
HAL Id: hal-01183679
https://hal.science/hal-01183679v1

Submitted on 10 Aug 2015

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

FPGA-based smart camera mote for pervasive wireless
network

Cédric Bourrasset, Jocelyn Sérot, François Berry

To cite this version:
Cédric Bourrasset, Jocelyn Sérot, François Berry. FPGA-based smart camera mote for pervasive
wireless network. International Conference on Distributed Smart Cameras, IEEE/ACM, Oct 2013,
Palm Springs, United States. �10.1109/ICDSC.2013.6778226�. �hal-01183679�

https://hal.science/hal-01183679v1
https://hal.archives-ouvertes.fr


FPGA-based Smart Camera Mote for Pervasive
Wireless Network

Cédric Bourrasset, Jocelyn Sérot, François Berry
Institut Pascal, UMR 6602 CNRS, Université Blaise Pascal, Clermont-Fd, France

Abstract—Smart camera networks raise challenging issues in
many fields of research, including vision processing, communica-
tion protocols, distributed algorithms or power management.

The ever increasing resolution of image sensors entails huge
amounts of data, far exceeding the bandwidth of current networks
and thus forcing smart camera nodes to process raw data
into useful information. Consequently, on-board processing has
become a key issue for the expansion of such networked systems.

In this context, FPGA-based platforms, supporting massive,
fine grain data parallelism, offer large opportunities. Besides, the
concept of a middleware, providing services for networking, data
transfer, dynamic loading or hardware abstraction, has emerged
as a means of harnessing the hardware and software complexity
of smart camera nodes.

In this paper, we prospect the development of a new kind
of smart cameras, wherein FPGAs provide high performance
processing and general purpose processors support middleware
services. In this approach, FPGA devices can be reconfigured at
run-time through the network both from explicit user request
and transparent middleware decision. An embedded real-time
operating system is in charge of the communication layer, and
thus can autonomously decide to use a part of the FPGA as an
available processing resource.

The classical programmability issue, a significant obstacle
when dealing with FPGAs, is addressed by resorting to a domain
specific high-level programming language (CAPH) for describing
operations to be implemented on FPGAs.

I. INTRODUCTION

The main challenges in wireless smart camera networks
come from the limited capacity of network communications.
Indeed, wireless protocols such as the IEEE 802.15.4 protocol
target low data rate, low power consumption and low cost
wireless networking in order to fit the requirements of sensor
networks. Since nodes more and more often integrate image
sensors, network bandwidth has become a strong limiting
factor in application deployment. This means that data must be
processed at the node level before being sent on the network.
Solutions based on general purpose processors (GPPs) can not
cope with real-time processing constraints in a high-resolution
camera environment. On the other hand, FPGA-based plat-
forms, supporting massive and fine grain data parallelism, offer
large opportunities for gobbling up streaming data coming
from high resolution image sensors. But, if FPGAs provide
a suited hardware architecture to meet the constraints of high
resolution real-time computation, they raise programmability
issues, especially in the context of collaborative programming
development.

Indeed, collaborative programming is a key issue when
dealing with wireless smart camera networks. These networks

now typically rely on a decentralized approach, where pro-
cessing is carried out on-board. Furthermore, the integration of
smart camera motes into the “Internet of Things” is viewed as a
desirable property. This means that a manager must be able to
address requests on end devices using the Internet Protocol.
This approach requires flexibility, scalability, dynamic re-
tasking and hardware abstraction at the programming level. In
response, middleware layers have been introduced in order to
abstract physical devices and provide logical distributed com-
puting services. Most middlewares for smart camera networks
are based upon the mobile agents programming paradigm [1]–
[4]. A mobile agent is a software unit which has the ability to
move autonomously through a computer network. In this ap-
proach, developers write applications as independent modules
(“agents”) and the system dynamically distributes the modules
through the network, taking decision to migrate agents from
node to node.

