Constraint Programming. Artificial Intelligence, 170
(2006), pp. 298–335.
[70] M. YOKOO, E. DURFEE, T. ISHIDA, K. KUWABARA - The Distributed Constraint Satisfaction Problem: Formalization and Algorithms. IEEE Transactions
on Knowledge and Data Engineering, 10 (1998), pp. 673–685.
[71] N. ZHANG, W. ZHANG - Fast Value Iteration for Goal-Directed Markov Decision Processes. Proc. of the 13th International Conference on Uncertainty
in Artificial Intelligence (UAI-97), Providence, RI, USA, 1997, pp. 489–494.
[72] S. ZILBERSTEIN - Using Anytime Algorithms in Intelligent Systems. AI Magazine, 17 (1996), pp. 73–83.

Issue 4 - May 2012 - Synthesis of plans or policies for controlling dynamic systems
 AL04-05 12

AUTHORS

Gérard Verfaillie graduated from École Polytechnique (Paris)
in 1971 and from SUPAERO (French national engineering scho-
ol in aeronautics and space, Computer science specialization,
Toulouse) in 1985, Gérard Verfaillie is now research supervisor
at Onera (The French Aerospace Lab). His research activity is
related to models, methods, and tools for combinatorial opti-

mization and constrained optimization, especially for planning and decision-
making.

Cédric Pralet graduated from SUPAERO (French engineering
school in aeronautics and space) in 2003. He passed his PhD
in Computer Science in Toulouse in 2006. He is now working
as a research engineer at Onera. His research interests concern
constraint-based combinatorial optimization and automated
planning and scheduling. His research activities are applied to

space and aeronautics.

Vincent Vidal graduated from the University of Toulouse where
in 2001 he defended a PhD in Computer Science in the field of
Artificial Intelligence. After being an associate professor at the
University of Artois from 2003 to 2009, he is now a research
scientist at Onera. His research field is mainly focused on auto-
mated planning and scheduling, artificial intelligence, constraint

programming and distributed algorithms.

Florent Teichteil holds an engineering degree and a master of
science in control theory, as well as a PhD in artificial intelli-
gence planning. He has been working at Onera since 2002 on
the design of mission controllers for autonomous UAVs under
uncertainty, and since 2009 on the quantitative assessment of
critical probabilistic aeronautical systems. He is globally in-

terested in the combinatorial optimization and the analysis of complex proba-
bilistic dynamic systems.

Guillaume Infantes graduated from ENSEEIHT (a French natio-
nal engineering school, computer science and applied mathe-
matics specialization) in 2002, he obtained his PhD from the
University of Toulouse in 2006 in the field of automated lear-
ning and decision making for autonomous robots. After one
year as a research assistant at UMIACS (University of Ma-

ryland, Institute for Advanced Computer Studies), he joined Onera in 2008.
His research activities are related to decision making under uncertainty, from
modelling to problem solving algorithms.

Charles Lesire has graduated from ENAC (the French Aviation
University, in Toulouse) in 2003 and obtained a PhD in Compu-
ter Science at the University of Toulouse in 2006. Since 2007,
Charles has been a research scientist at Onera. His research
activities are related to autonomous decision-making and
software engineering for robotics.