While relatively easy to implement on architectures built
on GPPs, the mobile agents programming model approach
raises significant technical difficulties on architectures using
FPGAs because agents are no longer pieces of source (or
binary) code but static hardware descriptions. Fortunately, last
generation of FPGA devices support dynamic partial recon-
figuration. This means that the implemented functionality can
be updated without having to stop and reprogram the circuit
entirely. However, current solutions are based on modules that
can be loaded or unloaded at run-time by a soft/hard-core
processor [5], [6]. With this approach, available modules have
to be stored in a pre-compiled library and algorithms must be
built from components taken in this library. A more flexible
approach should allow the integration of ad-hoc components,
fully specified by the application programmer. But this in
turn raises significant programming issues because developing
components for FPGAs is typically done using hardware
description language (HDLs) and requires skills in digital
design.

In this paper, we describe a smart camera architecture,
and an associated programming methodology, addressing the
aforementioned problems. This architecture is specifically
designed to support real-time image processing in a high
resolution sensor context, dynamically reconfigurable through
the network, abstracted on the “Internet of Things” and can
be programmed with a high-level language. The proposed
architecture integrates both a GPP and a FPGA component.
The GPP - a microcontroller - is in charge of networking
and hardware abstraction. The FPGA performs heavy data
processing. FPGA programming is achieved by using a high-
level domain-specific language (DSL), introduced in [7] and
called CAPH. Based on the dataflow programming model,
CAPH can effectively bridge the gap between high level



specifications and efficient hardware implementations.

The remainder of the paper is organized as follow. The
motivations and objectives sketched in this introduction are
detailed and related to the state of the art in Section II.
The proposed architecture is presented in Section III and the
associated programming methodology in Section IV. Section V
concludes with a presentation of the current state of the
work deriving from this project, including the actual hardware
platform on which some ideas are prototyped to demonstrate
the effectiveness of the approach.

II. MOTIVATIONS

Hardware architectures for visual sensors network have
been reviewed in many surveys [8], [9]. On-board processing is
essential for recent camera platforms. Most existing platforms
are based on GGP units [10], [11]. This kind of architecture
offers high level programming and modern embedded pro-
cessors provide good performances but cannot meet real-time
processing constraints when image resolution increases. Using
hardware configurable devices provides massive computing
capability. For example, the Cyclops platform [12] was one
of the first solution including a CPLD to perform image
processing. The CPLD was in charge of memory control and
could perform a limited amount of low-level image processing
such as background subtraction or frame differentiation.

Since then, FPGA-based architectures, offering more re-
sources and functionalities than CPLD, have been the subject
of tremendous attention for implementing image processing
applications on smart camera nodes [13]–[15]. For instance,
the NICTA smart camera [15] uses a CMOS sensor with a
2592x1944 resolution and is equipped with a Xilinx FPGA for
image processing and a MicroBlaze core as network processor.

However, if the introduction of FPGAs can address some
performance issues in smart camera networks, it introduces
new challenges concerning node programmability and/or hard-
ware abstraction. Indeed, in the current state of the art, pro-
gramming FPGAs is done using low-level hardware descrip-
tion languages (HDLs). The GestureCam platform [14], for
example, relies on VHDL to program the FPGA. This severely
limits the programmability of these solutions because it re-
quires skills in digital design. Classical solutions to increase
FPGA programmability relies on high-level synthesis (HLS)
tools [16]. Unfortunately, in the general case, HLS tools have
difficulties in generating efficient circuit implementations from
high-level behavioral specifications because of the semantic
gap between the two levels of description. A possible approach
to circumvent this problem is to focus on a specific application
domain, in which dedicated tools can rely on application-
specific abstractions to provide an optimized compilation path
from high-level specifications down to low-level descriptions.
For instance, the Trident compiler [17] is a tool focusing
on the implementation of floating-point scientific computing
applications. Another example is the CAPH compiler [18],
[19] for real-time streaming processing applications described
in the sequel.

The second issue raised by the introduction of FPGAs in
smart camera architectures concerns the ability to provide a
network-level abstraction of the provided functions in order to

facilitate distributed applications development. Typically, hard-
ware abstraction and distributed computing rely on middleware
layers, as exemplified in Impala [20] or TinyCubus [21]
for wireless sensor networks. A middleware for distributed
vision applications has been recently introduced in [22]. The
proposed framework provides a set of services, following the
approach advocated in the “Internet of Things” concept and
a Service Oriented Architecture. To support these middleware
specifications, the node-level architecture has to be run-time
updatable. Since FPGA supports partial dynamic configuration,
middleware support can become suitable. However, current
solutions are based on fixed libraries of predefined modules
forcing applications to be dependent on the library content,
and thus hindering flexibility [5], [6].

What is really needed is a FPGA-based platform offer-
ing high-capacity for image processing, but also being fully
configurable and updatable. This architecture must also be ad-
dressable from the Internet protocol and abstracted as a simple
resource in order to simplify distributed vision development.

III. ARCHITECTURE PROPOSAL

A. Hardware Architecture

The proposed hardware architecture for the smart camera
mote is sketched on Fig. 1. It embeds both a microcontroller
and a FPGA device. The FPGA is the core of the system. It
controls the image sensor, and implements all low-level image
processing tasks. For this, it can use up to six external SRAM
blocks of 1 Mo each, addressable in parallel.

The microcontroller is in charge of network management
and executes the middleware layer, providing a bridge between
the application protocol and the hardware processing. The
application protocol will request information from the node
and the microcontroller will reconfigure the FPGA in order to
obtain the corresponding features. Physical network connection
is provided classically by a IEEE 802.15.4 transceiver.

Fig. 1: System overview

The top level logical architecture is depicted in Fig. 2. It
consists of three IP blocks: one providing the interface to the
image sensor; a second dedicated to memory management;
and a third implementing the actual image processing, as a
network of dataflow actors. The specification of this network
is done using the CAPH domain-specific language and the
corresponding IP is produced automatically by the CAPH
compiler (See Sec. IV).

Algorithm prototyping is carried out off-line. When com-
pleted, the application layer can request any node to execute
this algorithm. For this, the corresponding FPGA configuration



Fig. 2: FPGA logical architecture

will be sent to the targeted node through the network. The mi-
crocontroller will then dynamically reconfigure the FPGA unit
with the received configuration. As soon as this reconfiguration
has occurred, the new extracted features are pulled up to the
network manager layer.

B. Software Architecture

Fig. 3 shows the top-level software architecture imple-
mented on the microcontroller. It is based upon the ERIKA
Real Time OS. ERIKA offers a rich library for communication,
control, sensor data handling, vision processing and has a low
flash memory footprint (1-4 Kb). It is also the first open-
source kernel certified OSEK/VDK (automotive). The kernel
layer of ERIKA contains a set of modules implementing
task management and real-time scheduling policies. Available
policies are fixed priority with preemption threshold and EDF1

with preemption threshold. Both use a Stack Resource Proto-
col (SRP), a protocol that allows sharing resources between
threads and sharing the system stack among all the threads
while preserving time predictability.

Fig. 3: Software overview

In order to be addressable in the “Internet of Things”
world, our smart camera mote implements a network protocol
based on IPv6 and CoAP protocols (Fig. 4). The physical
layer and media access control layer meet the IEEE802.15.4
specifications, for a low-rate wireless personal area network,
with a 10-meter range and a transfer rate of 250 kbit/s. The
6LoWPAN layer is an adaptation layer for IPv6 allowing the
transmission of IPv6 packets over IEEE 802.15.4 networks.
UDP is the classical transport layer. The application layer
protocol will be an implementation of CoAP (Application

1Earliest Deadline First (EDF): Priority increases dynamically when the
deadline comes closer

Protocol for Constrained Networks/Nodes). CoAP protocol is
an HTTP-like protocol allowing the creation of embedded web
services, based on RESTful services [23]. According to this
network protocol, mote architectures are abstracted and viewed
as abstract resources by the application layer.

Fig. 4: Networking Stack

The last element of the software architecture is a hardware
library usable both by the Erika OS and the networking stack.
This library will contain all the FPGA configurations imple-
menting the image processing services that can be provided
by the node. Each requested service coming from the network
manager must be present in the library to be honored. If not,
the corresponding FPGA configuration must be sent along with
the CoAP request. On the node side, an ERIKA task will be
in charge of receiving requests, potentially with a new FPGA
configuration, and of reconfiguring a part of the FPGA to
provide the requested service.

IV. PROGRAMMING METHODOLOGY

A. Programming model and tools

Image processing resources are specified as networks of
dataflow actors. This is done at a very high level of abstraction
using the CAPH programming language. CAPH [7], [19] is
a domain specific language, offering a fully-automated com-
pilation path from high-level dataflow descriptions to FPGA
configuration for stream-processing applications. Applications
are described as networks of computational units, called ac-
tors, exchanging streams of tokens through FIFO channels.
Interaction between actors is strictly limited to token exchange
through channels, so that the behavior of each actor can be
completely described in terms of actions performed on its
inputs to produce outputs (no side effect, strictly local control).

The current tool chain supporting the CAPH language is
shown on Fig. 5. It comprises a graph visualizer, a reference
interpreter and a compiler producing both SystemC and syn-
thetizable VHDL code.

The compiler is the core of the system. Compilation of
a CAPH program is done in two steps. An elaboration step
first generates a target-independent intermediate representation
(IR) of the program, which is then processed by specific
back-ends. The VHDL back-end is in charge of generating
the FPGA configuration for hardware synthesis. The SystemC
back-end produces cycle-accurate SystemC code which is used
to provide back-annotations to customize and optimize the
VHDL code

The reference interpreter is based on a fully formalized
semantics of the language, written in axiomatic style. Its role



Fig. 5: CAPH Toolset

is to provide reference results to check the correctness of the
generated SystemC and VHDL code. It can also be used to
test and debug programs, during the first steps of application
development (in this case, I/O streams are read from/written
to files). Several tracing and monitoring facilities are provided.
For example, it is possible to compute statistics on channel
occupation or on rule activation.

The CAPH chain of tools provides an effective rapid
prototyping environment for FPGA programming, allowing
new image processing services to be prototyped and added
to the network with a minimum effort from the application
programmer and a good efficiency (compared to hand-crafted
HDL code).

B. Toward the Internet of Things

The proposed mote architecture has been designed in
order to be integrated in the “Internet of Things”. Since the
embedded microcontroller runs the CoAP application protocol,
each device in the network will provide information concerning
its own embedded services. A virtual control room (VCR) -
implemented for example as a web application - will collect
information in a database system about CoAP end-devices,
for instance IP address with associated services. The web
application will use this database to address node requests, thus
offering true distributed computing. To add a new service mak-
ing use of FPGA-based image processing, users can develop
algorithm using the CAPH tool chain. Once compiled and
downloaded, the corresponding FPGA configuration will be
included in the list of provided services. Moreover, when a new
node will be deployed in the network, it will be automatically
discovered by the application layer thanks to CoAP protocol
specifications.

V. CURRENT STATE OF WORK

The smart camera architecture proposed in this paper is
the basis of an actual hardware platform currently under de-
velopment. This platform builds on some existing realisations,
most noticeably a smart camera developed at our institute and
called DreamCam.

A. DreamCam Architecture

The DreamCam platform is depicted in Fig. 6. This plat-
form is currently working as a stand-alone smart camera for
feature extraction. It will be extended in order to integrate the
network management facilities and middleware services of the
proposed architecture. This extension will take advantage of
the modular architecture of the platform, which is composed
of boards stacked on a FPGA chip (see Fig. 6). This modular
architecture allows us to easily switch boards, for example,
from USB to Giga-Ethernet communication board.

Fig. 6: Overview of the DreamCam Camera

The DreamCam platform is equipped by a 1.3 Mega-
pixels active-pixel digital image sensor from E2V, supporting
sub-sampling/binning and multi Region of Interests (ROIs).
The FPGA is a Cyclone-III EP3C120 FPGA manufactured
by Altera. This FPGA is connected to 6x1MBytes of SRAM
memory blocks wherein each 1MB memory block has a private
data and address buses (hence programmer may address six
memories in parallel). The FPGA also embeds a CMOS driver
to control the image sensor and a communication controller
(USB or Giga-Ethernet). In order to migrate towards the
proposed architecture, a new board will be stacked on top of
the current platform. This board will integrate the microcon-
troller providing the network level services and the wireless
transceiver.

B. A sample application

In order to assess the validity of the proposed architecture,
we started the development of a testbench application. At
this stage of progress, the goal is to validate the overall
programming methodology.

Because the proposed smart camera node will be deployed
in an Intelligent Transport System context, we targeted a
vehicle detection application. This application aims at pro-
viding a simple information about vehicle presence in the
camera field of view. It is based on the computation of the
histogram of oriented gradients (HOG) features. Dalal and
Triggs have showed in [24] that HOG descriptors provide



excellent performance for visual object recognition. Since
then, HOG descriptors have been commonly used and many
FPGA implementations have been proposed [25]–[27]. We
started from an implementation developed by Bauer [25],
originally designed for pedestrian detection on a GPU-FPGA
architecture. We adapted the algorithm to vehicle detection and
decided to implement the full algorithm in the FPGA.

1) Overview of the method: The HOG feature extraction
chain is sketched in Fig. 7. It is based on evaluating well-
normalized local histograms of image gradient orientations in
a dense grid. The idea is to characterize an object appearance
by the distribution of local intensity gradients. HOG detection
are basically composed of a HOG feature extraction followed
by a classification step. For now, only the feature extraction
step has been implemented on the FPGA.

Fig. 7: HOG feature extraction algorithm

In this implementation, a sliding detection window is used
to locate the initial position of the vehicle in the field of view.
This window is shifted over the image and for each position,
a HOG feature set is generated from the corresponding image
patch and evaluated by a pre-trained classifier that categorizes
unknown samples into one of the predefined classes (vehicle
or non-vehicle). This detection technique is often considered
unfeasible due to its heavy computing requirements. Here,
we take advantage of massive fine-grain parallel computing
facilities provided by the FPGA device. Moreover, if we decide
to work on a specified region of interest (ROI), we will
take advantage of our programmable image sensor capable of
working in multi-ROI and this HOG implementation will still
be usable.

2) Implementation results: This implementation of the
HOG feature extraction step on FPGA of the DreamCam
platform was carried out using the CAPH toolset. Real-time
execution results are reported in Fig. 8. Hardware resources
usage level for Altera Cyclone III EP3C120 are given in table I
for a 1280x960 pixel resolution.

TABLE I: Hardware resource usage level for a processing
resolution of 1280x960 px

Operation Hardware resources Memory usage
Gradient 1500 LE 20 kbit

Histogram 19000 LE 726 kbit
Block normalization 2000 LE 24 kbit

Total (usage level) 22500 LE (20%) 770 kbit (19%)

The HOG descriptor extraction step requires 20% of the
full capacity of the FPGA. As said before, the classification
step has not been implemented yet. Results in table I show
that the histogram generation is the most consuming sub step
due to 8x8 pixels buffering.

In order to verify HOG feature extraction, we also devel-
oped an interface which takes HOG descriptors coming from

the camera and displays the corresponding image patch (8x8
pixels patch in this implementation - Fig. 8).

(a) Input Image (b) HOG features

Fig. 8: HOG feature extraction

VI. CONCLUSION

We proposed a new architecture of wireless smart camera
node where a FPGA provides high processing capacity to
meet the demands of high-resolution image processing. This
architecture also includes a General Purpose Processor to
make the mote addressable from the Internet protocol. This
specification makes our smart camera able to implement any
algorithm on condition that it can expressed as a network of
computational units. The embedded network facilities provided
by the architecture offer abstraction of the physical architec-
ture. On top of the network stack, the application layer defines
a list of the embedded web services that are provided by the
node. A supervisor application collects available services to
realize the final distributed application. When the application
requires a new image processing to be implemented, we
provide an automatic tool chain for FPGA development based
on a high level language, avoiding the classical difficulties
associate to low-level programming. To activate a service in
the targeted mote, the application supervisor sends an Internet
request to the on-board GPP which dynamically reconfigures
the embedded FPGA to provide the required service.

The proposed architecture is currently under development
but preliminary results, obtained with a simplified version of
the hardware and the software toolset, are very encouraging.
Basing the final version of the platform both on existing
extensible hardware and on innovative software makes us
rather confident about the feasibility of the project.

ACKNOWLEDGMENT

This work has been sponsored by the French government
research programm ”Investissements d’avenir” through the
IMobS3 Laboratory of Excellence (ANR-10-LABX-16-01),
by the European Union through the program Regional com-
petitiveness and employment 2007-2013 (ERDF Auvergne
region), and by the Auvergne region. This work is made
in collaboration with the Networks of Embedded Systems
team at CNIT (Consorzio Nazionale Interuniversitario per le
Telecomunicazioni)

REFERENCES

[1] H. Qi, Y. Xu, and X. Wang, “Mobile-agent-based collaborative signal
and information processing in sensor networks,” Proceedings of the
IEEE, vol. 91, no. 8, pp. 1172–1183, 2003.



[2] M. Chen, T. Kwon, Y. Yuan, and V. Leung, “Mobile agent based
wireless sensor networks,” Journal of Computers, vol. 1, no. 1, 2006.
[Online]. Available: https://www.academypublisher.com/∼academz3/
ojs/index.php/jcp/article/view/01011421

[3] K. Ross, R. Chaney, G. Cybenko, D. Burroughs, and A. Willsky,
“Mobile agents in adaptive hierarchical bayesian networks for global
awareness,” in Systems, Man, and Cybernetics, 1998. 1998 IEEE
International Conference on, vol. 3, 1998, pp. 2207–2212 vol.3.

[4] M. Molla and S. Ahamed, “A survey of middleware for sensor network
and challenges,” in Parallel Processing Workshops, 2006. ICPP 2006
Workshops. 2006 International Conference on, 2006, pp. 6 pp.–228.

[5] D. Ziener, S. Wildermann, A. Oetken, A. Weichslgartner, and J. Teich,
“A flexible smart camera system based on a partially reconfigurable
dynamic fpga-soc,” in Proceedings of the Workshop on Computer Vision
on Low-Power Reconfigurable Architectures at the FPL 2011, 2011, pp.
pp 29–30.

[6] A. Oetken, S. Wildermann, J. Teich, and D. Koch, “A bus-based soc
architecture for flexible module placement on reconfigurable fpgas,” in
Field Programmable Logic and Applications (FPL), 2010 International
Conference on, 2010, pp. 234–239.

[7] J. Serot, F. Berry, and S. Ahmed, “Implementing stream-processing
applications on fpgas: A dsl-based approach,” in Field Programmable
Logic and Applications (FPL), 2011 International Conference on, 2011,
pp. 130–137.

[8] W. W. B. Rinner, Towards Pervasive Smart Camera Networks. Aca-
demic press, 2009.

[9] S. Soro and W. Heinzelman, “A survey of visual sensor networks,”
Advances in Multimedia, 2009.

[10] P. Chen, P. Ahammad, C. Boyer, S.-I. Huang, L. Lin, E. Lobaton,
M. Meingast, S. Oh, S. Wang, P. Yan, A. Yang, C. Yeo, L.-C. Chang,
J. D. Tygar, and S. Sastry, “Citric: A low-bandwidth wireless camera
network platform,” in Distributed Smart Cameras, 2008. ICES 2008.
Second ACM/IEEE International Conference on, 2008, pp. 1–10.

[11] W.-C. Feng, E. Kaiser, W. C. Feng, and M. L. Baillif, “Panoptes:
scalable low-power video sensor networking technologies,” ACM Trans.
Multimedia Comput. Commun. Appl., vol. 1, no. 2, pp. 151–167, May
2005. [Online]. Available: http://doi.acm.org/10.1145/1062253.1062256

[12] M. Rahimi, R. Baer, O. I. Iroezi, J. C. Garcia, J. Warrior, D. Estrin,
and M. Srivastava, “Cyclops: in situ image sensing and interpretation
in wireless sensor networks,” in Proceedings of the 3rd international
conference on Embedded networked sensor systems, ser. SenSys ’05.
New York, NY, USA: ACM, 2005, pp. 192–204. [Online]. Available:
http://doi.acm.org/10.1145/1098918.1098939

[13] I. Bravo, J. Balias, A. Gardel, J. L. Lzaro, F. Espinosa, and J. Garca,
“Efficient smart cmos camera based on fpgas oriented to embedded
image processing,” Sensors, vol. 11, no. 3, pp. 2282–2303, 2011.
[Online]. Available: http://www.mdpi.com/1424-8220/11/3/2282

[14] T. Tsui and Y. Shi, “An fpga-based smart camera for gesture analysis for
healthcare applications,” in Consumer Electronics, 2008. ICCE 2008.
Digest of Technical Papers. International Conference on, 2008, pp. 1–2.

[15] E. Norouznezhad, A. Bigdeli, A. Postula, and B. Lovell, “A high
resolution smart camera with gige vision extension for surveillance
applications,” in Distributed Smart Cameras, 2008. ICES 2008. Second
ACM/IEEE International Conference on, 2008, pp. 1–8.

[16] J. Cong, B. Liu, S. Neuendorffer, J. Noguera, K. Vissers, and Z. Zhang,
“High-level synthesis for fpgas: From prototyping to deployment,”
Computer-Aided Design of Integrated Circuits and Systems, IEEE
Transactions on, vol. 30, no. 4, pp. 473–491, 2011.

[17] J. L. Tripp, K. D. Peterson, C. Ahrens, J. D. Poznanovic, and
M. Gokhale, “Trident: An fpga compiler framework for floating-point
algorithms,” in Proceedings of the 2005 International Conference on
Field Programmable Logic and Applications (FPL), Tampere, Finland,
August 24-26, 2005, T. Rissa, S. J. E. Wilton, and P. H. W. Leong, Eds.
IEEE, 2005, pp. 317–322.

[18] J. Serot, F. Berry, and S. Ahmed, “Caph: A language for implementing
stream-processing applications on fpgas,” in Embedded Systems
Design with FPGAs, P. Athanas, D. Pnevmatikatos, and N. Sklavos,
Eds. Springer New York, 2013, pp. 201–224. [Online]. Available:
http://dx.doi.org/10.1007/978-1-4614-1362-2 9

[19] The Caph Programming Language home page. [Online]. Available:
http://dream.univ-bpclermont.fr/index.php/caph

[20] T. Liu and M. Martonosi, “Impala: a middleware system for managing
autonomic, parallel sensor systems,” in Proceedings of the ninth
ACM SIGPLAN symposium on Principles and practice of parallel
programming, ser. PPoPP ’03. New York, NY, USA: ACM, 2003,
pp. 107–118. [Online]. Available: http://doi.acm.org/10.1145/781498.
781516

[21] P. Marron, A. Lachenmann, D. Minder, J. Hahner, R. Sauter, and
K. Rothermel, “Tinycubus: a flexible and adaptive framework sensor
networks,” in Wireless Sensor Networks, 2005. Proceeedings of the
Second European Workshop on, 2005, pp. 278–289.

[22] P. Pagano, C. Salvadori, S. Madeo, M. Petracca, S. Bocchino,
D. Alessandrelli, A. Azzar, M. Ghibaudi, G. Pellerano, and R. Pelliccia,
“A middleware of things for supporting distributed vision applications,”
in Proceedings of the 1st Workshop on Smart Cameras for Robotic
Applications, SCaBot Workshop, 2012.

[23] L. Richardson and S. Ruby, Restful web services, 1st ed. O’Reilly,
2007.

[24] N. Dalal and B. Triggs, “Histograms of oriented gradients for
human detection,” in International Conference on Computer Vision
& Pattern Recognition, C. Schmid, S. Soatto, and C. Tomasi,
Eds., vol. 2, June 2005, pp. 886–893. [Online]. Available: http:
//lear.inrialpes.fr/pubs/2005/DT05

[25] S. Bauer, S. Kohler, K. Doll, and U. Brunsmann, “Fpga-gpu architecture
for kernel svm pedestrian detection,” in Computer Vision and Pattern
Recognition Workshops (CVPRW), 2010 IEEE Computer Society Con-
ference on, 2010, pp. 61–68.

[26] R. Kadota, H. Sugano, M. Hiromoto, H. Ochi, R. Miyamoto, and
Y. Nakamura, “Hardware architecture for hog feature extraction,” in
Proceedings of the 2009 Fifth International Conference on Intelligent
Information Hiding and Multimedia Signal Processing, ser. IIH-MSP
’09. Washington, DC, USA: IEEE Computer Society, 2009, pp. 1330–
1333. [Online]. Available: http://dx.doi.org/10.1109/IIH-MSP.2009.216

[27] Q. Zhu, M.-C. Yeh, K.-T. Cheng, and S. Avidan, “Fast human detection
using a cascade of histograms of oriented gradients,” in Proceedings
of the 2006 IEEE Computer Society Conference on Computer Vision
and Pattern Recognition - Volume 2, ser. CVPR ’06. Washington,
DC, USA: IEEE Computer Society, 2006, pp. 1491–1498. [Online].
Available: http://dx.doi.org/10.1109/CVPR.2006.119


